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Abstract. In structural problems, numerical methods such as the Finite Element Method are often used
due to the scarce and limited applicability of analytical methods. In these cases, the design optimization
may become computationally costly and the time consumed starts to be a hindrance. To overcome this
problem, a significant effort has been made by researchers to understand and improve the so-called
surrogate models. Surrogate models provide computational efficiency by using a few samples from
the true function to build an approximated response surface to predict points in the design space not
yet evaluated during the optimization process. This approximated surface may also be improved at each
generation with the addition of new samples in regions of interest on a methodology known as Sequential
Approximate Optimization (SAO). In this context, the Radial Basis Functions (RBF) are a powerful and
robust surrogate model while keeping implementation simple. The Gaussian function is often chosen as
the basis function despite uncertainty on the definition of one of its main parameters: the kernel width
(σ). This paper performed a comparative study on different methods to estimate the width parameter
using two types of solutions: closed-form expressions proposed by different researchers in the last few
years and direct search methods. The efficiency of each of these approaches is assessed using metrics
such as the number of high fidelity model evaluations and the error at the end of each optimization.
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1 Introduction

With the ever-increasing processing capacity of computers, engineers started to shift their attention
to not only finding a feasible design but to optimize it as well. That way, most structural problems focus
on trying to find the best possible design for a structure while respecting a set of constraints. Although in
some cases an analytical solution might aid the structural analysis, in practical applications it is necessary
to use numerical methods, such as the Finite Element Method (FEM). However, this approach may result
in time-consuming analyses. Therefore, the use of surrogate modeling has become in recent years an
active research field. Surrogate models such as the Radial Basis Functions (RBF) [1, 2], the Support
Vector Regression (SVR) [3, 4] and Kriging [5, 6] have shown good performance (i.e., low computational
cost and good accuracy).

Wang and Shan [7] highlight that these models are mostly used to approximate computational-
intensive processes, to explore the design space and to assist in design optimization. Comparative stud-
ies suggest that the RBF is a good choice to approximate higher-order non-linear functions, whereas
Kriging works best with low-order ones [8, 9]. Forrester et al. [10] point out that, due to the necessity
of parameter-optimization, Kriging might become costly on high-dimensional problems, suggesting the
RBF is a more appropriate choice.

As for the RBF, several basis functions can be used to interpolate the sampling points. These
functions are usually classified as fixed bases (i.e., no hyper-parameter needs to be defined) or parametric
bases [10]. While the former presents a simpler formulation, the latter allows for better control of its
characteristics, as well as the possibility of a more generalized method. Mongillo [11] carried out a
comparison between three types of parametric basis, the multi-quadratic, the inverse multi-quadratic and
the Gaussian kernels, and, while acknowledging that this choice had deep implications on the surrogate
model performance, all three basis achieved low errors when σ was optimized. Mehmani et al. [12]
presented the COSMOS framework to choose the set (model type, basis function and hyper-parameter
values) that presents the smallest error. It is worth mentioning that although this alternative provides a
good generalization of the surrogate, it might become extremely time-consuming. Acar [13] proposed
a formulation where both the shape parameter and the model weights are optimized at the same time.
However, this method may also hinder the optimization process and increase the cost of the algorithm.

The Gaussian kernel is one of the most popular basis functions used in the literature due to the good
results shown in comparative studies. In addition to that, models based on the Gaussian process also
allow the calculation of an estimate of the error of the model, which might be important for Sequential
Approximate Optimization (SAO) [10]. This kernel type is also often used by the Kriging predictor.

However, despite the robustness of the RBF model, it is still unclear how to best define the shape
parameter σ, also referred to as the width of the kernel. The most straightforward approach is the Leave-
One-Out Cross-Validation (LOOCV), usually adopted when there are no concerns related to the cost of
building and evaluating the model. This approach has been successfully used by numerous researchers
[12, 14]. However, on larger sample sizes and high-dimensional problems, this method might become
too expensive. An alternative is the k-Fold Cross-Validation (k-FCV), where the validation is performed
separating the samples in k groups. Müller and Shoemaker [15] performed a hybrid method, in which
the LOOCV is used while the sampling size is less than 50 and the k-FCV is applied after that point with
k being adaptively adjusted according to the sampling plan size.

