
MATHEMATICAL MODELING, LINEAR CONTROL AND CONTACT DYNAMICS OF A UN-
DERWATER VEHICLE WITH 2 DEGREES OF FREEDOM

Eduardo dos Santos Sousa
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Abstract. This paper investigates the contact dynamics of a hybrid underwater vehicle operated remotely.
In this first model, the vehicle has two degrees of freedom, executing the movement of submersion and
rotation around it‘s center of mass. The main activity of such vehicle is to perform inspections on
underwater and naval structures. For this, it is equipped with a set of motorized tracks. In this model,
two points of contact will be considered along the length of the motorized tracks. Each of these points,
when in contact, caracterizes a solution to the problem. The contact occurs on horizontal surface with
complicity. To analyze this phenomenon will be using the Lagrange multipliers method to compute the
contact force at each point of contact of the motorized tracks. In order to control the angular position
of the vehicle, a control law will be proposed based on the LQR (Linear Quadratic Regulator) control
methodology, the purpose of this control law is to provide that the two contact points established on the
vehicle‘s motorized tracks will simultaneously contact or ensure that vehicle contacts the surface through
one of these points.
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1 Introduction

Underwater activities have become increasingly intense in Brazil, in the areas related to the explo-
ration of marine resources, biological research and aspects related to national security, has raised interest
in the study and development of various types and models of small submersible vehicles [1].

A remotely operated submersible vehicle (ROV) is a small submersible mobile device, normally
operated by a crew on board a ship. Being the North American and British navy the pioneers in the
testing and development of such device, with the purpose of employing them in military activities [2]
and [3].

Subsequently, given the great potential presented by the device, together with the interest and tech-
nological development of the device, the autonomous submersible vehicle (ASV) emerged as a robotic
device driven through the water by a propulsion system, equipped with sensors and actuators, controlled
by an embedded computer [4] and [5].

Due to the great economic and technological potential of autonomous and remotely operated sub-
mersible vehicles, their relevance becomes even greater in activities aimed at deepwater oil exploration
and exploration data collection for the environment and marine biology, large floating or underwater
structures, as well as missions to rescue victims and equipment lost in accidents [3] and [5].

1.1 Contact dynamics

As can be seen in [6] and [7] the collision between two bodies occurs in a very short time, during
which the two bodies exert one on top of the other high amplitude forces.The force that appers normal the
contact surfaces, due to the interaction between them is commonly described in the literature as impact
force[8]

According to [7] there are two methods that can be used to investigate impact in dynamic systems,
the discrete method and the continuous method. In the discrite method the main objective is to determine
what happens to the system after the impact condition, in the continuous method, the main interest is to
model the contact forces.

Most of the cases dealt with in the literature deal with systems without the restriction condition or
with systems already in contact condition (restricted movement) the transition from the condition of free
movement to restricted is not much approached in the literature, the transition analysis involves the study
of the impact condition[6]

The study of the dynamics of the submersible vehicle in this work occurs through two conditions,
free movement and restricted movement. The restriction condition applies when the vehicle is in contact
with the contact surface through the mechanical tracks.

The objective of the mathematical model presented here in this paper is to describe and demonstrate
the dynamics of free movement, restricted movement and the transition between this two conditions for
an undewater vehicle and compute the contact force for simulated conditions.

The vehicle is equipped with actuator sensors that are of great importance to the full operation of
the vehicle in it’s work environment, so high-intensity impact forces can damage sensors and actuators,
especially the mechanical track motors. In addition, another situation that should be avoided is the
repetition of the transition condition of free and restricted movement, because according to [6] this causes
an undesirable oscillatory behavior and may also cause severe damage to vehicle components.Given the
conditions described, it is desired that the vehicle, when in contact with another object (performing
inspection tasks for example), do not lose the touch.

2 Brief description of vehicle prototype

In this section will be briefly describe some mechanical properties of the studied vehicle and a brief
description of the sensors and actuators equipped as illustrated by the following Fig.1.
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Figure 1. The HROV underwater vehicle

The hybrid remotely operated vehicle (HROV) prototype illustrated by Fig.1 was built at the Uni-
versidade Federal do ABC. The main activity of the vehicle is to perform ship hull inspections by means
of ultrasound transducers to check plate thickness and for cracks. The vehicle is classified as a HROV
due to the two modes of operation, freestyle and crawl. In the freestyle mode operation, the vehicle use
six thrusters, four vertical and two horizontal for it’s displacement through the water, for the crawl mode
operation, the vehicle uses two motorized tracks for it’s movement on the surface of the ship’s hull [5]
and [9].

