

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC,

Natal/RN, Brazil, November 11-14, 2019.

TRAJECTORY PIECEWISE LINEARIZATION (TPWL) USING THE
MATLAB RESERVOIR SIMULATION TOOLBOX (MRST) FOR
RESERVOIR SIMULATION

Andresa Dornelas de Castro
Alexandre de Sousa Júnior
Bernardo Horowitz
andresa_dornelas@hotmail.com
souza.alexandrejr@gmail.com
horowitz@ufpe.br
Federal University of Pernambuco
Av. Prof. Moraes Rego,1235-Cidade Universitária, Zip Code: 50670-901, PE, Recife, Brasil

Abstract. The goal of the present work is to show the Trajectory Piecewise Linearization (TPWL)
procedure for modeling of two-phase flow in subsurface formations, using the Matlab Reservoir
Simulation Toolbox - MRST for reservoir simulation, developed by SINTEF Digital. In this work we
will show how MRST can be used to simulate black-oil models using automatic differentiation to
compute the Jacobian matrices required for the nonlinear Newton-type solver. In automatic
differentiation (AD) the key idea is to keep track of quantities and their derivatives simultaneously:
every time an operation is applied to a quantity, the corresponding differential operation is applied to
its derivative. Thus, MRST-AD allows the fully-implicit nonlinear pressure equation, using a discrete
operators and equations simulator, to compute automatically the correct Jacobian for black-oil system.
In general, the simulator code presented in automatic differentiation black-oil module (ad – blackoil)
is modified to export the necessary data to build the TPWL procedure. This is known as semi-intrusive
methodology, since it requires knowledge of the simulator code, but the changes do not affect the
equations solutions. The Trajectory Piecewise Linearization (TPWL) procedure reduces the numerical
complexity of the problem by performing the linearization of governing equations around converged
states stored during a training simulation. Therefore, we will show implementation of TPWL after
getting the system states (pressure and saturation) and the derivatives of residual equation from the
MRST. The method is shown to be accurate in the neighborhood of the training trajectory.

Keywords: Matlab Reservoir Simulation Toolbox, Trajectory Piecewise Linearization, Reservoir
Simulation.

TPWL using MRST for reservoir simulation

CILAMCE 2019
Proceedings of the XLIbero-LatinAmerican Congress on Computational Methods in Engineering, ABMEC,

Natal/RN, Brazil, November 11-14, 2019

1 Introduction

 Each day it is possible to realize the importance of the need to use reliable computational
modeling and simulation for a correct prediction of subsurface or underground flow. In the present
work the numerical simulation will be applied in oil and gas reservoirs, specifically in porous oil and
water saturated media.

Currently, one of the best known and widely used open access simulators is the MATLAB
Reservoir Simulation Toolbox – MRST. MRST was primarily developed by SINTEF Digital and has
been published online as a free open-source code for reservoir modelling and simulation under the
GNU General Public License since 2009. MRST is not essentially a simulator, but is mainly intended
as a toolbox for rapid prototyping of models and demonstration of new simulation methods and
modeling concepts.

Different modules provide different simulators for incompressible or compressible fluid with
various discretization possibilities (Two-Point Flux Approximation (TPFA), Multi-Point Flux
Approximation (MPFA), mimetic and others), allowing the use of upscaling techniques or special
models such as geomechanics and fractured reservoirs. For these reasons, MRST will be used in this
work as a simulation tool.

Thus, in this article, after a brief theoretical and mathematical foundation regarding the reservoir
simulation, the MRST framework will be presented, approaching its main basic features for model
generation, emphasizing specifically in solvers presented in ad-blackoil module.

Like most commercial simulators based on a black-oil formulation, MRST provides a fully
implicit simulator, offering unconditional stability for a wide range of flow regimes and reservoir
heterogeneities. In addition, fully implicit formulation is combined with automatic differentiation,
ensuring simple extension of basic flow models. Using numerical routines and MATLAB
vectorization combined with MRST differential discrete operators, the model equations can be
implemented very compactly and close to the mathematical formulation.

MATLAB is efficient and fully comparable with compiled languages. Tests on two- and three-
phase models with the order of ten to hundred thousand cells show that MRST simulators based on
automatic differentiation are between two and ten times slower than fully optimized commercial
simulator (BAO et al., 2017).

After understanding the structure of MRST we will export the necessary information for the
implementation of Trajectory Piecewise Linearization (TPWL) procedure for modeling of two-phase
flow in subsurface formations. This technique reduces the complexity of the problem by linearizing its
governing equations.

 In this methodology a nonlinear system is represented as a weighted combination of piecewise
linear systems. A key feature of the TPWL method is that during subsequent simulations it linearizes
around one or more states selected from a large collection of snapshots. New states are represented in
terms of piecewise linear expansions around previously simulated (and saved) states and Jacobian
matrices. (CARDOSO, 2009)

This article starts by describing the equations and the standard finite volume discretization for
two-phase flow, followed by a discussion about the MRST-AD and TPWL technique. Finally it is
presented a initial test for the described and implemented methodology.

2 Reservoir Simulation

This section starts by presenting an outline the flow equations for a general black-oil model.
Then, the governing equations and the discretized system for oil-water flows are described, since, in
the present work, the intention is to apply TPWL in MRST for two-phase flow.