However, cross-validation techniques may become a problem when large design spaces are consid-
ered. To address these problems, researchers usually make use of simple mathematical formulations to
define the basis functions widths. Most derivations come from the formulation presented on Haykin [16]
with the consideration of a few improvements [17–19] that shall be discussed later on. Wu et al. [20]
presented a novel method to define the width parameter based on the local density of sampling points,
showing good performance. However, the ad-hoc nature of these formulations makes the choice for a
method for defining the widths an unknown and doubtful field to the researches. In addition to that,
a Sequential Approximate Optimization (SAO) technique is employed to improve the surrogate model
accuracy with the addition of new sample points.
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This paper focus on the comparison between several width-defining methods for the Gaussian kernel
aiming propositions to facilitate the choice of this parameter for future research. The rest of the paper is
organized as follows: In Section 2 the main features of the Surrogate Modeling are introduced, including
the sampling plan definition and the infill criteria considered for the comparisons. In Section 3 the
mathematical formulation of the RBF model are presented. In Section 4 the importance of the shape
parameter and the different types of width-defining methods considered is discussed. The results obtained
are presented in Section 5 and finally, in Section 6 the main conclusions are brought together.

2 Surrogate modeling

Surrogate modeling is a technique that tries to emulate the behavior of a given function at a lower
computational cost based on the function values at a set of sampling points [10]. In this approach, the
initial data are usually determined by a Design of Experiments (DoE) [21]. For computer experiments,
the basic argument is that samples must be uniformly distributed [9, 22], although there is, in fact, no
clear correlation between the prediction error of the surrogate model and the uniformity of the samples
[23, 24].

Table 1. Definition of sample size

Type of function Low sample size Medium sample size High sample size

Low dimension 1.5K 3.5K 6K

High dimension 1.5K 2.5K 5K

In this paper, the deterministic Hammersley Sequence Sampling (HSS) is used to determine the
initial sampling plan, defined by the sample vector x and its respective objective functions y. To better
establish the model, the sample vector should be normalized before computed [10]. The number of points
(n) used was defined as proposed by Amouzgar and Strömberg [25] and is summarized in Table 1, being
a function of a parameter K, defined as:

K =
(m+ 1)(m+ 2)

2
. (1)

A major flaw in using DoE to define the sample vector is that there is no consideration over the
behavior of the objective function. In most cases, however, that is the best the user can do at that point
[14]. One of the advantages of using surrogate models in optimization problems is the possibility of,
throughout the optimization, being able to add new sampling points on regions of interest [10, 26].
This is why this paper will employ the Sequential Approximate Optimization (SAO) in order to further
improve the model’s prediction. This technique was first proposed by Schmit and Farshi [27] in order to
continuously update the trust regions considered throughout the optimization. In the present work, the
SAO will be used with the sole purpose of defining regions of interest and performing the insertion of
new and more efficient sampling points. These points are chosen using an infill criterion.

There are two main strategies when choosing an infill criterion: the exploitation approach, when one
tries to improve the prediction in regions close to the current optimal point, and the exploration, when
one aims to sample unseen areas where prediction is highly uncertain. There are also methods that try to
combine both features in order to increase efficiency [26].

In this paper, an approach very similar to the one proposed by Kitayama et al. [28] will be used. At
each generation, two points are added to the initial sampling plan. The first one refers to the exploitation
and the best non-repeated individual found by the optimization up to that iteration is added and the
second point is related to the exploration. The exploration sample point is determined by using a Density
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Function, which tries to represent the distance between the sampling points and any other point over the
design space. Kitayama et al. [28] propose a simple formulation in order to take advantage of the RBF:
basically, the model is built the same way as the surrogate model itself, but, in this case, the y vector is a
vector of ones. In this paper, the σ vector of the density function is taken as the one obtained by the true
function surrogate model.

