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Abstract. A two-dimensional nonlinear mathematical model for two tethered satellites is developed.
This complex system comprises of a long cable (also known as tether or, in this case, space tether)
connecting two masses (satellites). Tethered satellites can be used in a variety of space applications
such as electrodynamic propulsion, energy harvesting, momentum exchange, artificial gravity, etc. As
a first rough mathematical model, the cable connecting the satellites is approximated by two
connecting rod-like rigid bodies. If these rods are not aligned, it is assumed that the cable is not
stretched (i.e. the cable is not under tension). This is an undesirable situation for this type of system.
The whole system is allowed to rotate and translate only on a two-dimensional space. The set of
ordinary differential governing equations of motion are obtained using the Lagrange’s equations
approach. These nonlinear equations are numerically integrated and the dynamics of the system is
investigated under several practical circumstances.
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Mathematical Modeling and Dynamics of Two Tethered Satellites: Rigid Body Approach

1 Introduction

Space tethers are nonlinear dynamical systems of great complexity in mathematical modeling and
position and vibration control. In fact, the accuracy required in these mathematical models is directly
related to the specific objectives to be achieved and the specific phenomena to be investigated [1]. A
space tether model, for example, may consider nonlinear couplings between the deformations of the
flexible tether, the rotational dynamics of the rigid bodies (in the tether extremities), and its orbital
dynamics [2]. The stability of this class of dynamical system is also a very important issue to be
investigated [3].

The space tether systems usually involve two rigid bodies or two point masses (two satellites, two
rigid spacecraft) connected by a flexible cable as long as several thousands of kilometers. It was
developed to transport payloads up and down without any propellant and many other specialised
missions such as asteroid rendezvous and electrical generation in the upper atmosphere [4].

A mathematical model of some complexity based on a rigid body approach is developed in this
paper. Only the tether dynamics is presented here.

2 Governing equations of motion of the tethered satellites: rigid body approach

The geometric model of the system investigated in this work is presented in Figure 1. This system
comprises two rigid bodies (the satellites A and B) connected to a long cable (here represented by rods
1 and 2). The rods are treated as rigid bodies. The system is free to move in the horizontal plane (the
gravity gradient are not considered here).

Y

Figure 1. The space tether system.

In this figure, the inertial axis is represented by XY and all the other axis are moving axis
(attached to the satellites).

The governing equations of motion are obtained through the energy method named Lagrange’s
equations [5]. In order to apply this method one needs to know the kinetic and potential (strain)
energies stored in the space tether system (cable and satellites) during its time evolution.
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The kinetic energy, T, of the space tether is given by:
T:TA“FTBJFT]“FTZ (1)

In Eq. (1), T, is the kinetic energy of the body with the center of mass at point A, Ty is the kinetic
energy of the body with the center of mass at point B, T} is the kinetic energy of the rigid body named
rod 1 and T is the kinetic energy of the rigid body named rod 2.

Expanding the terms in Equation (1) one obtains:

T =%mA|?A|2 +%IA912 +%mB|?B|2 +%IB65 +%m1|ﬁ|2 +%Il((§1 +('x1)2 +

smaff 210+ aof o

In Eq. (2), m, is the mass of the body with the center of mass at point A, I, is the moment of
inertia around cm, of the body with the center of mass at point A, mg is the mass of the body with the
center of mass at point B, Ip is the moment of inertia around cmg of the body with the center of mass
at point B, m; is the mass of the rigid body named rod 1, I; is the moment of inertia around cm, of the
rigid body named rod 1, m, is the mass of the rigid body named rod 2 and I, is the moment of inertia
around cm, of the rigid body named rod 2. The dot over the variables denotes differentiation with
respect to the time t.

Expanding the velocity vectors and regrouping terms, Eq. (2) can be rewriten as:

1. 1 . 1 . 1 . .o . 1 . .o
T:5c1x3\+gclyf\+5020c12+Ec3612+c4yA91—05xA92+5069%+c7a262+

CgYa02 —CoXpa0; —C1g X (0 +0)+ 130y T2 Xa (0, +0,)+0¢130,0, +
Cra¥a(0y +60))—cCi50Xy +Ec16 a5 =17 YA (0 +05)+C1g6,(; +6,)+¢196,0, -

