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Abstract. The development of thin plate theory was due to the evolution of engineering that 

continually needed to improve the mode of analysis of elements in a plate. In 1888 Augustus Edward 

Hough Love (Weston-Super-Mare, 1863 - 1940) used Kirchhoff's hypothesis to determine a two-

dimensional mathematical model for the determination of stresses and deformations in thin plates 

subjected to forces and moments, assuming a surface plane. Average can be used to represent a three-

dimensional plate in two-dimensional form (LOVE, 1897). As the flat plate theory has been refined by 

adding new methods of analysis and theories, the approximation of equations by a discrete point 

system in spacetime has become a fundamental necessity, the most common methods being: 1. 

Volume Method Finite; 2. Finite Element Method and 3. Finite Difference Method. Equations can be 

written in different forms depending on the coordinate system, such as Cartesian, cylindrical, 

spherical, curvilinear, orthogonal, and non-orthogonal curvilinear. The present work had as main 

motivation the comparison between two (2) different methods of analysis of flat plates of thickness t / 

a << 1, where “t” is the thickness and “a” the largest dimension of the plate, with the configuration 

Free-Free-Embossed Edges (LLLE). Thus, the objectives of this work are the assembly of an analysis 

system using accelerometers (Model MPU 6050) in meshes (5x8 points) to verify the displacement of 

x, y and z coordinates, spread over forty (40) points forming a mesh, and two (2) points with Geokon 

@ 4150 vibrating string sensors horizontally and vertically.With these sensors it was possible to verify 

the plate displacement dimension for both methods, as well as the difference between the experimental 

analysis methods and their applicability in other projects. 
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1  Introduction 

The development of the slab plate theory took place through the evolution of engineering that 

continually needed to improve the mode of element analysis. In 1744 Leonhard Euler (Basel, 1707-

1783) publishes the book “Calculus of Variations” the first approach to theory. buckling analysis 

method, which applies the variational calculus to the theory of elasticity, specifically for bending a rod 

subjected to an axial load. Euler also verified several problems of linear vibrations in plates of 

different shapes using the analogy of two perpendicular taut string systems. (GAUSTSCHI, 2008). In 

the mid-1750s Leonhard Euler and Daniel Bernoulli (Groningen, 1700-1783) Johann Bernoulli's son 

and Jaques Bernoulli's nephew perfected the theory of buckling analysis published by Euler by 

exchanging the rope network for a mesh of beams, the model of Euler-Bernoulli's beam is a 

simplification of the linear theory of elasticity that provides a means of calculating the deflection 

characteristics of a beam under a given load (static or dynamic), which consists of a fourth order linear 

partial differential equation. Daniel also produced important work in the field of probabilities and 

economic policy, created the concept of moral hope and applied it to insurance, studied vibration, and 

was a precursor in the field of partial differential equations. (CANNON, 1981). German physicist 

Ernst Florens Friedrich Chladni (Wittenberg, 1756 - 1827) described various works of plate vibration 

analysis and discovered the free vibration modes in his experiments using evenly distributed powder 

which formed regular patterns after vibrations were introduced known today as modal analysis. 

Chladni described his experiments in "Theorie des Klanges" and "Die Akustik" respectively published 

in 1781 and 1802 in Leipzig (WALLER, 1961). In 1809 Chladni showed at the French Academy of 

Sciences that through his theory he could determine the frequencies corresponding to these vibration 

patterns, this presentation began the competition to receive works on the mathematical theory of plate 

vibration, so in this period the mathematics Marie -Sophie Germain (Paris, 1776 - 1831) submitted her 

study entitled "Reserches sur la theory des surfaces élastiques," published in 1811, she used (following 

Euler's earlier work on elastic curves) an approximation of tension energy, and after some setbacks for 

the correct definition of Equation 1.1.1 in 1816 won the prize of the French Academy of Sciences 

(SZILARD, 2004). 
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The mathematician Siméon Denis Poisson (Pithiviers, 1781-1840) tried to determine the correct 

value of the constant k² in the differential plate vibration equation (Equation 1.1.2). Assuming that the 

plate particles were located in its central plane, however, he erroneously concluded that the constant is 

proportional to the square of the plate thickness and not to its cube (SZILARD, 2004). 
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(1.2) 

Engineer and scientist Claude Louis Navier (Dijon, 1785-1836) developed the first correct 

differential equation for plates, subject to distributed lateral loads (x, y). Since Navier first integrated 

the isolated findings of his predecessors and the results of his own investigations into a unified system, 

the publication of his study was a milestone for the development of modern structural analysis 

(SZILARD, 2004). Navier used the hypotheses for treatment of bending in Bernoulli beams with the 

addition of two-dimensional stress and stress actions. In 1823 he published the correct definition of the 

governing differential equations on plates subjected to static lateral stress p_z (x, y) as in Equation 

1.1.3: 
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In equation, 1.1.3 denotes D as the flexural stiffness of the plate, which is proportional to the 

thickness cube and w (x, y) represents the flexed central surface. To solve certain boundary value 

problems in rectangular plates, he introduced a method that transforms the plate differential equation 

into an algebraic equation, based on the use of double trigonometric series introduced by Fourier in the 

same decade. Navier also developed a valid differential equation for buckling plates subjected to 

uniformly distributed compression forces along the contour (SZILARD, 2004). 

