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Abstract. Space vehicles can carry large amounts of liquid propellant in their tanks, especially
when performing interplanetary missions. When these tanks are not completely filled, the move-
ment of the vehicle excites the propellant such that the free surface of the liquid describes an
oscillatory movement. This movement confined inside the tank is known as sloshing. Depend-
ing on the type of excitation and the geometry of the tank, the liquid sloshing may have an
infinite number of natural frequencies; these frequencies tend, in turn, to excite the movement
of the vehicle and, consequently, affect attitude control. This paper investigates the attitude
control of a satellite, modeled as a rigid body, whose motion is coupled with the slosh effect
of the liquid propellant in its interior, represented by an equivalent mechanical model, in this
case a simple pendulum. The equations of motion are obtained through Lagrangian formalism.
The excitation frequency is assumed to be remote from resonance. Only small amplitudes of
oscillation are allowed for the pendulum, so that the free surface remains planar without rota-
tion of its nodal diameter. Attitude control is investigated for different volumes of liquid in the
tank. The control technique used is the Linear Quadratic Regulator (LQR) and the results are
obtained numerically.
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1 Introduction

Many spacecraft require large tanks of liquid propellant for orbit transfers and corrections,
and for attitude control, especially when they have a considerable structure or when accomplish-
ing very long missions, such as interplanetary. The fuel of a geostationary satellite, for example,
amounts about 40% of its total initial mass in the geostationary transfer orbit [1]. When these
propellant tanks are not completely filled, the movement of the vehicle excites the propellant
such that the free surface of the liquid describes an oscillatory movement. This movement con-
fined inside the tank is known as sloshing [2]. Depending on the type of excitation and the
geometry of the tank, the liquid sloshing may have an infinite number of natural frequencies;
these frequencies tend, in turn, to excite the movement of the vehicle and, consequently, affect
attitude control and the system stability [3].

Several missions have already failed due to fuel slosh, such as the loss of the ATS-V space-
craft in 1969, the NEAR Shoemaker ignition problem in 2000 [4] and the undamped vibration
that caused instability of the SpaceX launch vehicle Falcon-1 in 2007 [5]. The importance of
studying spacecraft slosh dynamics is therefore great, and different methodologies propose to
investigate how fluid motion and vehicle dynamics can be coupled.

Many studies address sloshing considering all nonlinearities of fluid motion; methods such
as Computational Fluid Dynamics and Finite Elements are often used to estimate the coupled
slosh-vehicle system responses. But considering the speed and memory limitations of the on-
board processors, and the high complexity of spacecraft systems, the study of slosh dynamics
can be done from a simpler yet realistic approach known as the equivalent mechanical model,
which also allows the investigation of control and the analysis of vehicle stability [3]. Equiv-
alence, in this case, is in the sense of equal resulting forces and moments acting on the liquid
propellant tank wall [2].

To model the slosh dynamics of the free surface of a liquid that remains planar without
rotation of its nodal diameter during all motion, as shown in item (a) of Fig. (1), one can
develop equivalent models represented by a set of simple pendulums or by series of spring-
mass dashpot systems. In this case of small fluid oscillations, the satellite excitation frequency
is assumed remote from the resonance frequency and the approximation of sinθ ≈ θ is valid.
Nichkawde, Harish and Ananthkrishnan [6] and Reyhanoglu [7], for instance, use the simple
pendulum as an equivalent model. For relatively larger oscillations, as shown in item (b) of Fig.
(1), motion is described by weakly nonlinear differential equations and the equivalent model
adopted is the spherical pendulum, as shown, for example, by Kang and Coverstone [8] and by
Yue [9]. Finally, for the modeling of the fluid considering large oscillations and hydrodynamic
pressure impacts of the liquid motion close to the free surface, as presented in item (c) of Fig.
(1), the spherical pendulum model with impact on the tank wall is adopted and the equations of
motion are strongly nonlinear [2].