2.1 Brief description of mechanical designer

The mechanical struture of HROV consist of polypropylene plates and is divided into two parts,
upper and bottom. The upper part of the vehicle contains a floating, an acoustic positioning system
compose by two transponders, a pressure vessel for control electronics and sensors, and four vertical
thrusters.The bottom part of vehicle consists of two horizontal thrusters and two motorized mechanical
tracks illustrated through Fig.1 [5] and [4]. The thrusters and motorized mechanical tracks are actuated
by DC brushless eletric motors. Some navigation sensors are fixed on the structures of the vehicle and an
umbilical cable is used for electric power supply and data transmission. Modular structural components
allow HROV to be easily reconfigured in agreement with specifc tasks[9].

2.2 Brief description of sensors

The vehicle has the sensors system that provides the position and orientation of the vehicle with re-
spect to an earth-fixed reference frame. The ultrasonic altimeter measures the distances between vehicle
and the ship hull .The DVL-Doppler Velocity Log sonar provides the velocity of the vehicle in the surge,
sway and heave directions, the vehicle poses a navigation instrument that contains attitude sensors to
mensure the roll and picth angles and a compass to provide the heading of the vehicle. The navigation
of the vehicle in the hull surface is based on information provides by camera, map of the hull and two
transponders, the main task of the sensors system is to provide information for a robust estimation of po-
sition and velocity while combining information from different sensors using a stochatic sensors fusion
algorithm [4] and [9]

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.

Natal/RN, Brazil, November 11-14, 2019



Mathematical Modeling, Linear Control and Contact Dynamics of Underwater Vehicle

3 Mathematical modeling

In this section, It will be describe the methodology employed to obtain the equations of motion of
the vehicle under free and restricted motion conditions.Consider the following geometric representation
of the problem, illustrated by Fig.2 below.

Figure 2. Geometric model of the problem

As mentioned earlier, in this model, the vehicle can travel in Z direction and rotate around it’s center
of mass, ie vehicle has two degrees of freedom, for this model, the displacement in the X direction will
not be considered. To obtain the equations of motion, it will be considered that the mechanical track
and the vehicle are only a rigid body, another simplification adopted is that the effects of quadratic and
linear fluid drag on the vehicle will not be considered. Only the effect of the buoyant force applied to the
respective center of buoyancy of the vehicle will be considered, which at this first moment is considered
to coincide with the center of mass and the geometric center of the vehicle (CG).

The coordinatesD1 (t) andD2(t) indicate the distances from the vehicle contact points to the contact
surface. KG and CG represent the contact surface stiffness and damping constant of the contact surface,
zG(t) is the contact surface displacement coordinate, z(t) coordinate indicates the displacement of the
vehicle’s center of mass. H indicates the total depth, the θ(t) coordinate indicates the rotation of the
vehicle around its respective center of mass, λ1(t) and λ2(t) are the contact forces that arise during the
vehicle’s interaction with the surface, F1(t) and F2(t) are approximations of the thrust forces produced
by the upper thrusters of the vehicle. Finally h represents the total height of the vehicle body, b the total
length of the vehicle and the mechanical track, d the height of the mechanical track gears.

Note that X and Z are the axes of the surface inertial frame, x and z are the frame coordinates fixed
on the vehicle body.

According to the geometrical model illustrated by Fig.3, the total kinetic energy of the vehicle can
be described by means of the following equation:

T =
1

2
mż(t)2 +

1

2
Iyy θ̇(t)

2 (1)

The first term of Eq. (1) refers to translation kinetic energy, and the second term to rotation kinetic
energy, m being the total mass of the vehicle, Iyy the rotation inertia about the Y axis, ż(t) the velocity
driving direction Z and θ̇(t) the angular speed of vehicle.
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The total potential energy is defined by the following equation:

V = mgz − ρg∇z (2)

The first term of Eq. (2) refers to the potential energy and the second term the buoyancy force by the
fluid, g being defined as gravitational acceleration, z(t) the position of the center of mass of the vehicle,
ρ the fluid density,∇ the displaced volume of fluid.

After defining the expressions for kinetic and potential energy, the Lagrange equation for the vehicle
is defined by the following equation.