Figure 1 depicts the Density Function for a 1D problem. The blue circles represent the samples
considered while the red dot is the sample obtained by the minimization of the Density Function (i.e.,
leading to points in sparse areas). An interesting aspect of this approach is that it usually performs the
addition of points at the borders of the design space on earlier generations.
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Figure 1. Example of a Density Function for a 1D problem

Figure 2(a) illustrates a surrogate model and the effect in the model’s accuracy due to the addition
of two points (see Fig. 2(b)). The blue circles represent the initial sample points, while the green and red
dots are the points to be added, related to exploitation and to exploration respectively. This addition not
only improves the surrogate accuracy through the whole design domain, but it also helps the algorithm
to find solutions closer to the optimal global of the true function.
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(a) Initial surrogate model and new sample points

0 1 2 3 4 5 6 7 8 9
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

True function
Surrogate Model Prediction

(b) Updated surrogate model

Figure 2. Addition of new sample points to the surrogate model
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3 Radial Basis Functions

The Radial Basis Function (RBF) model was initially proposed by Hardy [29] to assist data inter-
polation in topography and geography problems. It is based on the idea of conceiving basis functions
ψ capable of interpolating a set of data given a priori in order to build an estimate for the entire design
space given by:

ŷ =

b∑
i=1

wiψ(‖x− ci‖) (2)

where b refers to the number of bases, wi refers to the weight corresponding to basis i, while ci refers to
its center. In this paper, the number of bases was considered equal to the sample size.

One of the advantages of the RBF is the possibility of choosing which basis function ψ to be used.
As briefly discussed in Section 1, the fixed basis provides a simpler formulation, simplifying the mod-
eling process and allowing a faster model building. Examples of these types are the linear (ψ(r) = r),
the cubic (ψ(r) = r3) and the thin plate spline basis functions (ψ(r) = r2ln(r)). On the other hand, the
parametric basis requires the definition of a shape parameter (σ) and allows better control of the surrogate
model performance. However, this does not come without a price: the user must define the shape param-
eter of this function, which might become a hard and time-consuming task in some cases. Examples of
these are the multi-quadratic (ψ(r) =

√
(r2 + σ2)), the inverse multi-quadratic (ψ(r) =

√
(r2 + σ2)

−1
)

and the widely known Gaussian kernel (ψ(r) = e−(r2/(σ2))) [2]. Fig. 3 illustrates the behavior of differ-
ent basis functions considering σ = 1.0. In this paper, the Gaussian function is adopted.

Multiquadratic
Inverse Multiquadratic
Gaussian

f(
x)

0.4

0.6

0.8

1

1.2

1.4

r
−1 −0.5 0 0.5 1

Figure 3. Behavior of different kernel types, depending on the r parameter

The Gaussian kernel depends on the Euclidean distance r between two points (the center ci and
the point x that will be evaluated by the RBF) and the corresponding width for the i-th basis. The RBF
formulation can be written in matrix form as:

ŷ = wTψ. (3)

This way, there are two variable sets that have yet to be defined: the weights w and the widths σ. One of
the advantages of using RBF over other surrogate models is the ease achieved in calculating its weight
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vector. Its basic idea is that, at sampling points, the response given by the surrogate model must be equal
to y (i.e., ŷ = y). Thus, the data interpolation can be written as:

Ψw = y. (4)

Here, Ψ is the Gram matrix, based on the sample vector x = [x1,x2, ...,xn], e.g. if a uniform σ vector
is used, the Gram matrix is defined as:

Ψ =


ψ(‖x1 − x1‖) ... ψ(‖x1 − xn‖)

ψ(‖x2 − x1‖) ... ψ(‖x2 − xn‖)
...

. . .
...

ψ(‖xn − x1‖) ... ψ(‖xn − xn‖)

 . (5)

This formulation, although successful in many cases, might result in bad conditioning of the matrix if the
sampling points are too close to each other [16]. To overcome this issue, Kitayama and Yamazaki [19]
proposed an alternative which uses a regularization parameter λ to calculate the quadratic error as:

E =
n∑
i=1

(yi − ŷi)2 +
b∑

j=1

λwj
2. (6)

It is worth noting that λ should be small enough to not interfere too much on the model’s prediction, but

high enough for it to be effective. The weight vector that minimizes Eq. (6) can be calculated as:

w = (ΨTΨ + Iλ)−1ΨTy (7)

where I is an identity matrix.

4 The width parameter

The only missing parameter for the building and evaluation of the model is the width σ. As men-
tioned earlier, there is no clear way of defining this value, which is why some authors use ad-hoc tech-
niques. However, the parameter is of utmost importance for model prediction [14] since the width σi is
related to the influence area concerning the basis i, as illustrated in Fig. 4.

