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Abstract. Various types of engineering structures are subject to periodic loading such as offshore plat-
form parts and wind turbine blades. One of the main causes of failure in these structures is due to the
resonance effect, when the frequency of external loading coincides with some natural frequency of the
structure. Therefore, the maximization of natural frequencies is an increasingly sought-after topic in the
design of these components. In this paper a genetic algorithm is developed to maximize natural frequen-
cies of Euler-Bernoulli beams. Genetic algorithms are stochastic search methods, which are based on
biological concepts of adaptation, natural selection, fitness and evolution, to solve optimization prob-
lems. A beam population is created, each of them discretized in a mesh of cylindrical elements with
different diameters, initially random. The natural frequencies of the beam are found by the Finite Ele-
ment Method, and the one with the highest natural frequency creates a new generation of offsprings. In
each offspring is applied a mutation scheme that changes the diameter of any random element, making
the entire population change. So over the generations the algorithm finds out the best diameter combina-
tion that maximizes the natural frequency of the beam. Results present different shapes are obtained for
several boundary conditions and different natural frequencies maximized.
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Optimization of the natural frequencies of Euler-Bernoulli beams

1 Introduction

Optimization techniques are increasingly used in engineering projects, as they allow structures with
unconventional formats, allowing cost reduction, space and increased efficiency. Since the resonance
phenomenon is one of the main causes of failures in structures subject to periodic loads, such as sub-
merged structures and components of rotor designs, several researchers have sought techniques to in-
crease the natural frequency of these structures. An interesting result was found by Picelli et al. [1]
who used the bi-directional evolutionary structural optimization (BESO) to maximize the first natural
frequency of acoustic-structure systems. A different approach was proposed by Wang et al. [2], who
used a homogenization-based topology optimization method for natural frequency optimization in a can-
tilevered plate with a honeycomb structure increasing the first natural frequency and reducing weight
and, using the differential evolution optimization, Roque and Martins [3] maximized the first natural
frequency for a functionally graded beam.

For optimization problems whose the derivative of the objective function is not known or is difficult
to compute, derivative-free algorithms are utilized. Usually these algorithms are metaheuristic because
the random sampling employed in these algorithms ensures an evenly distributed evaluation of the objec-
tive function (Hofmeister et al. [4]). Genetic algorithms (GA) are stochastic search methods, which are
based on biological concepts of adaptation, natural selection, fitness and evolution, relying on Darwin’s
principle of survival of the fittest to solve optimization problems. Due to their robustness and efficiency,
GAs are widely used in various optimization problems in robotics, control systems, logistics problems
and design of structures.

In 1859 Darwin [5] offers an explanation of the origins of biological diversity and its underlying
mechanisms. In what is sometimes called the macroscopic view of evolution, natural selection plays a
central role. Given an environment that can host only a limited number of individuals, and the basic
instinct of individuals to reproduce, selection becomes inevitable if the population size is not to grow
exponentially. Natural selection favours those individuals that compete for the given resources most
effectively, in other words, those that are adapted or fit to the environmental conditions best. This phe-
nomenon is also known as survival of the fittest (Eiben et al. [6]).

In biology, the visible features of an individual, as the color of hair, could be determined by genes,
which are segments of a chromosome. Each individual has a phenotype (observable features) which is
influenced by the genotype (complete heritable genetic identity). A chromosome is an organized package
of DNA found in the nucleus of the cell. In simple terms, the chromosome contains the combination of
genes of an individual. Each individual has a unique combination of genes. If this combination evaluates
favourably (in the phenotype), the individual will survive and generate offsprings; otherwise, if evaluates
unfavourably, then the individual will die without offsprings. Favourable combination of genes can be
propagated to the offsprings. Some fails occurs in the reproduction, causing random changes in the
offspring’s genotype. This process is known as mutation and causes variation in the next populations.
The best ones survives and reproduces and specie evolves. Relying in these principles, GA mimics the
evolution process treating variables of the physical world as genes and using the concepts of mutation
and survival off the fittest to find what is the best variables to optimise some problem. Each gene can be
treated as a string or a number. The combination of these genes is called chromosome.