In 1850 Gustav R. Kirchhoff (Berlin, 1824 - 1887) developed the first complete theory of plate 

flexions, based on Bernoulli's assumptions for beams, and deriving the same differential equations for 

plate flexions as Navier (SZILARD, 2004). ). 

After Kirchhoff the “equivalent shear forces” replaced the torsional moments at the plate edges, 

all boundary conditions could now be declared as a function of displacements and their derivatives 

with respect to x or y. Later, Kirchhoff was regarded as the founder of the extended plate theory, 

which takes into account the combination of forces. In analyzing plates with large deflections, he 

found that nonlinear terms could no longer be ignored. His other contributions are the development of 

a plate frequency equation and the introduction of the virtual displacement method to solve various 

problems (SZILARD, 2004). 

In 1888 Augustus Edward Hough Love (Weston-Super-Mare, 1863 - 1940) used Kirchhoff's 

hypothesis to determine a two-dimensional mathematical model for the determination of stresses and 

deformations in thin plates subjected to forces and moments, assuming a surface plane. Average can 

be used to represent a three-dimensional plate in two-dimensional form (LOVE, 1897). 

Stephen P. Timoshenko (Shpotovka, 1878 - 1972) contributed significantly among other subjects 

with the application of circular plate flexion analysis, also studied circular plate solutions, calculation 

of frequencies and modes of vibration in circular plates and the formulation of elastic stability. 

(TIMOSHENKO, 1961) 

It is noted that the development of hypotheses for the determination of a two-dimensional 

mathematical model for the determination of stresses and deformations in a plate took more than 150 

years, and even with Love's determination in 1888, other researchers consolidated the theory. of plates 

with the addition of other variables such as flexural stiffness, deformation and analysis for circular 

plates. 

In the late twentieth century (1994) Wang and Xiang "Buckling And Vibration Of Annular 

Mindlin Plates With Internal Concentric Ring Supports Subject To In-Plane Radial Pressure" analyzed 

circular Mindlin plates with radially loaded concentric ring holders, where the solution of this The 

problem was based on the RayleighRitz approach and subsequent determination of buckling factors. 

(LIEW, K & XIANG, 1994). 

In 2010 in the article “An exact analytical solution for freely vibrating piezoelectric coupled 

circular / annular thick plates using Reddy plate theory” written by Hosseini-Hashemi and Es'haghi 

discusses the calculation of natural frequencies and displacements for thick circular plates with 

different conditions. and based on Reddy's third-order strain theory. (HOSSEINI-HASHEMI, 

SHAHROKH & ES'HAGHI, 2010). 

In 2011 the publication “Analytical Bending and Stress Analysis of Variable Thickness FGM 

Auxetic Conical / Cylindrical Shells with General Tractions” published by M.Shariyat and M. Alipour 

made the buckling analysis of viscoelastic circular plates with functional gradation and full sensitivity 

analysis. to evaluate the effects of various parameters on buckling load. (SHARIYAT, M & 

ALIPOUR, 2011) 

Another far-reaching publication in 2011 was the work of Mazhari and Shahidi, “Analysis of post 

buckling behavior of circular plates with non-concentric hole using the Rayleigh – Ritz method”, 

where post-buckling behavior of homogeneous circular plates was determined. with concentric bore 
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submitted to a uniform radial load using the Rayleigh-Ritz method, also using the nonlinear Von-

Karman theory. (MAZHARI, EMAD & SHAHIDI, ALIREZA, 2011). 

As flat plate theory has been refined by adding new methods of analysis, matter, and theory, so 

the approximation of equations by a system of equations at discrete points in time has come as a 

fundamental necessity, the most common methods being: 1 Finite volume method; 2. Finite Element 

Method and 3. Finite Difference Method. Equations can be written in different forms depending on the 

coordinate system, such as Cartesian, cylindrical, spherical, curvilinear, orthogonal, and non-

orthogonal curvilinear. The choice of coordinate type depends on the type of flow to be studied. 

The finite volume method uses the integral form of the equations, where the domain is divided 

into contiguous control volumes and the conservation equations are applied to each one. Surface and 

volume integrals are approximated by quadrature formulas, so any type of mesh should be 

conservative to facilitate programming. However, it is difficult to obtain high order because they have 

two levels of approximation, interpolation and integration (EYRNARD & GALLOUET, 2000). 