In order to investigate the attitude control of a spacecraft considering only its planar motion
and admitting small oscillations of the system, the coupled vehicle-fluid dynamics is studied in
this article from the simple pendulum approach as an equivalent model for the fluid sloshing.
In item 2 of this paper, the mathematical modeling of the system is described from Lagrangian
formalism. The control chosen for investigation is the Linear-Quadratic Regulator (LQR), pre-
sented in more detail in item 3. Items 4 and 5 present the numerical simulations and conclusions,
respectively.
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Figure 1. Liquid free surface motion regimes and their equivalent models [2]

2 Mathematical modeling

The model presented here represents the rotational motion of a satellite around the ~Y axis
of the adopted inertial coordinate system, described by the angle ψ, as shown in Fig. (2). This
angle corresponds to the attitude angle of the satellite, considered here as a rigid body. Inside
the vehicle, there is a liquid propellant tank and its fluid is represented by a simple pendulum.
The angular displacement of this pendulum from the ~z axis is denoted by θ.

The following model description is based on a similar model presented in [6], which as-
sumes that the vehicle has only planar movements with three degrees of freedom, two transla-
tional and one rotational. For slosh modeling, a single vibration mode is considered, so only a
single simple pendulum represents the fluid movement. Since the purpose of this paper is atti-
tude control, translational movements are not considered for the system studied, only rotational.

The position vectors of the concentrated masses in the system, as well as their components,
are described as:

• rp , illustrated in Fig. (2), is the pendulum mass position vector,mp, relative to the inertial
frame;

• rpx is the vector component of rp in the horizontal direction of the body frame (̂i direc-
tion);

• rpy is the vector component of rp in the vertical direction of the body frame (ĵ direction);
• rf is the position vector, described in relation to the inertial frame, of the fluid center of

mass moving along with the satellite and not contributing to the slosh effect, also called
as “fixed mass”, mf .

The rp vector components in the body frame can be defined as:

rpx = Lsinθî

and
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Figure 2. Model of the system studied, indicating the inertial frame in red and the body frame in blue.

rpy = (b− Lcosθ)ĵ,
where L is the length of the pendulum mass rod and b is the distance between the pendulum
hinge point and the satellite center of gravity, c.g., as shown in (3). So the position vector of the
pendulum mass is:

rp = Lsinθî+ (b− Lcosθ)ĵ.
The decomposition of the vector rp in the inertial frame is shown in Eq. (1) and its deriva-

tive with respect to time is given in Eq. (2):

rp = [Lsinθcosψ − (b− Lcosθ)sinψ] Î + [Lsinθsinψ + (b− Lcosθ)cosψ] Ĵ , (1)

ṙp = (Lcosθcosψθ̇ − Lsinθsinψψ̇ − bcosψψ̇ − Lsinθsinψθ̇ + Lcosθcosψψ̇)Î

+ (Lcosθsinψθ̇ + Lsinθcosψψ̇ − bsinψψ̇ + Lsinθcosψθ̇ + Lcosθsinψψ̇)Ĵ . (2)

The squared norm of ṙp vector is therefore:

|ṙp|2 = L2θ̇2 + L2ψ̇2 + b2ψ̇2 + 2L2θ̇ψ̇ − 2bLcosθθ̇ψ̇ − 2bLcosθψ̇2.

Similarly, for rf vector, described in the inertial frame in Eq. (3), the squared norm of its
derivative is given by Eq. (4), where hf is a distance between fixed mass mf and satellite c.g.,
as illustrated in Fig. (3).

rf = hfsinψÎ − hfcosψĴ (3)

|ṙf |2 = h2fcos
2ψψ̇2 + h2fsin

2ψψ̇2 = h2f ψ̇
2 (4)

The kinetic energy of the system is composed by the translation of mp, by the translation
and rotational movements ofmf and the rotational motion of the satellite. The fixed mass inertia
is If and the satellite inertia is Isat, thus:
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Figure 3. Satellite model studied in this section; highlighted, reference line for the potential energy of
the system

T =
1

2
mp|ṙp|2 +

1

2
mf |ṙf |2 +

1

2
If ψ̇

2 +
1

2
Isatψ̇

2.