L = T − V (3)

Substituting the Eq. (1) and Eq. (2) into Eq. (3) results.

L =
1

2
mż(t)2 +

1

2
Iyy θ̇(t)

2 −mgz + ρg∇z (4)

The Lagrange equation described by Eq. (4) is almost complete as the constraint equations are still
missing. To define the constraint equations of the problem, the geometric model illustrated by Fig .3 will
be used, the variables β(t) and ξ(t) are defined by the following equations.

β(t) =

(
h

2
+ d

)
cos(θ(t)) (5)

ξ(t) = bsen(θ(t)) (6)

The variables described by Eq.(5) and Eq.(6) were used only to simplify the problem geometry
illustrated by Fig.3 and by these equations, plus the illustration of Fig.3 can be defined constraint D1(t)
and D2(t) as:

D1(t) = H −
[
z(t) +

(
h

2
+ d

)
cos(θ(t))

]
+ zG(t) (7)

D2(t) = H −
[
z(t) +

(
h

2
+ d

)
cos(θ(t))− bsen(θ(t))

]
+ zG(t) (8)

Now defining the constraint equations, the Eq.(4) can be rewrite by adding Lagrange multipliers and
constraint equations as shown below.

L =
1

2
mż(t)2 +

1

2
Iyy θ̇(t)

2 −mgz(t) + ρg∇z(t)

− λ1(t)
{
H −

[
z(t) +

(
h

2
+ d

)
cos(θ(t))

]
+ zG(t)

}
− λ2(t)

{
H −

[
z(t) +

(
h

2
+ d

)
cos(θ(t))− bsen(θ(t))

]
+ zG(t)

}
(9)

To obtain the equations of motion, substitute Eq.(9) in the following equation given in [6].

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk
= Qk +

m∑
l=1

λlalk (10)

Where qk is the generalized coordinates of the vehicle and q̇k the generalized velocity, Qk is the
work of generalized forces, which for this model will be the thrust force of the thruster, and

∑m
l=1 λlalk

as the bonding forces of the system, which are the contact forces of point 1 and point 2. Being l a quantity
of Lagrange multipliers, alk the quantity of equations of bond. Note that λ now it will be considered as
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a problem variable, and it should be derived Lagrange equation in relation to it. Substituting the Eq.(9)
into Eq.(10) gives the following set of equations to be solve.

d

dt

(
∂L

∂ż

)
− ∂L

∂z
= F1(t)cos(θ(t)) + F2(t)cos(θ(t)) (11)

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
=
F1(t)cos(θ(t))b

2
− F2(t)cos(θ(t))b

2
(12)

d

dt

(
∂L

∂λ̇1

)
− ∂L

∂λ1
= 0 (13)

d

dt

(
∂L

∂λ̇2

)
− ∂L

∂λ2
= 0 (14)

Solving for Eq.(11) gives the following equation.

mz̈(t) +mg − ρg∇− λ1(t)− λ2(t) = F1(t)cos(θ(t)) + F2(t)cos(θ(t)) (15)

Solving for Eq.(12) gives the following equation.

Iyy θ̈(t) + λ1(t)

[(
h

2
+ d

)
sen(θ(t))

]
+ λ2(t)

[(
h

2
+ d

)
sen(θ(t)) + bcos (θ(t))

]
=
F1(t)cos(θ(t))b

2
− F2(t)cos(θ(t))b

2
(16)

Solving for Eq.(13) and Eq.(14). Obtain the following equations respectively, defined as the relative
distances between the contact points and the contact surface.

zrel1 = H −
[
z(t) +

(
h

2
+ d

)
cos(θ(t))

]
+ zG(t) (17)

zrel2 = H −
[
z(t) +

(
h

2
+ d

)
cos(θ(t))− bsen(θ(t))

]
+ zG(t) (18)

Now defining the equations of motion and the bond equations of the problem, the conditions of free
movement and restricted movement for this proposed model can be establish. Note that there are three
distinct solutions to the problem, being a solution only when a points come into contact individually or
when both points come into contact condition simultaneously.