A.D. Castro, A.S. Junior, B. Horowitz

CILAMCE 2019
Proceedings of the XLIbero-LatinAmerican Congress on Computational Methods in Engineering, ABMEC,

Natal/RN, Brazil, November 11-14, 2019

2.1 The black-oil model

For reservoir simulation purposes, one normally uses either so-called Black-Oil fluid description,
or compositional fluid description. For now, it will be considered the Black Oil model. The term
“black-oil” refers to the fluid model, in which water is modeled explicitly together with two
hydrocarbon components, oil and gas. This is in contrast with a compositional formulation, in which
each hydrocarbon component (arbitrary number) is handled separately.

At reservoir conditions, the two components (oil and gas) can be partially or completely dissolved
in each other, depending on the pressure, forming a liquid phase and a gaseous phase. In addition,
there is an aqueous phase, which herein it is assumed to be consisted by only water. The
corresponding continuity equations are described as it follows:

   t w w w w w wb s b v b q 0       . (1)

     t o o g v g o o g v g o o g v gb s b r s b v b r v b q b r q 0          . (2)

     t g g o s o g g o s o g g o s ob s b r s b v b r v b q b r q 0          . (3)

Where  is the porosity of the rock while s denotes saturation, p is a phase pressure, q is
the volumetric source, for phase α (w, o, g) respectively, and b is the inverse formation-volume
factor, which measure the ratio between the bulk volumes of a fluid component occupied at surface
and reservoir conditions. Furthermore, it is defined the gas-oil ratio sr and oil-gas ratio vr , which
measure the volumes of gas dissolved in the oleic phase and oil vaporized in the gaseous phase,
respectively.

At last, the phase fluxes v are given from Darcy’s law, defined by Eq. (4):

  , ,          v K p g z o w g . (4)

Here, K is the absolute permeability of the reservoir rock, while kr     is the mobility of
phase , wherekr is the relative permeability and  is the phase viscosity.

We can also specify the q by the well equation, presented below.

    bhq WI p p . (5)

Where p is the reservoir pressure, bhp is the bottom-hole pressure and W I is the well index.
The model is closed by assuming that the fluids fill the pore space completely, 1  o w gs s s ,

and by supplying saturation-dependent capillary functions that relate the phase pressures. Then, the
equation system will have three primary unknowns.

2.2 Oil-Water Flow Equations and Discretization

In this work, it is specifically studied the two-phase flow. In this case, from Eq.(1) to Eq.(4), the
model system is described by equations (6) and (7):

   t w w w w w w w wb s b K p g z b q 0              . (6)

   t o o o o o o o ob s b K p g z b q 0              . (7)

The general two-phase flow description is completed through the saturation constraint
 w os s 1  and by specifying a capillary pressure relationship by c W o wp (s) p s  .

The two-phase flow description entails four equations and four unknowns (po, pw, So, Sw). po and
Sw are selected as primary unknowns. Once these are computed, pw and So can be readily determined
from the capillary pressure relationship and saturation constraint.

We now briefly discuss the finite volume representation for Eq.(6) and Eq.(7). For the discretized
models, we consider logically Cartesian systems (meaning blocks follow a logical i, j, k ordering)
containing a total of Nc grid blocks. Figure 1 shows a portion of a one-dimensional grid. For

TPWL using MRST for reservoir simulation

CILAMCE 2019
Proceedings of the XLIbero-LatinAmerican Congress on Computational Methods in Engineering, ABMEC,

Natal/RN, Brazil, November 11-14, 2019

simplicity, here capillary pressure and gravitational effects are neglected, so po = pw. It is also
considered horizontal flow in the x-direction, assuming that the grid block dimensions (Δx, Δy, Δz)
are constant and adopting the incompressible case, which density does not vary with pressure and bα =
1. In addition to that, it is applied fully implicit discretizations, usually used in commercial simulators.

Figure 1. Portion of a one-dimensional grid. Source: (CARDOSO, 2009)

The first term in Eq.(6) and Eq.(7) represents mass accumulation, discretely, it can be represented
by:

     n 1 n

t

1
b s b s b s

t


     

       
. (8)

Where subscript  indicates phase, superscript n is the time step and n + 1 specifies the next time
step. For the mentioned case, incompressible systems is constant and bα = 1, Eq.(8) is reduced by:

     n 1 n

t b s s s
t


   

      
. (9)

 The first term in Eq.(6) and Eq.(7) represents flow terms, its discretized form is given by:

      n 1 n 1n 1 n 1 n 1 n 1
i 1 i i 1 ii 1/2 i 1/2

p 1
b K p K T (p p) T (p p)

x x V

    
        

                    
� (10)

 Where i designates grid block and V x y z    is the volume of grid block i. The
transmissibility

 n 1

i 1/2
T


  relates flow in phase to the difference in pressure between grid blocks i-

1and i given by:

   1 1

1/2 1/2
1/2

 

 


    
n n

i i
i

KA
T b

x   . (11)

Where A y z   is the area of the common face between blocks i-1 and i. The transmissibility
 n 1

i 1/2
T


 

 is defined the same way. In Eq. (11) i 1/2K  is computed as the harmonic average of i 1K  and

iK , and   1

1/2





n

i
b kr   is upwinded depending on the flow direction of phase j.