Several authors used GAs together with the finite element method (FEM) to solve structural op-
timization problems. For example: Lin [7] developed a GA optimization approach to search for the
optimal locations to install bearings on the motorized spindle shaft to maximize its first-mode natural
frequency. Most recently, Elrehim et al. [8] used GA to a geometrical structural optimization study for a
deck concrete arch bridges. Also using GA in conjunction with FEM, Walker and Smith [9] minimised a
weighted sum of the mass and deflection of fibre reinforced structures and Bhandary et al. [10] proposed
a procedure to determine the factor of safety of a slope.

In this work, the shape of Euler-Bernoulli beams discretized into a series of finite elements are
optimized to maximize the natural frequencies (NF) of the beam. Once the derivative of the NF is difficult
to compute, a genetic algorithm is developed to find the best combination of diameters of the mesh of
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finite elements that maximizes the NF. Two-node beam cylindrical elements with different diameters
are used to compute the eigenvalues of the structure and the genetic algorithm find out the optimal
shape that maximizes the eigenvalue. The codes for the FEM and the GA optimization technique are
developed in MATLAB programming platform. Different shapes of beams are found from different
boundary conditions and different natural frequency maximized.

2 Formulation

2.1 Finite Element Model

Considering an one-dimensional, two-noded kth beam element with modulus of elasticity E, the
moment of inertia of cross section Ik, the mass density ρ, the length le and the cross-sectional area
Ak is shown in Fig. 1. Each element of the mesh has a different cross-sectional area. The generalized
coordinates at each node are w, the total deflection, and θ, the total slope. This results in a element with
four degrees of freedom which enable the expression forw and θ to contain two undetermined parameters
each, which can be replaced by the four nodal coordinates.

wi wj

θi θj

x, ξ

le

ξi = 0 ξj = 0

i j

Figure 1. Beam element.

Considering the non-dimensional coordinate ξ, the displacement w can be written in matrix form as
follows:

w = [N(ξ) ] {v}k, (1)

in which

[N(ξ) ] =
[
1− 3ξ2 + 2ξ3 (ξ − 2ξ2 + ξ3) l 3ξ2 − 2ξ3 (−ξ2 + ξ3) l

]
(2)

and

{
v
}T

k
=
[
wi θi wj θj

]
. (3)

The stiffness and mass matrices of the beam element k are given by, respectively:

[ K ]k =
1

2

∫ 1

0

EIk
l3
[
N′′(ξ)

]T [
N′′(ξ)

]
dξ, (4)
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[ M ]k =
1

2

∫ 1

0
ρ [N(ξ) ]T [ N(ξ) ]Ak l dξ. (5)

The global stiffness [K] and mass [M] matrices are obtained from the element matrices [ K ]k and
[ M ]k through the finite element assembly. The equation for free vibration a undamped system can be
express as (Wu [11]):

[M] {v̈(t)}+ [K] {v(t)} = 0, (6)

where {v(t)} is the global displacement vector. Assuming that the displacement vector {v(t)} takes the
form:

{v(t)} = {u}ejωt, (7)

where {u} is the amplitude vector of {v(t)}, ω is the natural frequency of the system, t is time and
j =
√
−1. Substituting Eq. (7) into Eq. (6) gives:

([K]− ω2 [M]){u} = 0. (8)

Equation (8) is in the form of a generalized eigenproblem. Its solution includes the eigenvalue ωr

and the corresponding eigenvector {u}r (with r = 1, 2, . . .), in which are also called the rth natural
frequency and the rth mode shape for a vibrating system (Wu [11]).