Figure 5 depicts an example function for different widths. Note how the prediction goes from
looking like a “needles in the haystack” function to a smoother and flatter one. It is needless to say that
even though for this example the optimal width seems to be around 0.1972, it might not be the case for
other functions. This value was picked by performing one of the analytical formulations, proposed by
Nakayama et al. [17]. Two factors can affect the optimal value of the parameter: the true function and
the data set used to build the interpolation [11]. The sample size and the number of variables are usually
representative of the latter.

Two main approaches can be taken here: the first one generates a uniform vector, where all bases
i share the same width. However, this might not be ideal, especially when working with non-uniform
sample sets [19]. The second approach tries to create a non-uniform vector in which a different σ is
assigned for each basis. That being said, to estimate the σ vectors, researchers can either use analytical
formulations or Cross-Validation methods.
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Figure 4. Behavior of the Gaussian function, depending on the σ parameter
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Figure 5. Prediction of the model, depending on the σ parameter

4.1 Analytical formulations

The analytical formulations are among the most simple and easy-to-use methods to define the width
of Gaussian kernels. However, they are often treated with disbelief due to their ad-hoc nature. Most of
them try to improve the following formulation presented on Haykin [16]:

σ =
dmax√

2n
, (8)

where dmax refers to the maximum distance between two sampling points in the design space and n to
the number of samples, the same as the number of bases in our case. Nakayama et al. [17] proposed an
alternative in order to also take into consideration the number of design variables m as:

σ =
dmax
m
√
mn

. (9)
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Kitayama and Yamazaki [19] also proposed a new formulation, since according to the authors, the
last proposal overestimates the parameter by underestimating the importance of the number of design
variables m:

σ =
dmax√
m m
√
n
. (10)

Note that all three formulations presented so far provide the same values for a two-dimensional
design space. In addition to those equations, Kitayama and Yamazaki [19] also proposed a way to better
study non-uniform samples by generating a σ vector with different values of width for each basis. In this
paper, to better distinguish between the two proposals made by Kitayama and Yamazaki [19], the former
one will be named as Uniform Kitayama, while the Non-Uniform Kitayama is presented as:

σi =
di,max√
m m
√
n− 1

(11)

where di,max is the maximum distance from basis i and any other sample. Finally, the authors proposed
a technique named Adaptive Scaling, where the whole σ vector is evaluated as shown in Eq. (11) and
should be continuously multiplied by a scalar δ until the lowest value in σ is higher than 1.0. In this
paper, δ was set to 1.1, as originally proposed by the authors.

4.2 Cross-validation methods

Although the analytical propositions do usually make satisfactory predictions about the optimal
basis widths, these approaches do not perform any consideration about the behavior of the function to be
estimated. Thus, despite the lower computational cost of analytical formulations, it is usual to perform
the optimization of this parameter. Acar [13] goes even further and proposes a formulation where the
widths and the weights are optimized at the same time. However, the usual way to perform this is through
Leave-One-Out Cross-Validation (LOOCV). In this proposal, a number nw of σ are tested. For each one
of them, n surrogate models are built, each excluding one different sample from model construction.
This sample is then used as validation. To compare its value with the one evaluated from the model built,
the Mean Squared Error (MSE) is calculated as:

MSE =
(yi − ŷi)2

nv
(12)

where nv refers to the number of samples used as validation at each iteration. The vectorσ with the lower
sum of MSEs is then chosen for model building and evaluation. Figure 6 summarizes these instructions.

The stopping criteria shown in Fig. 6 may be either related to a minimum accuracy value achieved
or simply to the number of widths (nw) tried. Sobester et al. [14] propose an approach where uniform σ
vectors are tested through LOOCV, where direct search is run over the domain [10−2, 101] to find the best
σ, while Mehmani et al. [12] search σ values over the domain [10−1, 3] using an optimization algorithm.

Remark 1: Direct Search Domain. On their paper, Sobester et al. [14] use a slightly different formu-
lation for the Gaussian function, ψ(r) = e−(r2/(2σ2)). To obtain the same results as the authors, in
this paper one works on the domain [10−2, 101] ·

√
2, considering nw = 20, uniformly distributed in a

logarithm scale.

This approach offers a generalization with a certain level of reliability but at the price of a higher
computational cost, since it requires n · nw model buildings and evaluations to determine σ, which may
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render the process unfeasible, particularly for large sample sizes. It is important to notice that the former
is the most expensive phase since it involves many matrix operations, while the latter involves more basic
operations.