The last term in Eq.(6) and Eq.(7) represents source/sink term. In reservoir simulation, the
source/sink correspond to wells which are modeled using well equation [Eq.(5)]:

       1 1 1 1   
        n n n n

bh ii i i
q q V WI p p . (12)

Where  n 1

i
q


 is the volumetric flow rate of phase  from block i into the well (or vice versa) at

time n+1, n 1
ip  is grid block pressure at n+1, bhp is the bottomhole pressure for well w in grid block i,

and WI is the well index, described using a standard Peaceman type well model.
Introducing the discretizations presented in Eqs. (8) through (12), the discretized fully implicit

version of Eqs. (6) and (7) for incompressible systems can be expressed as (K. Aziz and A. Settari,
1986):

 n 1 n 1 n 1 n 1 n n 1g T x D x x Q 0         . (13)

A.D. Castro, A.S. Junior, B. Horowitz

CILAMCE 2019
Proceedings of the XLIbero-LatinAmerican Congress on Computational Methods in Engineering, ABMEC,

Natal/RN, Brazil, November 11-14, 2019

Where g is the residual vector one seeks to drive to zero, x is the state vector that contains the two
primary unknowns (po and Sw), T is a block pentadiagonal matrix for two-dimensional grids and a
block heptadiagonal matrix for three-dimensional grids, D is a block diagonal matrix, and Q represents
the source/sink terms expressed by Eq. (12). Note that the time level is designated by the superscript n
or n + 1. The term n 1 n 1T x  represents transport (flow) effect obtained from Eq. (10) while the

 n 1 n 1 nD x x   term represents accumulation derived by Eq. (8). The matrices T, D and Q depend on
x and must be updated at each iteration of every time step.

Eq. (13) represents a nonlinear set of algebraic equations and is solved by applying Newton’s
method to drive g to zero:

J g   . (14)

Where J is the Jacobian matrix given by ij i jJ g x   and n 1,v 1 n 1,v
i i ix x     with v and v +1

indicating interation level.

3 Matlab Reservoir Simulation Toolbox (MRST)

The formulation presented in the previous section is be solved using a simulation toolbox, called
Matlab Reservoir Simulation Toolbox (MRST).

The MRST was initially developed by SINTEF Digital and does not properly consist of a
simulator, and can be understood more assertively as a toolbox for the demonstration of new
simulation methods and modeling concepts. MRST has a variety of data structures and computational
methods of its own that can be combined to create different numerical examples and custom
simulation techniques. This paper aims to present the MRST and its application in the simulation of
the ad-blackoil model. To this end, first, it will presented the structure of the software and some its
functionalities.

3.1 Quick Overview of the Software

MRST is basically made up of two parts, as can be seen in the Figure 2. The essence of MRST is
a central module, called mrst-core, which contains a flexible grid structure and a number of grid
factory routines; routines for visualizing grids and data represented by cells and cell faces; basic
functionality for representing petrophysical properties, boundary conditions, source terms and wells;
computation of transmissibilities and data structures holding the primary unknowns; basic
functionality for automatic differentiation (AD); and various low-level utility routines that can be
applied to solve incompressible single and two-phase models on structured and unstructured grids.
These routines, present in MRST-core have been quite stable over many years and are generally well
documented in a format that follows the MATLAB standard.

The second and the largest part of the software consist of a set of add-on modules that extend,
MRST-core. These set of add-on modules offer more advanced models, solvers, viewers, and
workflow tools. All these modules are publicly available from the software’s webpage (MRST, 2019).

TPWL using MRST for reservoir simulation

CILAMCE 2019
Proceedings of the XLIbero-LatinAmerican Congress on Computational Methods in Engineering, ABMEC,

Natal/RN, Brazil, November 11-14, 2019

Figure 2. Organization of the Matlab Reservoir Simulation Toolbox - MRST (KROGSTAD, 2015).

In this work, we focus on the AD-OO family of modules rapid prototyping of fully implicit
simulators, that includes ad-core, which is object-oriented framework for solvers based on automatic
differentiation (MRST AD-OO) and ad-blackoil, that contains single-phase, two-phase and three-
phase, its solvers support source terms, boundary conditions and complex wells with changing
controls, production limits and multiple segments. The ad-blackoil module contains models for black-
oil equations that inherit all basic features from ad-core.

3.2 Grids

First, to understand the fully-implicit simulators developed in ad-blackoil module of the MRST, it
will be introduced the basic functionality for grids implemented in MRST-core.

To ensure interoperability among a wide variety of different grid types and computational
methods, grids are assumed to consist of a set of non-overlapping polyhedral cells, where each cell can
have a varying number of planar faces that match the faces of the cell’s neighbours. All grids are
stored in a general format in which are explicitly represented cells, faces and vertices and the
connections between cells and faces. Thus, MRST sacrificed some of the efficiency attainable by
exploiting special structures in a particular grid type for the sake of generality and flexibility. (Lie et
al, 2012). As a result, grid and also petrophysical properties are passed as input to almost all
simulation and workflow tools in MRST.