3.1 Free movement condition

In this section will define the conditions of free movement of the vehicle. For the free movement
condition to be taken as true, the following condition must be established.{

zrel1(t) 6= 0 λ1(t) = 0

zrel2(t) 6= 0 λ2(t) = 0
(19)

Applying the conditions described by Eq.(19) to Eq.(15) and Eq.(16), the system dynamics under
this condition will be represented by the following set of two nonlinear second order ordinary differential
equations, as shown below.

mz̈(t) +mg − ρg∇ = F1(t)cos(θ(t)) + F2(t)cos(θ(t)) (20)

Iyy θ̈(t) =
F1(t)cos(θ(t))b

2
− F2(t)cos(θ(t))b

2
(21)
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3.2 Movement restriction condition only through contact point number one

For the contact condition only by contact point number one to be taken as true, the following con-
dition must be established. {

zrel1(t) = 0 λ1(t) < 0

zrel2(t) 6= 0 λ2(t) = 0
(22)

Applying the conditions set out in Eq.(22) in Eq.(15) and Eq.(16) results in the following set of
differential equations.

mz̈(t) +mg − ρg∇− F1(t)cos(θ(t))− F2(t)cos(θ(t)) = λ1(t) (23)

Iyy θ̈(t) =
F1(t)cos(θ(t))b

2
− F2(t)cos(θ(t))b

2
(24)

CGżG(t) +KGzG = −λ1(t) (25)

Note that for Eq.(16) the constraints established in equation will not be taken into account in Eq.(24),
since the contact surface presented here does not restrict vehicle rotation when only supported by the
contact point one and two individually. The Eq.(25) is an ordinary linear first order differential equation,
which according to [10] and [6] this can be used to represent the contact surface dynamics. Note that, the
contact surface inertia is not being taken into account, this condition may be valid if only if is considered
that the mass of the contact surface is much larger than that of the vehicle.

In this contact condition, both vehicle and the contact surface will oscillate together (even for a
short time).This means that, in this condition the vehicle loses a degree of freedom in the Z direction. To
describe the system dynamics in this condition, the Eq. (23) and Eq. (25) will be equated thus forming
the following equation.

mz̈(t) + CGżG(t) +KGzG +mg − ρg∇− F1(t)cos(θ(t))− F2(t)cos(θ(t)) = 0 (26)

The Eq.(26) is a nonlinear, second order ordinary differential equation, which describes the system
behavior in the contact condition through contact point one. Note that it is described as a function of
contact surface and vehicle coordinates. To rewrite the Eq.(26) as a function of only the contact surface
or vehicle coordinates, the Eq.(17) will be used, since in this contact condition zrel1 = 0 and its time
derivative żrel1 = 0 and thus the following relations for this contact condition is describe below.

żG = ż(t)−
(
h

2
+ d

)
sen(θ(t))θ̇(t) (27)

zG = −H +

[
z(t) +

(
h

2
+ d

)
cos(θ(t))

]
(28)

Finally, substituting Eq.(27) and Eq.(28) in Eq.(26) can describe the system dynamics in this contact
condition through the set of two nonlinear second order ordinary differential equations, shown below.

mz̈(t) + CG

[
ż(t)−

(
h

2
+ d

)
sen(θ(t))θ̇(t)

]
+KG

{
−H +

[
z(t) +

(
h

2
+ d

)
cos(θ(t))

]}
+mg − ρg∇− F1(t)cos(θ(t))− F2(t)cos(θ(t)) = 0 (29)

Iyy θ̈(t) =
F1(t)cos(θ(t))b

2
− F2(t)cos(θ(t))b

2
(30)
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3.3 Movement restriction condition only through contact point number two

For the contact condition only by contact point two to be taken as true, the following condition must
be established. {

zrel1(t) 6= 0 λ1(t) = 0

zrel2(t) = 0 λ2(t) < 0
(31)

Applying the conditions set out in Eq.(31) in Eq.(15) and Eq.(16) results in the following set of
differential equations.

mz̈(t) +mg − ρg∇− F1(t)cos(θ(t))− F2(t)cos(θ(t)) = λ2(t) (32)

Iyy θ̈(t) =
F1(t)cos(θ(t))b

2
− F2(t)cos(θ(t))b

2
(33)

CGżG(t) +KGzG = −λ2(t) (34)

The same conditions established for the contact condition for point one can be applied for point two,
so the Eq.(32) and Eq.(34) results in the same equation obtained in Eq.(26).

mz̈(t) + CGżG(t) +KGzG +mg − ρg∇− F1(t)cos(θ(t))− F2(t)cos(θ(t)) = 0 (35)

Analogously for the contact condition established for contact point number one, for contact point
number two has zrel2 = 0 and żrel2 = 0 and by these conditions, using Eq. (18) we obtain the following
relations.