In the finite element method we use the same concept studied in finite volumes, except that the 

equations are multiplied by a weight function before being integrated into the whole domain. The 

domain should be divided into discrete elements that can be quadrilateral or triangles. (REDDY, 

2006). 

In the 18th century Euler introduced a finite difference method for solving partial differential 

equations, easily used in simple geometries with the approximations of the derivatives obtained by 

Taylor series expansion or polynomial approximation. Today this method is the dominant approach to 

the numerical solution of partial differential equations, so this method was chosen because of its 

simplicity because the geometry used is simple (GROSSMANN & HANS-G. ROOS, 2007). 

In addition to the theories of flat plate analysis, there are other methods for stress and flexural 

analysis on plates using vibrating string technology. In 1928 Andre Coyne (1891 - 1960) patented a 

force gauge using the vibrating string principle based on the acoustic indicator principle described as 

the first commercial use of the vibrating string sensor in France (ASCE, 2000). The principle of 

operation of vibrating rope (VW) sensors is based on the change of rope frequency, which is stretched 

on a support, depending on the physical parameters of the wire and the environment in which 

oscillations occur. A vibrating string sensor has an interesting field measurement technique developed 

for magnetic center determination of units in accelerators. The important advantages of proper 

construction of vibrating string sensors are inherent in long term stability, high accuracy and 

resolution, good reproducibility and small hysteresis (ARUTUNIAN, 2006). 

The objectives of this work were to compare the method of vibrating strings with the analysis of 

an accelerometer morning and thus to analyze the accuracy of the data in relation to the wing 

movement. 

2  Objective 

The objectives of this work were to compare the method of vibrating strings with the analysis of 

an accelerometer morning and thus to analyze the accuracy of the data in relation to the wing 

movement. 

 

 

 

 

 

 

 

 

 

 

 
Figura 1 - Wing representation using a flat plate, top view. 
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So from the assembled and instrumented plate we can stimulate the movement using a ruler, all 

the movements studied here had the same amplitude. Figure 2 represents the side view of the 

instrumented board and the board side marking system. 

 

 
 

 

 

The accelerometers were mounted to reproduce the plate through 40 (accelerometer) distributed 

points of homogeneous form obeying the same spacing between the sensors. Note that the sensors on 

the edge of the board set on the side have an offset value of 0, but sensors along the body have offset 

values larger the distance to the crimped point. 

 

2.1 Plate definition 

According to (REDDY, 2016) a plate is a structural element with large dimensions compared to 

its thickness and are subject to loads that cause bending, deformation as well as stretching. In most 

cases, the thickness is no larger than 1/10 of the smallest dimension in the plane. For 

(TIMOSHENKO, 1964) the flexural properties of a plate depend greatly on its thickness compared to 

other dimensions. Already (CHAVES, 1997) defines plate as the structural element where t is a value 

much smaller than the other dimensions (length and width) (1.3.1), it is noted that regardless of the 

author the approximation of the plate concept remains if equal. In Figure 4 - Thick plate thickness t 

presents the variables of a flat plate, being the thickness (t), the length (b) and the width (a). The 

thickness of the plate that defines its smallness, fitting it into one of three possible categories: 

 

(1) Thin plates with small deflections; 

(2) Thin plates with large deflections; 

(3) Thick plates. 

 

𝑡

𝑎
<< 1 

 

(1.4) 

Depending on the ratio (t / a) between the thickness (t) and the smallest dimension (a) measured 

in the medium plane, the plate can be classified as (CHAVES, 1997). 

 

Very Slender → t / a <1/80; 

Slender → 1 / 80≤ t / a≤ t / 5; 

Thick → t / a> 1/5; 

 

 

Figura 2 - Wing representation using a flat plate, side view. 
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Figura 3 - Thin plate with thickness t. 

 

A mathematically accurate stress analysis of a thin plate - subjected to loads that normally act on 

its surface - requires the solution of three-dimensional differential equations, but in most cases the 

classical Kirchhoff plate theory which yields results is used. sufficiently accurate without the need to 

perform a complete three-dimensional stress analysis. Figure 5 - Considering a 3D element, we assign 

the positive internal forces and moments to the faces close to the plate element thus making it a 2D 

element. To satisfy the element's equilibrium, negative internal forces and moments must act on its 

distant sides (SZILARD, 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 - In (a) a three-dimensional element that after assigning internal forces and moments the 

faces becomes a 2D element (b) (SZILARD, 2006). 