The grid structure in MRST is called G and contains three fields: cells, faces, and nodes. Each of
the nc cells corresponds to a subset of the nf faces, and each face to a set of edges, which again are
determined by the nodes.

The topology of the grid is defined using two mappings. The first maps a cell to the set of faces
that delimit this cell: F: {1… nc} {0,1}nf. In the grid structure G this is represented as an array called
G.cells.faces. The second mapping brings to a given face the two neighboring cells, N1, N2: {1… nf}
 {0… nc }, where 0 has been included to denote the exterior of the computational domain. In G, N1
is given by G.faces.neighbors (: ,1) and N2 by G.faces.neighbors(:,2). Figure 3 represents these two
mappings. The cell and face objects also contain geometrical properties like centroids, volumes, areas,
and normal vectors.

A.D. Castro, A.S. Junior, B. Horowitz

CILAMCE 2019
Proceedings of the XLIbero-LatinAmerican Congress on Computational Methods in Engineering, ABMEC,

Natal/RN, Brazil, November 11-14, 2019

MRST G.cells.faces
c F (C)
1 1
1 2
1 3
1 4
2 5
2 6
2 7
2 8
2 2
3 1

 

MRST G.faces.neighbors (: ,1) G.faces.neighbors (: ,2)
f N1 N2
1 3 1
2 1 2
3 1 8
4 9 1
5 4 2
6 2 5
7 2 6
8 2 7

  

Figure 3. Grid mappings. Source: (LIE,2016).

To implement computational algorithms on the grid, vectorized index operations in combination
with the mappings between cells and faces outline above are used. MRST contains several grid-factory
routines for creating structured grids, including regular Cartesian, rectilinear and curvilinear grids, as
well as unstructured grids, including Delaunay triangulations and Voronoi grids, and 3D grids created
by extrusion of 2D shapes, and support for the industry standard corner-point grids given by the
ECLIPSE input deck (LIE et al, 2012).A much more information about grid structure can be found in
(LIE, 2014), detailed descriptions of how to construct such grids from an input file, using one of the
many grid-factory routines that come with the software, or by writing your own grid-generation script.

3.3 Discrete operators

Even though discrete equations and all this associated information do not appear explicitly in
MRST and in many simulators, it is important to know its construction to assembly of TPWL. In this
section, it is shown how MRST builds abstract operators implementing powerful averaging and
discrete differential operators that enable to write the discrete flow equations, present in ad-blackoil
module, in a very compact form.

To form our discrete differential operators, two mappings presented in the previous section are
basically needed. The div operator is a linear mapping from faces to cells. If v[f] denotes a discrete
flux over face f with orientation from cell N1(f) to cell N2(f), then the divergence of this flux
restricted to cell c is given by Eq. (15).

1

f F(c) 2

1,se c N (f)
div(v)[c] sgn(f)v[f] sgn(f)

1,se c N (f)

  
     
 . (15)

The grad operator maps from cell pairs to faces. If, for instance, p denotes the array of discrete
cell pressures, the gradient of this cell pressure restricted to face f is defined as follows:

2 1grad(p)[f] p[N (f)] p[N (f)]  . (16)

If we assume no-flow conditions on the outer faces, the discrete gradient operator is the adjoint of
the divergence operator as in the continuous case. Furthermore, we define the transmissibilities that
describe the flow across a cell face f given a unit pressure drop between the two neighboring cells i
=N1(f) and k = N2(f). To this end, let Ai,k denote the area of the face, ni,k the normal to this face, and
ci,k the vector from the centroid of cell i to the centroid of the face. Then, the transmissibility is defined
as follows:

TPWL using MRST for reservoir simulation

CILAMCE 2019
Proceedings of the XLIbero-LatinAmerican Congress on Computational Methods in Engineering, ABMEC,

Natal/RN, Brazil, November 11-14, 2019

  1 , ,1 1
, , , , 2

,

,
  

    
i k i k

i k k i i k i k i

i k

c n
T f T T T A K

c

. (17)

Where Ki is the permeability tensor in cell i. Finally, to provide a complete discretization, it is
necessary to define averaging operators that maps rock and fluid properties from cells to faces. For
this, it is used arithmetic averaging, which in its simplest form can be written as follows:

      1 2

1
avg f q N f q N f

2         . (18)

3.4 Automatic differentiation in MRST

Automatic or algorithmic differentiation (NEIDINGER, 2010) is a technique that exploits the fact
that any computer code, regardless of complexity, can be broken down to a limited set of arithmetic
operations and evaluation of simple functions.

The key idea is to keep track of variables and their derivatives simultaneously; every time an
operation is applied to a variable, the appropriate differential operation is applied to its derivative.

 Consider a scalar primary variable x and a function f = f(x). Their AD-representations are the
pairs x,1 and xf , f where 1 is the derivate dx dx and fx is the derivative of f with respect to x.
Accordingly, the action of the elementary operations and functions must be defined for such pairs,
e.g., x x x xf , f g,g f g,f g    or x x x xf , f g,g f g,f g f g      . In addition, one needs to
use the chain rule to accumulate derivatives, that is, if     f x g h x , then    x xf x dg dh h x  .
This summarizes the key idea behind automatic differentiation: writing the formulas and specifying
the independent variables, the software computes the corresponding derivatives or Jacobians.