2.2 Genetic Algorithm

In this work, we are interested in find what is the best combination of diameters of cylindrical
elements that makes an Euler-Bernoulli beam have the highest value of some natural frequency. In
this problem the genes are the diameters and the fitness is the natural frequency. An individual of the
population is a beam discretized into n cylindrical elements which have diameters between Dmin and
Dmax. Since Dk is the diameter of the kth element, the c chromosome of a beam discretized into n
elements can be written as:

c = [ D1 D2 · · · Dn−1 Dn ] . (9)

Changing any diameter Dk through mutation, the cross-sectional area Ak and the moment of inertia
Ik are modified, consequently, the Eqs. (4) and (5) are changed, then the eigenvalues that solves the
Eq. (8) also changes. Considering E and ρ constant throughout the beam, the rth natural frequency (NF)
is a function that depends only on the c chromosome vector. We developed a GA that find out which
chromosome c maximizes ωr(c). NF is calculated using the finite element method (FEM), and the fittest
individual generates offsprings, which in turn also mutate. The discretized circular cross section beam is
shown in the Fig. 2.

D1 D2 Dk Dn Dk

Figure 2. Discretization throughout the beam.
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Figure 3. Flowchart of the Genetic Algorithm.

Figure 3. shows an overview of the GA. The first individual is a beam discretized into elements
with random diameter values. Offsprings are created and a mutation scheme changes some gene of the
offsprings. The mutation scheme chosen for this work is to add some random number in range [−0.2, 0.2]
to the diameter of a random beam element. FEM evaluation of the eigenvalues occurs and the code find
what is the fittest individual in the current population. To the next generation, the individual with the
highest value of NF will generate the offsprings, making population increasingly fit.

The stopping criteria chosen for this work is to check if the code has been 100 consecutive genera-
tions consecutive with max fitness of the beam population unchanged. When this occurs, the algorithm
stop and plots the optimized shape of the beam.

3 Numerical Results

3.1 Cantilever Beam

For example, consider a cantilever beam with L = 1, ρ = 1 and E = 1, discretized into 5 finite
elements, initially presenting random diameters in the range [0.05, 1]. Using random number generation
functions, the first individual is showed in the Fig. 4:

0 1

L

0.442882

0.3892

0.329165

0.202478

0.104841

0

0.104841

0.202478

0.329165

0.3892

0.442882

y

Figure 4. The random initial beam

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.

Natal/RN, Brazil, November 11-14, 2019



Optimization of the natural frequencies of Euler-Bernoulli beams

This beam can be expressed as the following chromosome vector:

cinitial = [ 0.6583 0.8858 0.4050 0.7784 0.2097 ] ,

where each element of the vector c is a gene that represents the diameter of a beam element. In other
words, the vector c is the genotype and the Fig. 4 is the phenotype. From these initial individual, 3
offsprings are created and the mutation scheme modifies some random diameter. Initial population is
represented in Table 1 in which each line is the chromosome corresponding to an individual of the
population, where the individuals 2, 3 and 4 are the offsprings and the bold genes are those who mutated.

Table 1. Initial population

Individual Genes ω1

1 0.6583 0.8858 0.4050 0.7784 0.2097 0.7135

2 0.6583 0.8858 0.4059 0.7784 0.2097 0.7690

3 0.6583 0.8858 0.4050 0.7010 0.2097 0.7716

4 0.6583 1.0000 0.4050 0.7784 0.2097 0.7192

Individual 3 has the highest value of the first natural frequency ω1, so he will create the offsprings
for the next generation. The code will stop when there are 30 consecutive generations with the max
fitness unchanged. The final population is given in Table 2.

Table 2. Final population

Individual Cromossomes ω1

1 1.0000 1.0000 0.7145 0.3710 0.1412 2.1539

2 1.0000 1.0000 0.9025 0.3710 0.1412 2.0724

3 1.0000 1.0000 0.6016 0.3710 0.1412 2.1135

4 1.0000 1.0000 0.7145 0.3710 0.2860 1.7343
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Figure 5. Optimal shape of a cantilever beam discretized into 5 elements.

Figure 6. Maximum and average fitness of each generation of the first eigenvalue optimization of a
cantilever beam discretized into 5 elements.

Note that the entire population evolves, as illustrated in Fig. 6. Figure 5 shows the best individual
obtained by the algorithm. With only five elements, the FEM evaluation is not accurate. As the number
of elements increases, the number of genes to be modified increases, the beam aspect and FEM accuracy
improves. Initially, the problem of this work is a parametric optimization problem, but with many ele-
ments in the discretization, GA ends up finding the optimal shape of the beam. This is solve a problem
of shape optimization with parametric optimization.