żG = ż(t)−
(
h

2
+ d

)
sen(θ(t))θ̇(t)− bcos(θ(t))θ̇(t) (36)

zG = −H + z(t) +

(
h

2
+ d

)
cos(θ(t))− bsen(θ(t)) (37)

By substituting Eq.(36) and Eq.(37) in Eq.(35), the system dynamics in the contact condition
through contact point number two can be described by a set of two nonlinear second order ordinary
differential equations, described below.

mz̈(t) + CG

[
ż(t)−

(
h

2
+ d

)
sen(θ(t))θ̇(t)− bcos(θ(t))θ̇(t)

]
+KG

{
−H +

[
z(t) +

(
h

2
+ d

)
cos(θ(t))− bsen(θ(t))

]}
+mg − ρg∇− F1(t)cos(θ(t))− F2(t)cos(θ(t)) = 0 (38)

Iyy θ̈(t) =
F1(t)cos(θ(t))b

2
− F2(t)cos(θ(t))b

2
(39)

3.4 Condition of movement restriction through contact point number one and two

For the contact condition for both points to occur simultaneously, the following condition must be
taken as true. {

zrel1(t) = 0 λ1(t) < 0

zrel2(t) = 0 λ2(t) < 0
(40)
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Another requirement for this condition to be taken as true is that θ(t) = 0 it imples that zrel1(t) =
zrel2(t). Therefore in this case, to describe the contact dynamics of the system, it can be use either
Eq.(29) or Eq.(38), since θ(t) = 0 both equations become identical,as shown below.

mz̈(t) + CGż(t) +KG

{
−H +

[
z(t) +

(
h

2
+ d

)]}
+mg − ρg∇− F1(t)− F2(t) = 0 (41)

In this condition, the dynamics of the system will be described only by the ordinary second order
linear differential equation, as the two points are in contact, the vehicle can no longer rotate around the
center mass, in this situation, unlike the others, the vehicle only has one degree of freedom.

3.5 Contact force

In this section we will define the expressions to compute the contact force in all cases previously
discussed, for all cases the contact force can be obtained by Eq.(25) and Eq.(34).

3.5.1 Expression for contact force through contact point number 1

Using Eq.(25) and substituting Eq.(27) and Eq.(28) in Eq.(25) the expression to compute the contact
force one will be defined as:

λ1 = −CG
[
ż(t)−

(
h

2
+ d

)
sen(θ(t))θ̇(t)

]
−KG

[
−H + z(t) +

(
h

2
+ d

)
cos(θ(t))

]
(42)

3.5.2 Expression for contact force through contact point number 2

Using Eq.(34) and substituting Eq.(36) and Eq.(37) in Eq.(34) the expression to compute the contact
force two will be defined as:

λ2 = −CG
[
ż(t)−

(
h

2
+ d

)
sen(θ(t))θ̇(t)− bcos(θ(t))θ̇(t)

]
−KG

[
−H + z(t) +

(
h

2
+ d

)
cos(θ(t))− bsen(θ(t))

]
(43)

3.5.3 Expression for contact force trough contact point number 1 and 2 simultaneously

In this situation, the contact force will be described by the sum of Eq.(42) and Eq.(43) divided by
the number of contact as shown below, or it can be analyzed individually at each contact point.

λ = −1

2
CG

{[(
ż(t)−

(
h

2
+ d

)
sen(θ(t))θ̇(t)− bcos(θ(t))θ̇(t)

)
+

(
ż(t)−

(
h

2
+ d

)
sen(θ(t))θ̇(t)

)]}
−1

2
KG

{[(
−H + z(t) +

(
h

2
+ d

)
cos(θ(t))− bsen(θ(t))

)
+

(
−H + z(t) +

(
h

2
+ d

)
cos(θ(t))

)]}
(44)

4 Quadratic linear optimal control

In this section it will be present the control law employed in the proposed mathematical model.
Recalling that the purpose of the control law applied to this model will be to control the submersion
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speed of the vehicle, with the purpose of attenuating the initial impact force on the mechanical track,
and to control the angular position of the vehicle so that it comes in contact with the vehicle mechanical
track.