C001(0y +05)+¢510,(0 +01)—Cap 0,(Gy +03) =3 (ay +0;)(ay +65) -
Co4 (00 +Gy0,) + Co5 (A0 + G 201) + Co5 (81054 610,) — €26 (8,0, +,0,) —
Co7 (XAO) +%201) = Cog (Y a0y + ¥4 02) +Co9 (YAO1+ Y40 ) +C30 (Xp0, +Xx05) 3)
where:
Cl :mA +m2 +mB +m1
C2 = Il + mldécml + m2L21 + mBL21
2 2 2 2
cy =l +1+m, (dCcm1+dcmAC+ 2dcmACdClecosal)+mB(dAC+ L} +2L,d ¢ cosa, )+
m, (Lzl +dic+ 2L,d zc cosay)
¢4 =mpdccos 0 +myd e c0s 0+ my[dy, , ¢ €050 +d ey cos(ay +6;) ]
CS = deEB Sin 62
2 2 2
¢ =Ipg + 1, + mp(dgg +L3) + mydpem,
2 2
C7 = 12 + Lsz +m2chm2
cg =mpdpgg cos 6,
cg =mpd ¢ sinO; + myd ¢ sin O + my[dey 5 ¢ 5in 0 + deey, sin(ay +6;)]
cjp =mgL;sin(a; +06,)
¢y =mdgey, cos(ay +6;)
Clz = mBLzsin(az + 62)
2 2 2
¢i3 =1 +mpLy +m(dgem; +dempc deemy cOS ) +my (L7 + Lydyccosay)

C14 = mBLl COS((XI + el)
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s =my dggy, sin(oy +6;)

¢ =1 +m2d%)cm2 + mBL22

c;; =mpgLj,cos(o, +6,)

c;g =mplL;d,ccosa,

¢j9 =mpdcdgp cos(0; —0;)

Cyo =mpL,dccos(0; —a, —0,)

¢y =mpLdgp cos(0; —a; —6;)

€y =mgLl,dgg cosa,

Cy3 =mpgL L, cos(a; +0; —a, —6,)

Coy =myLidpey, [sinoclsinezcos((x2 —0,)+ cos 6,cos8, cos(a; — ocz)]
¢ys =myLidpen, [cosa, sin 0, sin(a, —0,) — cosasina, sin(6; — 6,) |
Co6 =Mydpem, [Ll cos 0, cos 0, cos(o; —ot,) +dpc cos(o, —0; + 92)]
Cy7; =m, Lysin(oy +6)

Crg = mdecmzcos(oc2 +0,)

Cy9 =m,L; cos(a; +0;)

30 = Mydpey,sin(a, +6,)

No potential energy is considered in this work. The lagrangian of the system, L, therefore, is
given by:

L=T, (4)
The Lagrange’s equations of motion for this problem are given by:
df oL ) oL _ 0
dt\ 0%, ) 0xyu 5)
g(a_L L,
dt\ 0y, ) Oya ©)
dfoL) o g
dt\ 06, ) 06, )
dfoL) oL
dt( 06, ) 00, ®)
dfoL) oL
dt\ 0oy ) Oa, )
d ( oL ) oL _,
dt\ da, )] Oa, (10)
For the variables x and yg one has respectively the constraint equations given by:
Xp =X, +dsccos0,+ L, cos(a, +6,)+dggcosB, —L,cos(a, +6,) (11
Vg =Y +dcsin®,+L,;sin(o; +6,)+dggsin6, —L,sin(a, +6,) (12)

Substituting L given by Eq. (4) into Egs. (5) to (10), a set of nonlinear ordinary differential
governing equations of motion for the space tether is obtained and is given by:
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CiXa —| ClotCs+eyy [0 —| ClptCstey+e3 |04 cptezg—cs |05+