Potential energy considers the gravitational energies of the pendulum and the fixed mass, as
well as the potential deformation energy due to the satellite stiffness for angular (pitch) motion,
where k is the stiffness parameter. The gravitational energy of the satellite is not considered
because the rotation is around the ~Y axis (perpendicular to the plane of motion), which passes
through the satellite center of gravity. Considering g as the acceleration of gravity, the potential
energy of the system is given as:

V = mpg [Lsenθsinψ + (b− Lcosθ)cosψ]−mfghfcosψ +
1

2
kψ2.

The Lagrangean L of the system is given by:

L = T − V,

then:

L =
1

2
mpL

2θ̇2 +
1

2
mpL

2ψ̇2 +
1

2
mpb

2ψ̇2 +mpL
2θ̇ψ̇ −mpbLcosθθ̇ψ̇

−mpbLcosθψ̇
2 +

1

2
mfh

2
f ψ̇

2 +
1

2
If ψ̇

2 +
1

2
Isatψ̇

2 −mpgLsinθsinψ

−mpgbcosψ +mpgLcosθcosψ +mfghfcosψ −
1

2
kψ2.

The system equations of motion are given considering as generalized coordinates the angles
ψ and θ. The Euler-Lagrange equations are:

d

dt

(
∂L
∂ψ̇

)
− ∂L
∂ψ

=Mψ (5)

d

dt

(
∂L
∂θ̇

)
− ∂L
∂θ

= Q (6)
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where Mψ is the satellite pitching moment and Q is the dissipative force of the slosh, given
by Q = −εθ̇, since ε is the damping coefficient. Solving Eq. (5), the first system equation of
motion, or the satellite equation of motion, is given by:

(
mpL

2 +mpb
2 − 2mpbLcosθ +mfh

2
f + If + Isat

)
ψ̈ +

(
mpL

2 −mpbLcosθ
)
θ̈

+
(
2mpbLsinθθ̇

)
ψ̇ +

(
mpbLsinθθ̇

)
θ̇ + (k)ψ +mpgLsinθcosψ

−mpgbsinψ +mpgLcosθsinψ +mfghfsinψ =Mψ. (7)

Solving Eq. (6), the second system equation of motion, or the pendulum equation of mo-
tion, is given by:

(
mpL

2 −mpbLcosθ
)
ψ̈ +

(
mpL

2
)
θ̈ +

(
mpbLsinθθ̇ −mpbLsinθψ̇

)
ψ̇

+
(
−mpbLsinθψ̇ + ε

)
θ̇ +mpgLcosθsinψ +mpgLsinθcosψ = 0. (8)

Since this model is subject only to small angles ψ, θ, higher order terms can be disregarded,
and the following approximations can be made: cosψ ≈ cosθ ≈ 1, sinψ ≈ ψ and sinθ ≈ θ.
Rewriting Eq. (7):

(
mpL

2 +mpb
2 − 2mpbL+mfh

2
f + If + Isat

)
ψ̈ +

(
mpL

2 −mpbL
)
θ̈

+ (k −mpgb+mpgL+mfghf )ψ + (mpgL) θ =Mψ, (9)

and rewriting Eq. (8):(
mpL

2 −mpbL
)
ψ̈ +

(
mpL

2
)
θ̈ + (ε) θ̇ + (mpgL)ψ + (mpgL) θ = 0. (10)

Equation (10) represents the motion of the pendulum mass, so it represents the movement
of the fluid portion that contributes to the sloshing in the satellite. Equation (9) represents the
satellite movement that can be controlled directly by the torque Mψ, that is, by the actuators
torque. Since the two equations of motion are coupled, the torque Mψ also acts indirectly on
fluid motion. Equations (9) and (10) can be rewritten in matrix form as:

 (mpL
2 +mpb

2 − 2mpbL+mfh
2
f + If + Isat

)
(mpL

2 −mpbL)

(mpL
2 −mpbL) (mpL

2)

 ψ̈

θ̈


+

 0 0

0 ε

 ψ̇

θ̇

+

 (k −mpgb+mpgL+mfghf ) (mpgL)

(mpgL) (mpgL)

 ψ

θ


=

 Mψ

0

 . (11)