According to [11] and [12] the application of LQR is desired when it is required that the output
value of a given system reaches a desired value with the minimum control energy, minimizing a quadratic
performance index described by the following equation.

J =
1

2

[
x(tf )TH(tf )x(tf )

]
+

1

2

tfˆ

t0

{
x(t)TQ(t)x(t) + u(t)TR(t)u(t)

}
dt (45)

Where H(tf ) is the terminal cost weighted matrix, Q(t) is the error weighted matrix, being positive
semidefinite, R(t) is the control weighted matrix and it should be positive definite, x(t) the state vector
and u(t) the control vector.

4.1 State-space format model

In this section, it will be present the free-motion equations of the system in space-state format,
according to the equation presented below as shown in [13].

ẋ(t) = A(t)x(t) + B(t)u(t) + C(t) (46)

Where A(t) is the state matrix, B(t) is the control matrix, and C(t) is the matrix of terms that
neither multiply the states nor the control, the Eq.(45) is defined in the literature as inhomogeneous LQR,
applied to this model because of its presence of the gravity and buoyancy terms that do not multiply the
state vector nor the control vector.

The Eq.(20) and Eq.(21) are nonlinear second-order differential equations, and describe the dynam-
ics of the vehicle in the free-motion condition; however, to rewrite them in the described matrix format
of Eq.(46), only small angular displacements and low linear and angular velocities will be considered,
simplifying the cos (θ (t)) ≈1 term of the equations. This approach can be valid because, according to
[5], [9] and [4] the maximum travel speed of the vehicle is 1 meter per second. Rewriting Eq. (20) and
Eq. (21) as Eq. (46).


ẋ1(t)

ẋ2(t)

ẋ3(t)

ẋ4(t)

 =


0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0




x1(t)

x2(t)

x3(t)

x4(t)

+


0 0

1
m

1
m

0 0

b
Iyy

− b
Iyy


 u1(t)

u2(t)

+


0

g − ρg∇
m

0

0

 (47)

Where ẋ1(t) = ż(t) ; ẋ2(t) = z̈(t) ; ẋ3(t) = θ̇(t) ; ẋ4(t) = θ̈(t) ; u1(t) = F1(t) and u2(t) = F2(t)

4.2 Linear controllability

To check the controllability of the system, Kalman’s linear controllability criterion will be employed
using the through the equation.

rank

{
B

...A1B
...A2B

... · · ·
...An−1B

}
= n (48)

Using matrices A(t) and B(t) in Eq. (48), it is verified that the controllability matrix rank is 4, that
is, the system is completely controllable.
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4.3 Inhomogeneous LQR optimal control law

The optimal control law for non-homogeneous LQR according to [14] and [13] can be defined as:

u(t) = −R−1(t)BT (t)P(t)x(t)−R−1(t)BT (t)S(t) (49)

As described above, the main purpose of the control law described by Eq. (49) is to control the
angular position of the vehicle, so that the contact condition always occurs through the mechanical tracks
contact points, and to control the speed of submersion to such that this speed control promotes attenuation
in the amplitude of the initial contact force. So basically, given any initial angular position for the vehicle,
this control law has to be able to adjust the angular position of the vehicle until it reaches the desired
value (θref ), the same condition is true for the submersion speed, given an initial sinks velocity, the
control law must be able to adjust this submersion speed to the desired value (żrel) so that the vehicle
sinks to the desired constant speed.

According to [14] to apply the tracking condition to the LQR, simply perform the following change
in Eq.(49)

u(t) = −R−1(t)BT (t)P(t)(x(t)− xref (t))−R−1(t)BT (t)S(t) (50)

Where P(t) is obtained by the solution of the Riccati matrix differential equation, and S(t) the
auxiliary matrix differential equation provided by inhomogeneous terms, both equations are defined as.

Ṗ(t) = −P(t)A(t)−A(t)TP(t) + P(t)B(t)R−1(t)BT (t)P(t)−Q(t) (51)

Ṡ(t) = −
(
AT (t)−P(t)B(t)R−1(t)BT (t)

)
S(t)−P(t)C(t) (52)

In this case, as an infinite end time problem will be solved, the solutions of the equations can be
obtained by the following algebraic equations, according to [13].