Choose	the	σ	vector
to	be	tested.
sumMSE	=	0

j	=	1

Evaluate	ŷ	on	xi.
Evaluate	the	MSE.
sumMSE	+=	MSE

i	+=	1

Remove	xi	from	the
sample	and	build	the
surrogate	model.

i	>	n? Stopping	criteria	have
	been	fulfilled?

The	σ	vector	with	the
lowest	sumMSE	is
chosen.	Stop	the

algorithm.

No

Yes

No

Yes

Figure 6. Leave-One-Out Cross-Validation flowchart for width definition

An efficient alternative approach is the use of the k-Fold Cross-Validation (k-FCV). It is very similar
to the LOOCV but instead of building a different model for each sampling point, this technique randomly
organizes the sampling points in k groups. Each surrogate model is then built upon all groups but one,
which should be used to validate the model. The process is ended when all groups have been put to test.
Figure 7 presents the scheme of operation of this approach. Note how it is similar to the one presented
in Fig. 6. Actually, if the number of groups k is set as equal as n, there is no difference between the two
methods. It should be pointed out that, if k ≥ n, the algorithm should set k = n.

Choose	the	σ	vector
to	be	tested.
sumMSE	=	0

j	=	1

For	each	sample	i	on	group
j,	evaluate	ŷ	on	xi.

Evaluate	the	MSE	for	each
sample	i.

sumMSE	+=	MSE
j	+=	1

Remove	the	points
of	group	j	and	build

a	surrogate.
j	>	k? Stopping	criteria	have

	been	fulfilled?

The	σ	vector	with	the
lowest	sumMSE	is
chosen.	Stop	the

algorithm.

No

Yes

No

Yes

Figure 7. k-Fold Cross-Validation flowchart for width definition

That way, the method greatly reduces the required number of model buildings. While LOOCV
needs to build n ·nw surrogates, k-FCV performs this procedure only k ·nw times. It is important to note
that, although the number of evaluations is the same as in LOOCV, this step has a low computational
cost when compared with model building. In the applications, two variations are considered: k = 10 and
k = 5.

It is noticeable how the analytical formulations try to simplify the task, given that even though
the optimal value of σ varies for each function and depends on f(x), the closed-form equations do not
consider this aspect. Despite the shortcomings, numerical studies suggest that these equations may offer
predictions with reasonable accuracy [1, 17, 19, 30] at a low cost, since they did not require any model
buildings and evaluations to compute the width (σ).

On the other hand, both LOOCV and k-FCV get more expensive as the number of sampling points
grows. On DoE, the risen in dimensionality is heavily related to an increase in the number of sampling
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points: as the design space gets bigger, the sample size increases exponentially. This problem is com-
monly known as the curse of dimensionality and is a major concern in designing an efficient surrogate
model [10]. Furthermore, as new points are added to the sample, the cost of the cross-validation methods
increases as well.

In this work, several width-defining methods are compared considering their optimization perfor-
mance. Hopefully, this will help guide future researchers on which method best suits their needs.

5 Examples

The algorithm was implemented on the Biologically Inspired Optimization System (BIOS), a soft-
ware written in C++ language using the Object-Oriented Programming paradigm. BIOS has been de-
veloped at the Laboratório de Mecânica Computacional e Visualização (LMCV), from the Universidade
Federal do Ceará (UFC). In the examples, the proposition made by Nakayama et al. [17] is referred
to as NAK, while UKIT, KIT and ASKIT refer to the methods proposed by Kitayama and Yamazaki
[19], the Uniform Kitayama, Non-Uniform Kitayama and the Non-Uniform Kitayama associated with
the Adaptive Scaling technique, respectively.

A comparison between the true response at the optimum point found at the end of each optimization
and the actual optimum of the true function will be evaluated using:

error =
fmin HFM

fopt
. (13)

Thus, the closer the error is to 1, the better is the answer. Note that, in optimization problems,
the accuracy of the whole surface is not a concern as long as the algorithm is capable of reaching the
optimum response.

5.1 Minimization of the Peaks function

Peaks is a two-dimensional function with a couple local minimums and maximums. The function is
evaluated over the domain [−3, 3]2 and may be described as:

f(x) = 3(1− x1)
2
e−(x1

2+(x2+1)2) − 10
(x1

5
− x13 − x25

)
e−(x1

2+x2
2) − 1

3
e−(x2

2+(x1+1)2). (14)

Figure 8 illustrates its behavior over the design space as well as the location of the global minimum,
on f(0.228,−1.626) = 6.551.