.. ) Lo
Cip +C3p |Go—| €ty tcyg |Gf —2| Cjp+C1y+Cy |040—

(13)
+Cpy +Coo + 0?2 + + 5242 + 5,0, +
€11+ Cig T Cp9 +C3 1 Ci7 ¥ Crg |Q2 Cy7 +Cog |A2U,
+Cog — 02=0
Cy7 TCog —Cy 2=
Ciya+| C3—Ciy—Cpg |B+| cpptcig+ey |G —| Cj7tcyy |G+
+Cpy +Cog + 0, - —Cg—Cy5 — 07 - +Cy0 — 03 +
Cy1tCrg +Cp9 +C3 1 €32 =C10=C15 —C27 1 Ci2 ¥C€30 = Cs 2
(14)
2| cjp+cyp |60, —| cigtcys+Cog dclz—Z Clo+Cis +Co7 |00, +
Cip+C3 |0 =
C301 4| Clg—Coo+Cy —Cp3+Cos—Co6 07 +| CygtCy [0 —| Cypt+Cozteys [0y —
.. .. "o . .2 . (15)
CpuXp +C73 YA +| Cpp—C34—C35—Cp3 |05 —=Cq G +| C79—Cp3 O3 —Ceo0y6; +
068 —2C23 —2035 d292 +C67 dle +C67 d192 =0
Co—Cp [B3+| C6—Cop—Cp3 [0 +CesXp +Coa YA +| Co3+Ca1—Co3 |0+
Cep Gy +| Cg +C34 +C33 612+ C36 +C33 +Cqp d12+c43('x§+c59('x1d2+ (16)
C55010) +Cy36,0, + 57 0,0, =0
Crlly+| Cs6—Co3 —Cpy |Op+Css0;+| Cs4—Co3 |0y +Cs3X s +C52¥a +
Cs1 07 +| Csp—C33 [(G20,+07)+0Cy905 +| cyg—C33 Q) +476,0, +
C4s —2C33 |00 —Cya01G +Cyq020, =0
C70p +| Cp5—Cy—Ca3—Cys |01 4| C7—Cop [0y +| c4y—Co3 |G+
.. .. .2 o . (18)
Cip+C3y |Xp—| Cip+Cyy |Ya+| Ca3+Ca |G +| Ca3+Cyy (0] +Cy305+
2c33—c39 |040; +| c37—C3g |60, +¢37 0,0, =0
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where:
¢3; =mpd,c cos0) + mydc cos 6 + mydy, , ¢ COs B,
C3 =mpdcsin®) + mydesin®) +myd,, , ¢sin 6,
C33 = mBL1L2 Sin(OLl + 61 - (12 - 62)
c3y =mpL dgg sin(0, —a; —0;)
¢35 =mplydacsin(@; —a; —6,)
¢36 =mplL dgp sin(0; —o; —6))
¢37 =myLydpen, [cosocl sin(o., +6; —0,)+cos0;sin(0, + a; —o,)—sin B cos(a, +0; —6,) ]
¢3g =myLidpeny, [Sil’lOLl cos(0,—a, +6,) ]
39 =mL dpey, [sinoclsinezsin(ocz —0,)— cos0,sin(a,; + 0, —a,) +sina, cos(a; + 0, —0,) —
cosa, sin 0, cos(a; —6,) —cosa, cosO; sin(a; —0,) ]
cgo =mpL,dc[sin(® —a, —6,) ] mydper, dac[sin(o, =0, +6,) |+
m,L,dpem, [cosaz cos 0, sin(a; —0,) —cosa,;sina, cos(8; —0,) +sinB; cosO, cos(a; —al,) ]
¢4y =myLidpeny, [cosoc2 sin O, sin(o,; —0,) —cosB,cos0, cos(a; —a,) —cosa,sina, sin(6; —6,) —
sinay,sin®,cos(a, —0;) |
cyp =myLidpep, [cos 0,c0s0, sin(a; — o, ) — cosa,;sinB,cos(o, —0,) +sina,sina, sin(6; —6,) +
cosaL, sin 0, cos(a, —62)]
C4q =myLidpen, [sin 0,cos0, cos(a; —a, ) —sina,;sinB,sin(a, —0;)+ cosa, cosO; sin(a; —0,) —
cosa;sina, cos(6; —6,) —cos 6, cos B, sin(a; — o, ) —cosa, sin B cos(a; —6,) +
sin o sino., sin(0; —0,) ]
Cy4s =m2L1chm2[coscxlsin(x2 cos(8; —6,) —sina,cosB,cos(a, —O;)—cosa cosa, sin(B; —0,) —
sina, sin O sin(o; —0,) —cosa., sin B cos(a; — 0, ) + sina;sind,sin(a, —0; )+
cos0,sinb, cos(a; —at,) —c0s6,cos6, sin(o; —aty) ]
C46 = 2m2L1chm2 Sin alsin(l2 Sin(el - 92)
47 =m,Ldpen, [cosa2 cos O, sin(a; —0,)—sina,;sinB,sin(o, — 6;) + sin6;cos0, cos(a; —o,) —
cosasina, cos(0; — 6,) —cosa, sin O cos(a; — 6, ) + sinoysina, sin(0; —6,) —cos O, cos 6, sin(a; —at,) ]
¢4 =myL dpey, [sinoclsinezsin((xz —0,)—coso,cosa, sin(0; —0,) —sina, sin O; sin(o; —6,) —
cos0,c0s0, sin(a,, —a, ) |
C49 =My L dpep, cosaysina, cos(6; —6,)
50 =ML dpem, [cos 0,sin0, cos(a; — a, ) —sina,cosB,cos(o, —0;) —cosa, sin 6, cos(o; —6,) ]—
mpLdggsin(0, —a,; —6)
Csp = (m1dcmAchcm1 +m,Lidac+ mBleAC) S ay
Csy :(mldCcm1+ mgL; + m,L, )cos(ocl +6,)
os3 2-mpL; —m,L; —m, deem; Jsin(ot, +6;)
¢s4 =mpLdgg cos(0; —oy —6;) +m,Lidpey, [coscx2 sin O, sin(o; —0,) —sino,sinf,cos(o, —6)—
cos 0,cos0, cos(a; — o, ) — cosasina, sin(6; —6,) ]
2 2 2
Css =1 +mply + mldccm1 +m,L] + (mldcmAC dccm1 +Lim,d,c+ mBleAC)cosocl