To implement AD in Matlab, it is used the operator overloading. When Matlab encounters an
expression of the form a+b, the software will choose one out of several different addition functions
depending on the data types of a and b. Therefore, all one needs to do is to introduce new addition
functions for the various classes of data types that a and b may belong to.

Automatic differentiation in MRST use a list of matrices that represent the derivatives with
respect to different variables that will constitute sub-blocks in the Jacobian of the full system, instead
of working with a single Jacobian of the full discrete system as one matrix. (KROGSTAD, 2015)

Now, we have all the necessary tools to implement a fully-implicit simulator for the nonlinear
pressure equation. The key parts of the implementation are: initialization, creation of discrete
operators, specification of constitutive functions, specification of discrete equations, and setup and
solution of the linearized system inside the time loop. A complete example, including all code lines
necessary to generate grid, petrophysical parameters, and well positions, is given in Lie (2014).

3.5 Discrete Flow equations for black-oil model in MRST

The techniques outlined above are basically everything which it is needed to efficiently
implement fully-implicit simulators. The most widely used fluid model in reservoir simulation is the
black-oil family, which contains three components and the three phases: water, oil, and gas.

The discrete operators defined in section 3.3 can be used to discretize the flow equations in a very
compact form. If we use a first-order, implicit temporal discretization and a standard two-point spatial
discretization with upstream weighting like present in section 2.2, the discrete conservation for the
aqueous phase (Eq. (1)) can be written as

                     n 1 n n 1n 11 1
c b c s c c b c s c div bv c b c q c 0

t t

      
  . (19)

where we have omitted the subscript 'w' for brevity. To evaluate the product of the inverse
formation-volume factor and the phase flux at the cell interfaces, the operator for extracting the
upstream value are introduced in MRST:

A.D. Castro, A.S. Junior, B. Horowitz

CILAMCE 2019
Proceedings of the XLIbero-LatinAmerican Congress on Computational Methods in Engineering, ABMEC,

Natal/RN, Brazil, November 11-14, 2019

  
          

 
1

2

h N f if grad p f -g avg f grad z f 0,
upw h f

h N f , otherwise.


          

    
 (20)

Then, the discrete version of Darcy's law multiplied by bw is

                 bv f upw b f T f grad p f g avg f grad z f      . (21)

Similarly it is done to get the discrete conservation equations for oleic, and gaseous phases. These
equations along with the well equations - all written on residual form – results in a system of nonlinear
equation as

 R x 0 . (22)

Where x is the vector of unknown state variables at the next time step. The standard way to solve
such a nonlinear system is to use Newton's method. That is, we write x = x0 + Δx, and use a standard
multidimensional Taylor expansion to derive the iterative scheme,

 i i 1 i iJ(x) x x R(x)    . (23)

Where J dR dx is the Jacobian matrix of the residual equations.

3.6 Object-oriented implementation in MRST

The discrete equations described above are present in the function called equationsBlackOil from
the ad-blackoil module.

As exposed by Bao et al. (2017), in all their generality, black-oil models can be very
computationally challenging. To ensure that saturations stay within their physical bounds, each
Newton update needs to be accompanied by a stabilization method that either crops, dampens, or
performs a line search along the update directions. Likewise, additional logic is needed to map the
updated primary variables back to a consistent reservoir state, switch primary variables as phases
appear or disappear, trace changes in fluid components to model hysteretic behavior, etc. To get a
robust simulator, it is also need to introduce sophisticated time-step control that monitors the iteration
and cuts the time step if this is deemed necessary to improve convergence. And finally, it is also need
procedures for updating the well controls in response to changes in the reservoir state and the injection
and production of fluids. Introducing all this functionality in a procedural code is possible, but can
easily give unwieldy code. A lot of this functionality is also to a large degree generic and can be
reused from one model/simulator to another.

This motivated the development of an object-oriented AD framework in ad-core module that
enables the user to separate physical models and reservoir states, nonlinear solvers and time loops,
discrete flow equations and linearizations, and linear solvers like exposed in Figure 4. Notice that
various classes, structures, and functions can be organized to formulate an efficient black-oil
simulator.

Also note that assembly of the linearized system is due to a special class that stores meta-
information about the residual equations (i.e., whether they are reservoir, well, or control equation)
and the primary variables. In the case of oil and water flow, this class is called TwoPhase
OilWaterModel. This information is useful when setting up strategies that utilize structures in the
problem.

TPWL using MRST for reservoir simulation

CILAMCE 2019
Proceedings of the XLIbero-LatinAmerican Congress on Computational Methods in Engineering, ABMEC,

Natal/RN, Brazil, November 11-14, 2019

Figure 4. Overview of how components in the object-oriented AD framework are organized to implement
a black-oil simulator. The different components are colorized by the type of the corresponding

construction. (BAO et al, 2017)

In summary, at first, it is defined the initial reservoir model grid, petrophysical parameters and
fluids information which together constitute the model reservoir class. Initial states of the reservoir are
attributed, and wells and their schedules are set up, which provides time step and controls. All this
information is passed as input to the simulator, called simulateScheduleAD. Within the simulator, there
are classes and functions that will be used in order to determine the reservoir state and the wells
solutions for each time step.

