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Abstract. A two-dimensional nonlinear mathematical model for two tethered satellites is developed. 
This complex system comprises of a long cable (also known as tether or, in this case, space tether) 
connecting two masses (satellites). Tethered satellites can be used in a variety of space applications 
such as electrodynamic propulsion, energy harvesting, momentum exchange, artificial gravity, etc. As 
a first rough mathematical model, the cable connecting the satellites is approximated by two 
connecting rod-like rigid bodies. If these rods are not aligned, it is assumed that the cable is not 
stretched (i.e. the cable is not under tension). This is an undesirable situation for this type of system. 
The whole system is allowed to rotate and translate only on a two-dimensional space. The set of 
ordinary differential governing equations of motion are obtained using the Lagrange´s equations 
approach. These nonlinear equations are numerically integrated and the dynamics of the system is 
investigated under several practical circumstances. 
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1  Introduction 

Space tethers are nonlinear dynamical systems of great complexity in mathematical modeling and 
position and vibration control. In fact, the accuracy required in these mathematical models is directly 
related to the specific objectives to be achieved and the specific phenomena to be investigated [1]. A 
space tether model, for example, may consider nonlinear couplings between the deformations of the 
flexible tether, the rotational dynamics of the rigid bodies (in the tether extremities), and its orbital 
dynamics [2]. The stability of this class of dynamical system is also a very important issue to be 
investigated [3].  

The space tether systems usually involve two rigid bodies or two point masses (two satellites, two 
rigid spacecraft) connected by a flexible cable as long as several thousands of kilometers. It was 
developed to transport payloads up and down without any propellant and many other specialised 
missions such as asteroid rendezvous and electrical generation in the upper atmosphere [4].  

A mathematical model of some complexity based on a rigid body approach is developed in this 
paper. Only the tether dynamics is presented here. 

2  Governing equations of motion of the tethered satellites: rigid body approach 

The geometric model of the system investigated in this work is presented in Figure 1. This system 
comprises two rigid bodies (the satellites A and B) connected to a long cable (here represented by rods 
1 and 2). The rods are treated as rigid bodies. The system is free to move in the horizontal plane (the 
gravity gradient are not considered here).    

 

Figure 1. The space tether system. 
 

In this figure, the inertial axis is represented by XY and all the other axis are moving axis 
(attached to the satellites). 

The governing equations of motion are obtained through the energy method named Lagrange’s 
equations [5]. In order to apply this method one needs to know the kinetic and potential (strain) 
energies stored in the space tether system (cable and satellites) during its time evolution. 
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The kinetic energy, T, of the space tether is given by: 

 21BA TTTTT  . (1) 

In Eq. (1), TA is the kinetic energy of the body with the center of mass at point A, TB is the kinetic 
energy of the body with the center of mass at point B, T1 is the kinetic energy of the rigid body named 
rod 1 and T2 is the kinetic energy of the rigid body named rod 2.  

Expanding the terms in Equation (1) one obtains:    
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In Eq. (2), mA is the mass of the body with the center of mass at point A, IA is the moment of 
inertia around cmA of the body with the center of mass at point A, mB is the mass of the body with the 
center of mass at point B, IB is the moment of inertia around cmB of the body with the center of mass 
at point B, m1 is the mass of the rigid body named rod 1, I1 is the moment of inertia around cm1 of the 
rigid body named rod 1, m2 is the mass of the rigid body named rod 2 and I2 is the moment of inertia 
around cm2 of the rigid body named rod 2. The dot over the variables denotes differentiation with 
respect to the time t.

  

Expanding the velocity vectors and regrouping terms, Eq. (2) can be rewriten as:  
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where: 
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No potential energy is considered in this work. The lagrangian of the system, L, therefore, is 
given by:  

 TL  . (4) 

The Lagrange´s equations of motion for this problem are given by: 
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For the variables xB and yB one has respectively the constraint equations given by: 
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)sin(L sind)sin(Lsindyy 2222EB1111ACAB 
 (12) 

Substituting L given by Eq. (4) into Eqs. (5) to (10), a set of nonlinear ordinary differential 
governing equations of motion for the space tether is obtained and is given by: 
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where: 
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Equation (13) is the governing equation for the variable xA, Eq. (14) is the governing 
equation for the variable yA, Eq. (15) is the governing equation for the variable 1 , Eq. (16) is 

the governing equation for the variable 2 , Eq. (17) is the governing equation for the variable 

1  and Eq. (18) is the governing equation for the variable 2 . 