One can also rewrite Eq. (11) as: α β

β γ


︸ ︷︷ ︸

M

 ψ̈

θ̈

+

 0 0

0 ε

 ψ̇

θ̇

+

 s uu

uu uu

 ψ

θ

 =

 Mψ

0

 . (12)
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Inverting the matrix M of Eq. (12), we have:

M−1 =

 α β

β γ

−1 = 1

(−β2 + αγ)

 γ −β

−β α

 , (13)

and multiplying Eq. (12) by Eq. (13), the system equations are described as:

 ψ̈

θ̈

+
1

(−β2 + αγ)

 γ −β

−β α

 0 0

0 ε

 ψ̇

θ̇


+

1

(−β2 + αγ)

 γ −β

−β α

 s uu

uu uu

 ψ

θ

 =

1

(−β2 + αγ)

 γ −β

−β α

 Mψ

0

 . (14)

Rewriting the generalized coordinates of Eq. (14) as state space variables:

ψ = x1, θ = x3,

ψ̇ = x2, θ̇ = x4,

and writing Eq. (14) in the form ẋ = Ax+Bu, the final equations are written as:

ẋ1

ẋ2

ẋ3

ẋ4


=


0 1 0 0

−γs+βuu
η

0 −γuu+βuu
η

βε
η

0 0 0 1

βs−αuu
η

0 βuu−αuu
η

−αε
η


︸ ︷︷ ︸

A



x1

x2

x3

x4


+


0

γ
η

0

−β
η


︸ ︷︷ ︸

B

Mψ,

where η = −β2 + αγ.

3 Linear-quadratic regulator

The Linear-Quadratic Regulator is an optimal controller designed for systems that have a
linear plant in the form given by Eq. (15) and cost function described in the quadratic form, as
shown by Eq. (16) [10].

ẋ = A(t)x(t) +B(t)u(t) (15)

J =
1

2

∫ ∞
t0

[x′(t)Q(t)x(t) + u′(t)R(t)u(t)] dt (16)

Matrix A(t) is the matrix of states and order nxn, matrix B(t) is the matrix of control and
order nxr, matrix Q(t) is the matrix that weighs the system error and must always be positive
semi-definite and R(t) matrix is the control-weighting matrix and must always be positive
definite.
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Since the control vector u(t) is not constrained, the end state vector being given as x(tf )
and the end time tf , the optimal control is given as:

u∗(t) = −R−1(t)B(t)P (t)x∗(t), (17)

where P (t) is the differential solution of the Riccati equation, which is:

P (t) = −P (t)A(t)−A′(t)P (t)−Q(t) + P (t)B(t)R−1(t)B′(t)P (t), (18)

satisfying the final condition:

P (t = tf →∞) = 0. (19)

The optimal state vector is the solution of Eq. (20) and the optimal perfomance index is
given by Eq. (21).

ẋ∗(t) =
[
A(t)−B(t)R−1(t)B′(t)P (t)

]
x∗(t) (20)

J∗ =
1

2
x∗

′
(t)P (t)x∗(t) (21)

Since the time interval considered in Eq. (16) is infinite, the system given by Eq. (15) must
be completely controllable for optimal control to be found.

4 Numerical simulations

The simulations presented in this section were done using MATLAB (MATrix LABoratory)
software with the fourth order Runge-Kutta method for numerical integration. The iteration step
used in all simulations is h = 0.001. The system parameter values considered in the numerical
simulations are presented in Table (1). The acceleration of gravity is calculated for the altitude
of 400 km above sea level.

Table 1. Parameter values used in numerical simulations

Case mp (kg) mf (kg) L (m) b (m) hf (m) If (kg.m²)

1 180 150 0.33 -0.50 0.50 0

2 180 650 0.27 0 0.30 30

3 180 850 0.27 0.25 0.20 60

The objective of these simulations is to present three different system configurations and
to show, first, a comparison between the natural response of the system against the controlled
response for each case; then, a comparison of the control effort between them. The parameters
presented in Table (1) were taken based on the graphs presented by Li, Ma and Wang [11].