s =m,Lidpeny, [cosocz sin 0, sin(o; —0,)—cosa,sina, sin(6; —0,) ]
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¢s7 =myLydpem, [sin 0, cos(a, + oy —0,) —cosa,sin(a, +60; —0,)—cos6; cos(0, +o; —a,) ]

Csg =2mpglLdggsin(@, —a; —0,)+2mgL L, sin(o; +0; —a, —0,) +
m,Ldpey, [cos 0, sin(0; +a,; —a,) —sina,;sinf, sin(a, —6,)—sin(a, =6, —o; +0,) ]

59 =m,Lidpey, [sin 0,cos(a, + a; —0,)—cosaysin(a, +0; —0,) +sina,cos(0, —a, +6,)—
cos0;sin(0, + o, — ocz)]

¢eo =myLdpem, [cos 6,c0s0, sin(a; — o, ) —cosasinB,cos(o, —6;)+sin o sina, sin(0; —0,)+
cosa, sin 0, cos(a; — 92)]

ce1 =mpLydacsin(®; —o, —6,) — mpd zcdpg sin(®;, —6,) - mdecm2 dacsin(o, —6; +6,) +
m,Ldpey, [cosocz cos 0, sin(o; —0,) +sin 6, cosO, cos(a; —a,) —cosa,sina, cos(O; —6,) ]

¢y =L, +L3mp + mzdchmz —mgL,dggcosa,

Ce3 =m,Lidpey, [cosoc2 sin 0, sin(o; —0,) —sina,;sinb,cos(o, —0;)—cosB,cos0, cos(o; —at,) —
cosaLsinaL, sin(0, —6,) |

¢4 =mpdgp cosO,—mpLycos(a, +6;) —mydpey, cos(a, +6,)

Ces =mpL,sin(a, +6,) — mpdgg sind, + mdecmzsin(az +0,)

g6 =mpdcdgp cos(0; —6,) —mydpey,dac cos(a, —6; +0,) + mpLdgg cos(0, —a; —6;) +
m,Lydpen, [cosocz sin O, sin(a; —6,) —cosO, cos6, cos(a; — o, ) —cosa,sina, sin(6; —6,) ]

Ce7 =myLdpey, [sinalsinezsin(az —0,)+cosa, sin(@; —o; +0,)—cosB, sin(0; —a; +a,) +
sina, cos(a; — 6, +6,) ]

Ceg =ML dpey, [cos@l sin(ot, —o; +0,)+coso,sin(o, —6; +6,) —sin6,cos(a, +o; —6,) ]+
2m2chm2dAC sin(o, —6, +6,)

Cg9 = (2m1dcmAC dccm1 +2m,L dac +2mpLidac ) sina

€70 = Mydpeyydacsin(oy =6 +0;) —mpLydscsin(@; —a, —6,) -
m,Lidpey, [ cosa,cosaL, sin(B, —0,) +sina, sin O, sin(a; —0,) +cos O, cos O, sin(a;, —at,) |