The optimization was performed using LOOCV, 10-FCV, 5-FCV and the methods proposed by
Nakayama et al. [17] and Kitayama and Yamazaki [19], presented in Eq. (9) and Eq. (11) respectively.
This last formulation was used both directly and using the Adaptive Scaling technique. Figure 9 depicts
the results found for each method normalized by the optimum point considering 10 runs and three value
for the maximum number of generations: 25, 50 and 75. The x mark inside each Boxplot represents the
average value found.

Due to the low number of generations used in Fig. 9(a), the optimal value found presented a high
variation, even when adopting the same method. It is interesting to note that both 10-FCV and 5-FCV
seem to have found better results than LOOCV in general and, more importantly, this method presents a
lower computational cost. The method proposed by Nakayama et al. [17] seems to have shown the best
results, even though it may seem simplistic at first glance. The same trend can be observed in Fig. 9(b)
and Fig. 9(c). Even though LOOCV results improve substantially, 10-FCV and 5-FCV also show good
performances on these, at a much lower cost.

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
Natal/RN, Brazil, November 11-14, 2019



L. G. Ribeiro, M. A. Maia, E. Parente Junior, A. M. C. de Melo

(a) Peaks HFM

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

(b) Contour lines

Figure 8. Peaks function
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Figure 9. Normalized results for Peaks function optimization

Another important observation is the poor performance of the Adaptive Scaling technique. This
behavior may be explained by studying how the σ vector changed over the optimization for LOOCV, 5-
FCV and the method proposed on Nakayama et al. [17] (see Fig. 10). It is clear that, while the optimum
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Figure 10. Width values used for the Peaks function

σ value might be around 0.13, the Adaptive Scaling technique keeps pushing all values to be greater than
1.0, which causes the poor results of the method. This trend will continue to happen on low-dimensional
examples due to the smaller design space.

Also, both cross-validation methods did not show a perceptible continuous decrease of the σ values
used, expected due to the increase in the number of samples over the optimization. This is probably due
to the way the σ values were discretized to perform the direct search of these methods, as proposed by
Sobester et al. [14].

5.2 Minimization of the Styblinski-Tang function

The Styblinski-Tang is anm-dimensional function with some local minima and maxima, albeit with
a flatter shape than the previous one. As m increases, so does the number of local optima, which may
hinder the optimization process. Its general formulation is presented in Eq. (15), while Fig. 11 presents
the HFM of the two-dimensional version over its domain as well as the location of the global minimum,
on f(−2.904,−2.904) = −39.661 ·m. In this paper, this function will be tested with m equal to 4, 8,
12 and 16 and evaluated over the domain [−5, 5]m.

f(x) =
1

2

m∑
i=1

(x4i − 16x2i + 5xi). (15)

Figure 12 shows the results for the 4D, 8D, 12D and 16D versions considering 10 runs and 200
individuals at each of them. On the 4D problem, the maximum number of generations was set to 75,
while on the higher dimensional versions, this parameter was set to 200. In Fig. 12(a), all methods
were used, even Uniform Kitayama (see Eq. (10)). It was not used in the previous example because, on
two-dimensional problems, this method provides the same σ values obtained using the formulation from
Nakayama et al. [17]. In Fig. 12(b) both Non-Uniform Kitayama and LOOCV were not assessed, the
former due to bad results and the latter due to time consumption. On the other hand, the Adaptive Scaling
technique was kept (despite its poor performance on Peaks minimization) to better study its implications
over high dimensional problems. Finally, in Fig. 12(c) and Fig. 12(d), 10-FCV was also cut from the
testing due to time consumption.

Once again, in Fig. 12(a), both 10-FCV and 5-FCV presented better results than LOOCV. While
both uniform propositions (NAK and UKIT) showed good results, the other analytical formulations did
not perform so well, particularly the Adaptive Scaling technique (although it showed improvement if
compared to the previous example). In Fig. 12(b), the same methods that stood out on a lower dimension
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Figure 11. Two-dimensional Styblinski-Tang function
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Figure 12. Normalized results from the optimization of the Styblinski-Tang function

presented good performance again. Also, even though the design space has become wider, the Adaptive
Scaling showed no visible improvement.