Case 1 is characterized by the configuration where the pendulum hinge point is below the
satellite center of gravity, i.e., b < 0. Case 2 has the pendulum hinge point at the same point as
the satellite c.g. (b = 0) and Case 3 has the pendulum hinge point above c.g. (b > 0).

For the three cases, the initial conditions of the state variables are:

x1 = 0.57°, x2 = 0°/s, x3 = 1°, x4 = 0°/s

and the control matrices Q and R are given as:
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Q =


100 0 0 0

0 100 0 0

0 0 100 0

0 0 0 100

 , R = 0.01.

Figures (4) and (5) present the angular responses of Case 1. In them, it is possible to
observe that the natural response of the system is very oscillatory, and the pendulum responses,
specifically, show that the system loses energy over time, but does not accommodate before
100 seconds. With the LQR control, both satellite and pendulum converge to the origin in
approximately 60 seconds.

The answers from Case 3, presented in Fig. (8) and Fig. (9), are similar to Case 1: naturally
the system has an oscillatory behavior that appears to slowly lose energy and, with the action of
the LQR control, the system reaches steady state before 100 seconds.

The answer of Case 2, in turn, presents a natural behavior similar to the previous ones (as
shown in Fig. (6) and Fig. (7)), but when under the LQR control, it differs considerably; the
response of the satellite position and velocity indicates that the attitude has converged to the
reference, but the pendulum still oscillates much like the behavior without control.
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Figure 4. System dynamics without and with LQR control for Case 1, where (a) is the pitch angle
response ψ and (b) is the pitch angle velocity response ψ̇

Figure (10) presents the control effort response of each of the three cases. In the graph, it
is possible to notice that the responses of cases 1 and 3 are similar: both are quite oscillatory
in the transient regime, but reach steady state in approximately 50 seconds for Case 1 and 70
seconds for Case 3. Regarding the amplitude of the oscillation , Case 3 is slightly larger than
Case 1. For Case 2, the answer has another feature: low oscillation in the first 40 seconds of
simulation and about 5 times smaller than in previous cases, but still appearing to oscillate very
small, virtually negligible up to 200 seconds.

5 Conclusions

A satellite model considering the fluid sloshing dynamics was proposed using a simple
pendulum to represent the oscillatory motion of the liquid propellant. The behavior of its natural
dynamics was analyzed for three different pendulum position settings in relation to the satellite
center of gravity in the model. This natural behavior, in all three cases, was oscillatory with
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Figure 5. System dynamics without and with LQR control for Case 1, where (a) is the pendulum angle
response and (b) is the pendulum angular velocity response
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Figure 6. System dynamics without and with LQR control for Case 2, where (a) is the pitch angle
response ψ and (b) is the pitch angle velocity response ψ̇
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Figura 7. System dynamics without and with LQR control for Case 2, where (a) is the pendulum angle
response and (b) is the pendulum angular velocity response
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Figura 8. System dynamics without and with LQR control for Case 3, where (a) is the pitch angle
response ψ and (b) is the pitch angle velocity response ψ̇
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Figure 9. System dynamics without and with LQR control for Case 3, where (a) is the pendulum angle
response and (b) is the pendulum angular velocity response

energy loss for all state variables. With the action of the LQR control, cases 1 and 3 were
similar, showing that the control not only led to the attitude for its reference, but also stabilized
the movement of the fluid (pendulum). For Case 2, the attitude was also stabilized, but for the
given simulation time, the pendulum still had an oscillation similar to the natural dynamics of
the system, still far from reaching steady state. Analyzing the torques involved in the problem,
it can be seen that, for both cases 1 and 3, the position of the pendulum hinge point is not
coincident with the center of gravity and therefore allows a torque beyond that already found
in the system due to the fixed mass mf (which in all cases is below the c.g.). For Case 2, since
there is no distance between b and c.g., the decomposition of the pendulum mass position vector
falls on the satellite’s symmetry axes, thus allowing no torque other than that produced by the
mass mf . On the other hand, precisely because of the absence of the pendulum torque, the
control effort required to bring the attitude to the desired position is about 5 times lower for
Case 2 than the others.
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Figure 10. Control effort comparison between the three different cases
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