This set is rearranged, put in state space form and numerically integrated using the fourth 
order Runge-Kutta method. No external forces are considered here. The dynamics of the 
space tether starts with some initial conditions. 
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3  Numerical simulations 

The parameters used in the numerical simulations are presented in Table 1. The time step used in 
the numerical integration of the governing equations of motion is 0.001s. The Runge-Kutta 4th order 
method is used in the numerical integration. 

Table 1. Parameters used in the numerical simulation. 
 

Parameter 
 

Nomenclature Value and units 

mass of satellite A mA 1000 kg 

mass of satellite B mB 1000 kg 

mass of rod 1 m1 400 kg 

mass of rod 2 m2 400 kg 

distance from point C to the center  
of mass of rod 1 

dCcm1 
4 m 

distance from point A to point C  
(the same as dcmAC) 

dAC

 
1 m 

distance from point E to point B dEB
 1 m 

distance from point D to the center  
of mass of rod 2 

dDcm2 4 m 

moment of inertia of satellite A  
(relative to the center of mass of this 

body) 3

dm2
I

2
ACA

A 
 

667 kg.m2 

moment of inertia of rod 1  
(relative to the center of mass of this 

body) 12

Lm
I

2
11

1   
 83333 kg.m2 

moment of inertia of satellite B  
(relative to the center of mass of this 

body) 3

dm2
I

2
EBB

B 
 

667 kg.m2 

moment of inertia of rod 2  
(relative to the center of mass of this 

body) 12

Lm
I

2
22

2   
83333 kg.m2 

length of rod 1 L1 50 m 
length of rod 2 L2 50 m 

 
A set of initial conditions is considered and the resulting dynamics of the space tether is ploted in 

Figs. 2 to 8. The initial conditions are presented in Table 2. 

Table 2. Initial conditions used in the numerical simulation. 
 

Parameter 
 

Value and units 

Ax  0 m 

Ax  1.7 m/s 

Ay  0 m 

Ay  0.1 m/s 

1  22.5o 

1
  0.1 rad/s 

2  -22.5o 

2
  0 rad/s 

1  22.5o 

1  0 rad/s 

2  157.50o 

2  0.1 rad/s 

Bx  72.6 m 

Bx  -5.4 m/s 

By  0 m 

By  7.3 m/s 
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Figure 2. Position of satellite with center of mass in A: variables xA ( ______ ) and yA ( _ _ _ _ ). 

 

Figure 3. Angular position of satellite with center of mass in A. 

 

Figure 4. Angular position of rod 1 (with center of mass in cm1). 
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Figure 5. Angular position of rod 2 (with center of mass in cm2). 

 

Figure 6. Position of satellite with center of mass in B: variables xB ( ______ ) and yB ( _ _ _ _ ). 

 

Figure 7. Angular position of satellite with center of mass in B. 



                                                                                                                                 A. Fenili, L. M. Mazzariol 

CILAMCE 2019 
Proceedings of the XLIbero-LatinAmerican Congress on Computational Methods in Engineering, ABMEC, 

Natal/RN, Brazil, November 11-14, 2019 

 

Figure 8. The general dynamics of the space tether. 

Figures 2 to 7 show the time behaviour of the six independent variables and the two dependent 
variables (xB and yB) for this problem. Figure 8 shows the general dynamics of the space tether, where 
all the eight variables and the tether geometry are ploted together during the time evolution of the 
system.  

4  Conclusions 

The governing equations of motion for the space tether were obtained using the Lagrange´s 
equations approach. The numerical integration of the governing equations was performed using the 
Runge-Kutta 4th order method with fixed time step. The results presented here are coherent and 
proves that the numerical integration of such a complex set of nonlinear ordinary differential equations 
is stable. A set of initial conditions is given to the system and it evolves in time accordingly. Many 
other cases were tested and are not presented here. With the results presented here it is possible to add 
a nonlinear control law to these governing equations in order to drive this system through some 
desired angles and trajectories. 
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