 

Kirchhoff's Plate Theory equation allows for a simplification of the problem, so it is possible to 

determine the basic differential equations of the plates given to the hypotheses below (SZILARD, 

2004): 

 

1. Plate material shall be considered elastic-linear, homogeneous and isotropic according to 

Hooke's law; 

2. Transverse displacements are small compared to the t-value of the plate; 

3. There is no deformation in the middle plane of the plate (Neutral Surface); 

4. The flat and perpendicular section of the middle surface remains flat, perpendicular and 

undeformed with respect to that surface after flexion. 

 

2.2 Vibrantig Wire Sensor 

A vibrating string sensor has as its main components, which are: the vibrating string, the sensor 

body (where external force is applied), and the sensor coil with its analog circuit. 

 

 

 

(a) 

 

(b) 
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Figure 5 - Vibrant wire sensor and its components. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 - Geokon 4150 series vibrant wire sensor 

 

Vibrating wire sensors are based on the rope oscillation behavior which, having a length L, linear 

mass density ρ, and intended by a longitudinal force T, will have an oscillation frequency f, given by 

the equation (SILVA, 2002): 

 

𝑓 =
1

2𝐿
(

𝑇

𝜌
)

1

2

 (1.5) 

Variation of any of the three parameters (T, ρ or L) will change the oscillation frequency. This 

change can be “felt” by the analog circuit installed near the swinging rope (Figure 14). 

In most common sensors the force applied to the rope is the variable parameter, changed by an 

external force acting on the sensor body. The sensor coil is used to initiate rope oscillation by inserting 

an electric pulse. Next, the coil itself is used to capture the vibration frequency of the rope (SILVA, 

2002). The sensor output signal is a sine wave whose frequency f can be measured by a data 

acquisition system; which analyzes the collected data, associating them to the measured quantity 

(force, pressure, displacement, temperature and etc ...). Figure 15 illustrates the sensor connection to 

the signal conditioning and acquisition system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 7 - Sensor connection to signal conditioning and acquisition system. 
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The main parameters that influence the measurement are related to the characteristics of the rope 

(Material used, diameter, density), the mechanical properties of the sensor body, the sensitivity of the 

magnetic circuit and the characteristics of the signal conditioning circuit. The signal conditioning and 

acquisition system performs two essential functions: measuring the signal period of the sensor and 

sending current pulses to the sensor, exciting the vibrating rope. 

A fixed number of periods of the sensor signal establishes the frequency of the excitation pulses, 

in this project the sensor has a frequency output in the range of 600-1000 Hz, and the 25 - 50Hz 

variation excitation signal with the generation of approximately one pulse every 20 cycles of the 

sensor signal. 

 

3  Experimental Method 

3.1 Experimental analysis 

In this step, Geokon ™ 4150 vibrating string sensors were attached to the plate to capture the 

displacement of the horizontal and vertical axis. When starting the experiment we found that there is a 

natural decay of the plate and it is an additive of errors at the time of reading the data. 

 

 
 

Figure 7 - Assembly of the vibrating string experiment and accelerometer loop 

 

The first step was to analyze the data from the stationary and completely straight plate, so without the 

actual decay, in these first analyzes we used a frequency of 60Hz or 1 measured per second. It was 

noted that small vibrations like a person walking around the experiment. drastically interfered in the 

experiment, it can be seen that in points 1 and 3 of the figure below movements related to the 

positioning of the plate, while in items 2 and 4 there is a small movement related to walking next to 

the experiment. From register 5200 we noticed a stabilization in the experiment and calculated the 

initial calibration value of Delta_H equal to 0.0158 and to Delta_V 0.0147 with changes after the third 

decimal place. 

Thus through the data analysis we obtain that the highest value of Delta L, showing the value 

of increase in L in the vibrating string sensor correlating with the increase and decrease movements of 

the plate angle. Note that for plate angle change motions a resolution of 60 Hz (1 reading per second) 

is too large for this type of analysis, so the resolution value has been decreased to 200 Hz (1 reading 

every 0, 3 seconds), to perform this type of reading, it was necessary to change the Campbell CR6 

equipment to Campbell CDM305VW equipment, all assigned to the project by Campbell Scientific do 

Brasil Ltda. 

The difference in equipment shows us a sufficient resolution to distinguish the flexing motion 

of the plate, even if there is residue generated by the sensor. In the comparison below we can verify 

the data generated by both methods on the same board at the same time. 
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Figure 8 - Analysis of Vibrant String Data 

 

 

 

 

 
 

Figure 9 - Plate Offset Variation 
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4  Conclusion 

We can evaluate that both plate displacement analysis methods can be used, however some 

considerations should be made. Firstly the vibrating string sensor operates at a considerably high 

speed up to 333Hz, so it is necessary to use equipment with the above mentioned processing capacity 

and noise analysis technology, the use of the accelerometer mesh depends on the analysis speed to be 

used. measured the maximum speed generated is 12Hz, so it is necessary to analyze the data at the 

same step in time. 
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