Finally, in both Fig. 12(c) and Fig. 12(d), none of the methods used have produced particularly
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good results, probably due to the many local minima this function presents at these dimensions. The
optimization’s cost greatly increased as the required number of samples were also higher, especially
when using cross-validation methods. This is also a limitation to the number of maximum generations
considered. Among the methods considered, the 5-FCV presented the best performance. In Fig. 12(c),
UKIT seems to have performed the best among the analytical formulations. In Fig. 12(d), the best results
were obtained using the Adaptive Scaling technique. Figure 13 presents the σ values chosen over the
generations by some of the methods for the three versions studied.
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Figure 13. Width values found for the Styblinski-Tang function

Note how the σ values increase with the problem dimensionality. However, both Fig. 13(a) and
Fig. 13(b) still did not achieve σ values greater than 1.0, which explains the bad results produced by the
Adaptive Scaling technique in these problems. In Fig. 13(c), NAK did show σ values greater than 1.0,
however, these values seem overestimated if compared to those obtained by UKIT and 5-FCV. Luckily,
this is not the case in Fig. 13(d), when the widths determined by the 5-FCV was also higher than 1.0. An
exception here was the Uniform Kitayama, which still presented widths lower than 1.0, which actually
seems underestimated in this case.
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5.3 Minimization of the Dette & Pepelyshev function

This is an 8D function presented on Dette and Pepelyshev [24], evaluated over the domain [0, 1]8,
and it is highly curved in some variables but less so on others. Its formulation is shown below:

f(x) = 4(x1 − 2 + 8x2 − 8x22)
2

+ (3− 4x2)2 + 16
√
x3 + 1(2x3 − 1)

2
+

8∑
i=1

i ln

1 +

i∑
j=3

xj

 . (16)

The results obtained are shown in Fig. 14(a) and the sigmas used some of the methods are shown in
Fig. 14(b). On this example, it was considered 10 runs, 100 generations each with 200 individuals.
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Figure 14. Results from the optimization of the Dette & Pepelyshev function

It is noticeable how all methods considered performed well in this example, especially the one
using the Adaptive Scaling. This time, both Nakayama’s proposition and the 5-FCV did achieve values
greater than 1.0, contrasting with the values found in Fig. 13(b), which also deals with an 8D function.
It is interesting to note that, in this case, the dmax, from Eq. (9), is a good enough parameter to assist
Nakayama’s formulation in representing the behavior of the function.

5.4 Strength maximization of a rectangular plate

This example was optimized for the first time by Kogiso et al. [31] and refers to a load factor
maximization of a simply supported laminated rectangular plate (0.508 m x 0.127 m) subjected to biaxial
compression. The thickness of each ply is 0.127 mm and the problem is said to contain many local
minima and maxima. In this version, the ratio between Nx and Ny was considered as 0.125. The failure
load must be maximized, considering the Maximum Strain Criterion as:

λs = mink

(
min

(
εu1

Sf |εk1|
,

εu2
Sf |εk2|

,
γu12

Sf |γk12|

))
. (17)

where Sf is the Safety factor (considered as 1.5). The buckling load factor (λb) is evaluated as proposed
by Reddy [32]:
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λb =
D11

(p
a

)4
+ 2(D12 + 2D66)

(p
a

)2 (q
b

)2
+D22

(q
b

)4
(p
a

)2
Nx +

(q
b

)2
Ny

. (18)

where p and q are the number of half-waves in each of the axis. To stipulate these values, 20 values
(ranging from 1 to 20) of each one are tested, and the minimum value of λb found is used.

This problem has 48 plies and the variables are the ply orientations, ranging from 0 to 90 degrees
in increments of 45. As the laminate is balanced and symmetric, there are 12 design variables. One
constraint is also applied to limit the maximum number of contiguous plies to cpmax = 4. This way, the
optimization process of this problem may be represented by:

Find x = [θ1, θ2, ..., θ12].

that maximize min(λb, λs).

such that Max contiguous plies ≤ cpmax.
(19)

The properties of the material are show in Table 2. Even though Kogiso et al. [31] states that the
minimum has a λ = 13518.7 kN , local optimization using the High Fidelity Model found the value of
λ = 13535.1kN [33, 34], which will be considered for this example.