Cy = (mldcmAC dCcml +Lim,d e + mgLidc ) sinay

C7y =mpdcdpgsin(0; —0,)+ mdecmszC sin(o, —6; +6,) +
m,Lydpen, [ cosa;sinar, cos(0, —6,)—cosa,sin O, cos(a; —0,) +cos, sin O, cos(a, —a.,) |

C73 :(mBL1 + mldCcm1+ m,L,; ) cos(oy + 0+ (deAC+ dycm, +m1dcmAc ) cos6,

Cy4 :(mBLl + mldccm1+ m,L, )sin(oc1 +6,)+ (deAC +dpcm, + mldcmAC )sin 0,

75 =myLidpem, [cosoclsinocz sin(6; —6,) —cosa., sin B, sin(a,; —6,) +cosO, cosH, cos(a; —a,) ]+
mdecm2 dccos(o, —6; +6,)

€y =mpl d - cosay+ (mldcmAc deem+ Limydac )cosal

Equation (13) is the governing equation for the variable x5, Eq. (14) is the governing
equation for the variable ya, Eq. (15) is the governing equation for the variable,, Eq. (16) is

the governing equation for the variableo, , Eq. (17) is the governing equation for the variable
a, and Eq. (18) is the governing equation for the variablea, .

This set is rearranged, put in state space form and numerically integrated using the fourth
order Runge-Kutta method. No external forces are considered here. The dynamics of the
space tether starts with some initial conditions.
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3 Numerical simulations

The parameters used in the numerical simulations are presented in Table 1. The time step used in
the numerical integration of the governing equations of motion is 0.001s. The Runge-Kutta 4th order
method is used in the numerical integration.

Table 1. Parameters used in the numerical simulation.

Parameter Nomenclature Value and units
mass of satellite A my 1000 kg
mass of satellite B mp 1000 kg

mass of rod 1 m,; 400 kg
mass of rod 2 my 400 kg
distance from point C to the center d 4
of mass of rod 1 Comt m
distance from point A to point C
dAC 1m

(the same as dpac)
distance from point E to point B dgp Im
distance from point D to the center

of mass of rod 2 dpema 4m
moment of inertia of satellite A om. d2
(relative to the center of mass of this I, = mA3 AC 667 kg.m?
body)
moment of inertia of rod 1 2
(relative to the center of mass of this I, = mllz ! 83333 kg.m’
body)
moment of inertia of satellite B m.d?
(relative to the center of mass of this Iy = mz EB 667 kg.m”
body)
moment of inertia of rod 2 12
(relative to the center of mass of this I, = m122 2 83333 kg.m’
body)
length of rod 1 L, 50 m
length of rod 2 L, 50 m

A set of initial conditions is considered and the resulting dynamics of the space tether is ploted in
Figs. 2 to 8. The initial conditions are presented in Table 2.

Table 2. Initial conditions used in the numerical simulation.

Parameter Value and units
XA 0Om
XA 1.7 m/s
Ya 0Om
Va 0.1 m/s
0, 22.5°
0, 0.1 rad/s
0, -22.5°
0, 0 rad/s
oy 22.5°
o, 0 rad/s
oy 157.50°
Ay 0.1 rad/s
Xp 72.6 m
Xp -5.4 m/s
YB 0m
VB 7.3 m/s
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Figure 2. Position of satellite with center of mass in A: variables x, (——)and y, (-———-).
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Figure 3. Angular position of satellite with center of mass in A.
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Figure 4. Angular position of rod 1 (with center of mass in cm;).
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Figure 5. Angular position of rod 2 (with center of mass in cm,).
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Figure 6. Position of satellite with center of mass in B: variables xg (—— ) and yg (-———-).
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Figure 7. Angular position of satellite with center of mass in B.
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Figure 8. The general dynamics of the space tether.

Figures 2 to 7 show the time behaviour of the six independent variables and the two dependent
variables (xg and yg) for this problem. Figure 8 shows the general dynamics of the space tether, where
all the eight variables and the tether geometry are ploted together during the time evolution of the
system.

4 Conclusions

The governing equations of motion for the space tether were obtained using the Lagrange’s
equations approach. The numerical integration of the governing equations was performed using the
Runge-Kutta 4th order method with fixed time step. The results presented here are coherent and
proves that the numerical integration of such a complex set of nonlinear ordinary differential equations
is stable. A set of initial conditions is given to the system and it evolves in time accordingly. Many
other cases were tested and are not presented here. With the results presented here it is possible to add
a nonlinear control law to these governing equations in order to drive this system through some
desired angles and trajectories.
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