4 TPWL for Subsurface Flow

In this section, it is briefly explained the Trajectory Piecewise Linearization (TPWL) procedure
for subsurface flow problems, specifically to two-phase flow presented in section 2.2. Additional
information can be found at Cardoso (2009). The governing equations and discretizations are
specified by Eqs .(6) e (7). The discrete system is given by Eq. (13) can be written here as:

n 1 n 1 n 1 n 1 n n 1 n 1g(x ,u) F(x) A(x ,x) Q(x ,u) 0         . (24)

Where g represents the residual vector, which one seeks to drive to zero, x designates the system
states (pressure and saturation), u indicates the system controls (well BHPs), n 1 n 1 n 1F(x) T x   and
   n 1 n n 1 n 1 nA x ,x D x x     , and Q represent the flow, accumulation and source/sink terms,

respectively.
As shown in section 2.2, Eq. (24) represents a nonlinear fully implicit system that is solved by an

application Newton’s method to drive g to zero.

4.1 Linearization of Governing Equations

Linearized models can be constructed through use of a Taylor series expansion around a
previously converged and stored state and the respective control vector. These states are saved from
preprocessing ‘training’ simulations. The key idea of TPWL is linearizing the model around

A.D. Castro, A.S. Junior, B. Horowitz

CILAMCE 2019
Proceedings of the XLIbero-LatinAmerican Congress on Computational Methods in Engineering, ABMEC,

Natal/RN, Brazil, November 11-14, 2019

previously converged states (snapshots) saved during previously simulated training runs and,
therefore, it replaces the simulation by a simple sequence of linear system solutions based on the
physics of the problem.

Analyzing Eq.(24), it is known that g is a function of solution at time step (xn+1), previous states
vector (xn) and the set of controls, which are specified (un+1). Thus, storing the converged state vectors
(xi + 1, xi) during a training simulation and the respective control vector ui + 1, Taylor series expansion of
residual equation is applied, around these memorized states, as indicated by Eq.(25):

         
i 1 i 1 i 1

n 1 n n 1 i 1 i i 1 n 1 i 1 n i n 1 i 1
i 1 i i 1

g g g
g x , x ,u g x , x ,u x x x x u u

x x u

  
       

 

       
                  

 (25)

Note that superscript i represents a time step of a training simulation, where the derivatives,
states, and controls used were converged and saved, and superscript n represents the time steps of a
new simulation, considering the same initial state, but other controls. (MACHADO, 2014)

From Eq.(25), the term  i 1 i i 1g x ,x ,u 0   , since the residue was previously converged during the
training simulation. The derivatives in Eq. (25) can be simplified as shown in Eq.(26), (27) and(28).

i 1
i 1

i 1

g
J

x










. (26)

i 1 i 1

i i

g A

x x

  


 
. (27)

i 1 i 1

i 1 i 1

g Q

u u

 

 

 


 
. (28)

The Eq.(26) is the Jacobian considered in Newton-Raphson method to solve the non-linear
model. By definition, the Jacobian matrix is the derivative of the residual in relation to the state.

To write the other equations one we need analyze the residual as presented in Eq.(24) and
consider the fact that the derivative with respect to the previous time  i 1 ig x  only depends on the
accumulation term  i 1 iA x ,x and the derivative with respect to the control  i 1 i 1g u   will appear
only in the term source  i 1 i 1Q x ,u  .This results in TPWL equation as expressed in Eq. (29).

     
i 1 i 1

i 1 n 1 i 1 n i n 1 i 1
i i 1

A Q
J x x x x u u

x u

 
    



  
        

. (29)

Thus, for TPWL implementation, the following should be exported from the training simulation:
i 1 i i 1 i 1 i 1 i i 1 ix , x , u , J , A x , Q u           .

Note that states, control and all derivatives are provided during the Jacobian computation in the
full implicit formulation except the derivative ∂Ai+1/∂xi. However, it can be calculated in terms of
accumulation derivative with some step-size correction by the expression in Eq. (7). This correction is
obtained by multiplying ∂Ai/∂ xi , available in the Jacobian calculation, by the ratio between the step
size of the previous stored timestep Δti and the step size of the current one, Δti+1. (MACHADO, 2014)

i 1 i i

i i 1 i

A t A

x t x





  
 

  
. (30)

5 TPWL at MRST

 After understanding the MRST and the TPWL technique, it is possible to join both of them to
provide a numerical complexity reduction technique in a free and open access simulation tool. Due to
the extension and complexity of the complete black oil simulator code in MRST, in this section, it will
only briefly present some relevant points to the implementation of TPWL.