Consider a cantilever beam with the same properties as the previous beam, now discretized into
120 elements. Changing the number of offsprings generated to 29 and modifying the stopping criteria
to cease when there are 100 consecutive generations with max fitness unchanged, the following format
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with optimized FNF is shown in Fig. 7:

0 1

L

0.5

0

0.5

y

Figure 7. Optimal shape of a cantilever beam.

Figure 8. Optimal shape of a cantilever beam.

Figure 8 shows the maximum and the average fitness of each generation. The increase of the number
of generations necessary to reach the stopping criteria in comparison to the five elements beam is because
the increase in the number of genes to be optimized, so the greater the number of generations needed.
When we choose other natural frequency to be maximized as objective function, the shapes obtained are
different, as illustrated in the Fig. 9.
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Figure 9. Different shapes obtained of a cantilever beam with (a) second and (b) third natural frequency
maximized.

3.2 Clamped-Clamped Beam

Consider a clamped-clamped cylindrical beam, with E = 1, ρ = 1, D = 1, and L = 1 as shown in
Fig. 10
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L

Figure 10. Clamped-Clamped.

Using the genetic algorithm to maximize the first three natural frequencies, we found the shapes
shown in Fig. 11 and Table 1 shows the increase in the natural frequencies. Notice that increase is very
significant.
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Figure 11. Different shapes obtained of a clamped-clamped beam with (a) first (b) second and (c) third
natural frequency maximized.
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Table 3. Comparison between optimized shapes and a prismatic beam (Clamped-Clamped)

Natural Frequency (rad/s) Prismatic Beam Optimized Shape Increase

ω1 5.5933 11.9581 113.79%

ω2 15.4182 23.3542 51.47%

ω3 30.2258 53.4267 76.76%

3.3 Hinged-Hinged Beam

Now, consider a hinged-hinged beam with the same properties, as shown in the Fig. 12:

L

Figure 12. Hinged-Hinged Beam

An interesting result occurs: the cylindrical shape, illustrated in Fig. 13, optimises all the first
three natural frequencies . The optimal values of natural frequencies are ω1 = 2.4674 rad/s, ω2 =
9.8696 rad/s and ω3 = 22.2066 rad/s.
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0

0.5

y

Figure 13. Optimized shape of a hinged-hinged beam that maximizes ω1, ω2 and ω3.

3.4 Clamped-Hinged Beam

For a clamped-hinged beam, the algorithm find the shapes shown in Fig. 15. Table 4 shows the
increase in the natural frequencies. We observed that the algorithm succeeded in maximizes natural
frequencies in any boundary condition.
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L

Figure 14. Clamped-Hinged Beam
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Figure 15. Different shapes obtained of a clamped-hinged beam with (a) first (b) second and (c) third
natural frequency maximized.
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Table 4. Comparison between optimized shapes and a prismatic beam (Clamped-Hinged)

Natural Frequency (rad/s) Prismatic Beam Optimized Shape Increase

ω1 3.8546 3.9192 1.6759%

ω2 12.4912 19.7206 57.876%

ω3 26.0619 36.1026 38.526%

4 Conclusion

This paper uses a genetic algorithm together with the finite element method to optimise the shape
of beams to maximize eigenvalues in classical boundary conditions. Initially, a finite element is formu-
lated using the Rayleigh-Ritz method to find polynomial equations to approximate the displacements
and slopes and natural frequencies are obtained from the equations of motion, solving a generalized
eigenvalue problem. A customized GA is developed to find out the best combination of diameters of
the mesh of finite elements that maximizes some eigenvalue. A cantilever beam with domain discretized
into 5 elements is used to be a simple example about how the code works and a graphical representation
of the evolution of the population is illustrated. Are obtained optimal shapes for 4 classical boundary
conditions: cantilever, clamped-clamped, hinged-hinged and clamped-hinged for the first three natural
frequencies. Results shows a great increase in the natural frequencies maximized.
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