P̄(t) = −P̄(t)A(t)−A(t)T P̄(t) + P̄(t)B(t)R−1(t)BT (t)P̄(t)−Q(t) (53)

S̄(t) = −
(
AT (t)− P̄(t)B(t)R−1(t)BT (t)

)
S̄(t)− S̄(t)C(t) (54)

With the following boundary condition P̄(tf → ∞) = 0 and S̄(tf → ∞) = 0 and and the quadratic
index performance reduced to Eq.(55), as shown in[11].

J =
1

2

∞̂

t0

{
x(t)TQ(t)x(t) + u(t)TR(t)u(t)

}
dt (55)

5 Numerical simulation

This section describes the parameters used to perform numerical simulations and describe what
will be analyze in each one. Our main goal is through these simulations is to demonstrate the system
dynamics in the restricted movement condition and free movement condition. The Table1 below shows
the constant parameters used in the three simulation that will be presented.
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Simulation Parameters Unit of Measurement (SI)

Vehicle mass (m) 140Kg

Moment of inertia (Iyy) 19.7907 Kgm2

Total depth (H) 15 m

Vehicle height (h) 0.705 m

Vehicle length (b) 1.076 m

Track Diameter (d) 0.3 m

Contact Surface Stiffness Coefficient (KG) 5000 N
m

Contact Surface Damping Coefficent (CG) 250 Ns
m

Fluid Density (ρ) 1000 Kg
m3

Gravitational Acceleration Constant (g) 10 m
s2

Vehicle Displaced Fluid Volume (∇) 0.145 m3

Table 1. Numerical simulation constant parameters

The numerical value of vehicle mass, moment of inertia and volume of displaced fluid were obtained
in [5], the contact surface stiffness and damping coefficients were obtained in [10]. The matrices Q and
R used for the simulation of the all cases are described below.

Q = diag {3000, 5000, 100, 1} ; R = diag

{
1

4
;
1

4

}
5.1 Numerical simulation: Case 1

In this simulation the objective is to represent the contact condition only through contact point
number one.The main idea here is to represent, even if simply, a situation where for example the vehicle
needs assume a necessary angular configuration before contacting the object to be inspected, after contact
occurs, the thrusters will be switched off and the buoyancy force of the fluid will act on the vehicle. The
following Table1 gives the initial conditions for the first simulation.

Initial Conditions Unit of measures (SI)

Initial Condition for Vehicle Position (x1) 5 m

Initial Condition for Vehicle Speed (x2) 0.2 m
s

Reference Speed (x2ref ) 0.5 m
s

Initial Condition for Vehicle Angular Position (x3) 0 ◦

Angular position of reference (x3ref ) 5 º

Initial Condition for Vehicle Angular Speed (x4) 0 °/s

Initial Condition for Contact Surface Position (x5) 0 m

Table 2. Initial conditions for the first simulation

As described earlier, in this simulation, it is desired to position the vehicle in an established angular
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position (x3ref ) and control the submersion speed to achieve a desired speed (x2ref ). Note that values of
x3(t) > 0 means that the vehicle is rotating counterclockwise, and based on Fig.3, it can be seen that for
this simulated condition only the contact point number one will be in contact condition.

5.2 Numerical simulation: Case 2

This simulation is very similar to the simulation case 1, however, for this case the contact point that
will enter in contact condition will be only the point number 2 , in this case x3ref < 0 this means that the
vehicle will rotate clockwise. Similarly to simulation number one, the submersion speed of the vehicle
will be controlled, but for this simulation the value of x2ref will be increased, so that it can be verified
what happens with the amplitude of the initial impact force.

The same parameters described in Table 1 will be used in this simulation. The changes will be
described in the following Table 3.

Initial condition Unit of measures (SI)

Initial Condition for Vehicle Position (x1) 5 m

Initial Condition for Vehicle Speed (x2) 0.2 m
s

Reference Speed (x2ref ) 0.8 m
s

Initial Condition for Vehicle Angular Position (x3) 0 º

Angular position of reference (x3ref ) -5 °

Initial Condition for Vehicle Angular Speed (x4) 0 °/s

Initial Condition for Contact Surface Position (x5) 0 m

Table 3. Initial condition for the second simulation

5.3 Numerical simulation: Case 3

Finally the last simulation aims to adjust the angular position such that the contact points number
one and number two enter the contact condition simultaneously. This condition can be approximated to
a situation where some external force generates angular momentum on the vehicle causing an angular
rotation around the center of the vehicle’s mass to assume nonzero values, and in turn the control has to
adjust the angular position of the vehicle.The parameters for this simulation will be described through
Table 4 below.