TPWL using MRST for reservoir simulation

CILAMCE 2019
Proceedings of the XLIbero-LatinAmerican Congress on Computational Methods in Engineering, ABMEC,

Natal/RN, Brazil, November 11-14, 2019

First, as presented in section 3 , one must provide the simulator (called simulatescheduleAD) with
the initial state, schedule, and model. For the two-phase flow, the generated model, belonging to the
PysicalModel class is called TwoPhaseOilWaterModel. This class incorporates the equationsOilWater
function where discrete water and oil equations are created as expressed in section 3. In this function,
the term referring to the accumulation is first created, then the terms referring to the wells and sink
sources are incorporated and finally the term referring to the flow is added. It is important to highlight
that as the variables are defined in the ADI classes, all operations performed result in the value
determination and its derivation simultaneously. Thus, when writing the discrete equations, the parts
of the Jacobian matrix are already being assembled which is composed of sub-blocks. From the
assembled water and oil equations, the PysicalModel class calls the LinearizedModel function, where
it is explicitly seen the Jacobian matrix and the residual vector. Newton's increment is obtained in the
BackslashSolverAD. A summary of what is described is given in the code snippets present in Figure 5
and the Jacobian matrix sub-blocks are presented in Figure 6 .

%% Simulate base case
[wellSols, states,report] = simulateScheduleAD(state0, model, schedule);

% EQUATIONS OIL WATER ---

function [problem, state] = equationsOilWater(state0, state, model, dt,
drivingForces, varargin)
% Conservation of mass for water
water = (s.pv/dt).*(pvMult.*bW.*sW - pvMult0.*bW0.*sW0);
% Conservation of mass for oil
oil = (s.pv/dt).*(pvMult.*bO.*sO - pvMult0.*bO0.*sO0);
eqs = {water, oil};
% Add in and setup well equations
[eqs, names, types, state.wellSol] = model.insertWellEquations(eqs, names,
types, wellSol0, wellSol, wellVars, wellMap, p, mob, rho, {}, {}, dt,
opt);
% Add in fluxes
eqs{1} = eqs{1} + s.Div(bWvW);
eqs{2} = eqs{2} + s.Div(bOvO);

% LINEARIZED PROBLEM ---
classdef LinearizedProblem
function problem = assembleSystem(problem)
% Assemble the linear system from the individual Jacobians and residual
functions.
iseq = cellfun(@(x) ~isempty(x), problem.equations);
eqs = combineEquations(problem.equations{iseq});
% Jacobian Matrix
problem.A = eqs.jac{1};
% Residues
problem.b = -eqs.val;

% BACKSLASHSOLVERAD ---
classdef BackslashSolverAD < LinearSolverAD
 % Linear solver that calls standard MATLAB direct solver mldivide "\"
function [result, report] = solveLinearSystem(solver, A, b)
 result = A\b;

Figure 5. MRST code snippets (MRST, 2019)

A.D. Castro, A.S. Junior, B. Horowitz

CILAMCE 2019
Proceedings of the XLIbero-LatinAmerican Congress on Computational Methods in Engineering, ABMEC,

Natal/RN, Brazil, November 11-14, 2019

Figure 6. Illustration of the structure of the linearized black-oil equations and all the different sub-
Jacobians that make up. (Krogstad, 2015)

After understanding MRST AD-Black-Oil Simulation, the Jacobian matrix was incorporated in
the report, as well as the separate terms referring to the derivative of the accumulation term ∂Ai/∂xi
and derived from the source term in relation to the control ∂Qi/∂ ui. The matrix of the derivative of the
accumulation term with respect to previous time (∂Ai+1/∂xi) is obtained as described in section 3. In
addition to the matrices, the training simulation states and schedule are saved, allowing access to time
step information and controls. Provided with this information it is possible to implement TPWL, as
presented in section 4.

6 NUMERICAL EXAMPLES

It will be shown, in this section, the application of the TPWL procedure to an illustrative reservoir
simulation model in order to test the implementation of this technique and demonstrate its ability to
provide accurate predictions for cases that differ from the initial training simulation.

The simple simulation model, shown in Figure 7, is a three-dimensional and contains a total of
4,500 grid blocks (with nx=30, ny=30 and nz=5, where nx, ny and nz designate the number of grid
blocks in the corresponding coordinate direction). There is an injector well and a producer well,
arranged in the configuration of quarter of five spot.

The mean permeability and porosity are constant, defined as 100 mD and 0.20 respectively. The
initial oil and water saturations are 0.8 and 0.2 respectively and the residual oil (Sor) and water (Swr)
saturations are 0.2. The relative permeability for the oil and water phases is defined by Corey model
with Corey exponent value 2 for both. For oil we set ρo= 859 kg/m3, μo = 5.0 cp, for water, ρw= 1014
kg/m3, μw = 1.0 cp. The system is incompressible and capillary pressure effects are neglected.

TPWL using MRST for reservoir simulation

CILAMCE 2019
Proceedings of the XLIbero-LatinAmerican Congress on Computational Methods in Engineering, ABMEC,

Natal/RN, Brazil, November 11-14, 2019

Figure 7. Simple and illustrative reservoir simulation model

The mean permeability and porosity are constant, defined as 100 mD and 0.20 respectively. The
initial oil and water saturations are 0.8 and 0.2 respectively and the residual oil (Sor) and water (Swr)
saturations are 0.2. The relative permeability for the oil and water phases is defined by Corey model
with Corey exponent value 2 for both. For oil we set ρo= 859 kg/m3, μo = 5.0 cp, for water, ρw= 1014
kg/m3, μw = 1.0 cp. The system is incompressible and capillary pressure effects are neglected.