Table 2. Properties of the material used (Graphite-epoxy)

E1 (GPa) E2 (GPa) G12 (GPa) ν12 εu1 εu2 γu12

130.71 6.36 4.18 0.32 0.008 0.029 0.015

Figure 15(a) depicts the results found using all methods considering 10 runs, 20 generations each
and 100 individuals. Due to the bad results found in both Uniform and Non-Uniform Kitayama, 15(b)
excludes these two methods and depicts the other results, using a better scaling factor.

0

0.2

0.4

0.6

0.8

1

NAK UKIT KIT ASKIT LOOCV 10-FCV 5-FCV

(a) All methods

0.95

0.96

0.97

0.98

0.99

1

NAK ASKIT LOOCV 10-FCV 5-FCV

(b) Excluding both UKIT and KIT

Figure 15. Normalized results for strength maximization of a rectangular plate problem

The use of Adaptive Scaling did greatly improve the proposal by Kitayama and Yamazaki [19] in
this example. As a matter of fact, it showed the best results over all methods, in general. However, all
methods shown in Fig. 15(b) have achieved excellent results. Comparing the σ values of each method
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in Fig. 16, it seems that Uniform Kitayama underestimates the value, which is much lower than the one
found by the other methods. This trend has happened in most other examples, although only now this
has resulted so negatively on the results.
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Figure 16. Width values used for the strength maximization of a rectangular plate problem

6 Conclusion

A comparison between some of the most used width-defining methods for Gaussian kernels on Ra-
dial Basis Function was performed in this paper. The main goal of this work is to aid future researchers
on choosing the best method to suit their own needs by assessing the RBF performance using differ-
ent methods, including simple analytical propositions [17, 19] and cross-validation methods, such as
LOOCV and k-FCV.

The optimal σ vector is directly related to the function to be optimized. This way, by suggesting
estimates without considering this aspect, it may seem that the analytical propositions would present a
poor performance. However, on most functions tested, this was not the case. The closed-form expression
resulted in performances close to those obtained by the cross-validation methods with a much lower cost.

That being said, both the 5-FCV and the proposition presented on Nakayama et al. [17] should
be highlighted due to their excellent results. It is interesting to note that the former, while performing
at a much lower cost, did not show any significant difference from the 10-FCV or the LOOCV, even
though these should provide better predictions. If the user is performing a low-budget optimization, the
analytical methods will likely provide very solid results. However, if the cost of the problem relies solely
on the High Fidelity Model analysis, it might be wiser to perform the 5-FCV.

The proposal by Kitayama and Yamazaki [19] using the Adaptive Scaling also presented good re-
sults on high dimensional problems. However, it should be used carefully, due to the poor results found
in lower-dimensional functions where σ values should be lower than 1.0. Moreover, the criticism of the
same author on the method proposed by Nakayama et al. [17] seems to have a basis in facts. However, in
many examples, this turned out to be a problem since the parameter was actually being underestimated.
The use of an intermediate approach might improve the results, even though it is impossible to propose
an analytical approach that performs optimally for all types of problems.

Finally, it is easy to perceive how, in most examples, the σ values picked by cross-validation methods
remain constant for a large number iterations, especially on later generations. That way, users could
perform a better study over the search domain used in these methods. This paper followed the proposition
made by Sobester et al. [14], searching σ values over the domain [10−2, 10]. However, this might be too
wide as it probably was for most functions used in this paper. By proposing a better search domain, the
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user may achieve better predictions and lower the time consumption. Another interesting approach is that
it is probably not necessary to measure these methods in every generation since it might not be efficient
due to their cost. This way, users might be able to exploit previous assessments multiple times in order
to achieve better computational efficiency. Implementations and testing over this matter are underway.
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[31] Kogiso, N., Watson, L. T., Gürdal, Z., & Haftka, R. T., 1994. Genetic algorithms with local im-
provement for composite laminate design. Structural Optimization, vol. 7, n. 4, pp. 207–218.

[32] Reddy, J. N., 2004. Mechanics of laminated composite plates and shells: theory and analysis. CRC
Press.

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.

Natal/RN, Brazil, November 11-14, 2019



Comparative study on width-defining methods for RBF

[33] Barroso, E. S., 2015. Análise e otimização de estruturas laminadas utilizando a formulação iso-
geométrica. PhD thesis, Universidade Federal do Ceará.
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