Initial condition Unit of measures (SI)

Initial Condition for Vehicle Position (x1) 3 m

Initial Condition for Vehicle Speed (x2) 0.4 m
s

Reference Speed (x2ref ) 0.8 m
s

Initial Condition for Vehicle Angular Position (x3) 5 º

Angular Position of Reference (x3ref ) 0 º

Initial Condition for Vehicle Angular Speed(x4) 0.3 º/s

Initial Condition for Contact Surface Position (x5) 0 m

Table 4. Initial condition for second simulation
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6 Results

In this section we will present the results of the numerical simulations and then the discussion of
the results obtained.

6.1 Results of the case one
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Figure 3. HROV states first simulation

Through Fig.3 it is possible to verify that states x2(t) and x3(t) reached the values x2ref (t) and
x3ref (t). By means of the graph of state x2(t), it is possible to observe that the magnitude goes to
zero and soon after changes of signal, this happened due to the contact condition has occurred and after
happening after the vehicle loses the contact with the contact surface it can be verified by means of the
state x1 that it returns to the surface, that is, the change of sign of magnitude x2(t) describes the change
of direction in the movement of the vehicle.
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Figure 4. Contact force and relative distance
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Through Fig.4, it is possible to verify that the vehicle has entered the restricted movement condition
only through the contact point one, because zrel1(t) = 0 and zrel2(t) 6= 0. Soon after it can be seen that
the relative distance zrel1(t) is increasing, ie the vehicle is moving away from the contact surface, it is
also possible to see that only the contact force one shows up and it’s magnitude.
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Figure 5. Control effort and contact surface displacement

Through Fig.5, it is possible to observe that the control effort when the contact condition occurs
goes to zero, since in this model, the control of the thrust force to keep the vehicle in contact is not yet
studied and it is also to check the exact time the contact occurred and its duration.

6.2 Results of the case two
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Figure 6. HROV states second simulation

Note that the results shown through Fig.6 is similar to the results shown through Fig.3. However, it
can be seen that as the speed of submersion was higher than in case one, the impact happens a few minutes
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earlier. The angular position and velocity had the same amplitude but negative due to the direction of
rotation adopted.
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Figure 7. Contact force and relative distance second simulation

The result presented through Fig.7, it is possible to verify that the result is similar to the one pre-
sented in Fig.4, it can be verified that the amplitude of the contact force of point two is slightly larger,
when compared to the contact force of point one illustrated in Fig .4, due to increased submersion speed.
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Figure 8. Control effort and contact surface displaced second simulation

In Fig.8 it is possible to verify that the amplitude of the contact surface displacement was greater
when compared to the results presented in Fig.5, because the contact force amplitude has increased.
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6.3 Results of the case three
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Figure 9. HROV states third simulation

The same result seen through Fig.6 can be seen in Fig.9, the only difference is in the angular position
due to the change in the reference angle (x3ref ).
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Figure 10. Contact force and relative distance third simulation

In this case, unlike the previous ones, it is possible to verify through Fig.10, the impact force on both
contact points at the same time, and the contact force amplitude was computed with half of the contact
force of point two, seen in Fig.7. Note that the contact forces have been demonstrated individually, and
the total force is given by the sum of λ1(t) and λ2(t)
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Figure 11. Control effort and contact surface displaced thirt simulation

Through Fig.10 it is possible to verify that there were no major changes when compared to Fig.8.
Except in the figure that illustrates the moment of contact, where it can be seen the presence of contact
force one and two simultaneously and the reduction of the amplitude of the forces of contact.

7 Conclusion

The mathematical model presented in this paper is a simplified version of the real system, since
some important variations were not taken into account in the system modeling aspect. Even with the
simplifications applied, it was possible to represent some real aspects of vehicle dynamics, such as the
buoyant force that tends to keep the vehicle out of contact. By applying the submersion speed control,
it was possible to verify and compare the attenuation of the initial contact force, which is interesting for
the problem, since large amplitudes of this force can damage track components such as other actuators
and vehicle sensors. Finally, this model studied in this paper, allowed the analysis and understanding
of aspects that will be further developed and worked on, such as fluid parameters that influence vehi-
cle dynamics, as well as the use of vehicle control force to ensure that the vehicle remains in contact
condition.
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