For the model described, a training run is performed using the high-fidelity model to generate the
states and Jacobian matrices. Then, it was simulated the reservoir performance for a total of 5 years
with a maximum time step of 30 days.

For training simulation injection well are prescribed to maintain constant bottom hole pressure
(BHP) of 2,000 psia. For the production well, the BHPs are prescribed to follow schedule that way it
varies every 365 days, randomly and independently, between 500 and 800 psia. Thus pressure and
saturation snapshots and Jacobian matrices were recorded, allowing TPWL running.

First, the ability of the TPWL representation (Eq.(29)) to reproduce results from the training
simulations is assessed by applying the BHP schedules used for training simulation. Figure 8 shows
the result. Note figures that the TPWL results for production well, depicted by circles, are in
essentially perfect agreement with the reference high-fidelity (MRST) solutions, depicted by solid
curves.

Finally, it is possible to test cases that differ from the initial training simulation. Thus, the
specification for producer BHP is changed randomly. Figure 9 shows that TPWL can also predict the
results in this case. Note that the closer the new control is to the training simulation, the better the
accuracy of the method. Defining the error by Eq. (31), the errors in oil rate and water production rate
are m

oE 0.0444 and m
wE 0.0267 , respectively.

m
tpwl hf

t hf

1
E Q Q

n Q
  . (31)

A.D. Castro, A.S. Junior, B. Horowitz

CILAMCE 2019
Proceedings of the XLIbero-LatinAmerican Congress on Computational Methods in Engineering, ABMEC,

Natal/RN, Brazil, November 11-14, 2019

(a) (b)

(c)

(d)

Figure 8. Production well resultes for training run and TPWL by applying the same BHP schedules

TPWL using MRST for reservoir simulation

CILAMCE 2019
Proceedings of the XLIbero-LatinAmerican Congress on Computational Methods in Engineering, ABMEC,

Natal/RN, Brazil, November 11-14, 2019

(a)
(b)

(c) (d)

Figure 9. Production well results for training run and TPWL by applying different BHP schedules

7 CONCLUSIONS

In this present paper, it is presented a brief description of the implementation of the Trajectory
Piecewise Linearization (TPWL) technique in Matlab Reservoir Simulation Toolbox – MRST.

The ad-black oil module with Automatic Differentiation (AD) allows the obtaining of Jacobian
matrices in a simpler way for TPWL implementation.

The TPWL is shown to be accurate in the neighborhood of the training trajectory. As a
continuation of this work, the method should be applied to more realistic models, in order to allow
further conclusions about its accuracy. When combined with Proper Orthogonal Decomposition
(POD), good speedups can be achieved by its application.

A.D. Castro, A.S. Junior, B. Horowitz

CILAMCE 2019
Proceedings of the XLIbero-LatinAmerican Congress on Computational Methods in Engineering, ABMEC,

Natal/RN, Brazil, November 11-14, 2019

Acknowledgements

The authors acknowledge the financial support for this research given by National Council for
Scientific and Technological Development (CNPq) and for supporting the development of this work.

References

[1] Bao, K.; Lie, K.-A; Møyner, O; Liu,M. Fully implicit simulation of polymer flooding with MRST.
Computational Geosciences, [s.l.], v. 21, n. 5-6, p.1219-1244, 2017.
[2] Cardoso, M. A. Development and Application of Reduced-Order Modeling Procedures for
Reservoir Simulation, 2009.
[3] K. Aziz and A. Settari. Fundamentals of Reservoir Simulation. Elsevier Applied Science
Publishers, 1986.
[4] Krogstad; Lie, K–A; Møyner, O.; Nilsen. H. M.= Raynaud, X.; Skaflestad, B., MRST-AD – an
Open-Source Framework for Rapid Prototyping and Evaluation of Reservoir Simulation Problems
Stein SINTEF ICT, Society of Petroleum Engineers, 2015.
[5] Lie, K.-A., Krogstad, S., Ligaarden, I. S., Natvig, J. R., Nilsen, H., and Skaflestad, B. 2012. Open-
source MATLAB implementation of consistent discretisations on complex grids. Computational
Geosciences, 16:297–322. doi: 10.1007/s10596-011-9244-4.
[6] Lie, K.-A. 2014. An Introduction to Reservoir Simulation Using MATLAB.
http://www.sintef.no/Projectweb/MRST/Publications/.
[7] LIE, K.-A. An Introduction to Reservoir Simulation Using MATLAB/ User Guide for the
MATLAB Reservoir Simulation Toolbox (MRST). Oslo (Norway): SINTEF ICT, Departement of
Applied Mathematics, 392 p., 2016.
[8] Machado, M. F. J. Aplicações de um modelo substituto de ordem reduzida a estudos de
gerenciamento de reservatórios de petróleo, 2014.
[9] MRST, 2019. The MATLAB Reservoir Simulation Toolbox, version 2019a. In
: https://www.sintef.no/projectweb/mrst/.
[10] Neidinger, R. 2010. Introduction to automatic differentiation and MATLAB object-oriented
programming. SIAM Review, 52(3):545–563. doi:10.1137/080743627.

