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Abstract. The design of cold-formed steel elements in flexure can be easily performed by the Direct 

Strength Method – a simplified alternative based on experimental data, in which the critical buckling 

bending moments are needed to assess the ultimate resistance of steel elements. Whereas numerous 

theoretical models are found in the literature to appraise local and distortional buckling loads, they’re 

usually based on simplifications and don’t provide their exact values so that different formulations 

conduct to different results. In this sense, through analyses based on the Finite Element and the Finite 

Strip Methods, this work seeks to numerically obtain local and distortional buckling loads of a cold-

formed U stiffened section bent about both principal axes and compare the results with those provided 

by the theoretical models. While numerical results have shown good agreement between them, with 

deviations less than 5% on mean, the analytical ones seemed to be conservative but not accurate when 

compared to the firsts, with deviations varying from 7% up-to 60%. 

Keywords: Cold-formed steel design; Direct strength method; Finite element method; Finite strip 

method, Local and distortional buckling.   
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1  Introduction 

The modernization in structural engineering and the new market demands for most efficient 

solutions in the last years highlighted the use of light steel structures in civil construction, which is 

owed to assemblage facilities and quality in the final product. Besides, the major advantage achieved 

is related to fabrication process, in which thin plates, with apparently no structural resistance, are 

stiffened where buckling can occur. Thus, the cold-formed steel (CFS) profiles are obtained from thin 

plates folding, whit thicknesses varying between 0.4 and 8.0 mm (ABNT NBR 14762 [1]), granting a 

good variety of shapes and an appropriate mass/resistance relation as well [2]. 

These structures are suitable for small and medium structures such as warehouses, roof structures, 

mezzanines and houses [3]. In addition, new solutions for composite slabs with cold-formed 

incorporated profiles have just arrived to the market, in which stiffened U sections usually act as 

formwork before concrete curing and can act as steel reinforcements after concrete curing. 

The design of cold-formed profiles, in this context, can be performed by three different methods, 

in accordance with different Design Codes, such as ABNT NBR 14762 [1], AZ/NZS 4006 [4] and 

AISI S100 [5]. The first one, the Effective Width Method, analyses the effectiveness of each part of 

the gross section subjected to the correspondent flexural stress (flanges, webs and stiffeners) in order 

to define the effective section and its effective properties [6]. This approach, on the other hand, leads 

to long and iterative calculations and does not provide a simple strategy to analyze distortional 

buckling. The second one, the Effective Section Method, was proposed by Batista [7] and considers an 

elastic buckling critical bending moment to calculate the cross section effective properties. The third, 

last and most simple one, the Direct Strength Method (DSM), suggests the use of experimental 

resistance equations to evaluate the ultimate resistance of elements in flexure, directly based on the 

gross cross section properties. Once this procedure considers three limit-states related to global, 

distortional and local buckling, these critical loads must be obtained to determine the reduced 

slenderness of steel elements and evaluate the ultimate resistance. 

The Brazilian National Code ABNT NBR 14762 [1] states that, when dealing with global 

buckling of cold-formed members in bending, the exact value of lateral-torsional critical moment can 

be straightly evaluated from analytical formulations. On the other hand, whereas numerous models are 

found in the literature to assess local and distortional critical moments, each model is based on 

different simplifications and assumptions so that values obtained with different formulations lead to 

different results. The ABNT NBR 14762 [1], for example, recommends the use of Elastic Stability 

Theory in the treatment of local and distortional buckling modes. 

Nonetheless, buckling analysis in cold-formed members is a quite deep and relevant field of 

research, since it directly impacts the design of steel elements under compression and bending in 

special when the Direct Strength Method is applied. In this sense, many researches worldwide have 

investigated the occurrence of local, distortional, global or coupled modes of buckling in CFS profiles 

under different conditions, such as Kown and Hancock [8], Schafer and Pekoz [9], Yu and Schafer 

[10,11], Kankanamge and Mahendran [12], Basaglia and Camotion [13] and Glauz [14]. Pala [15], 

who wrote the most noticed paper, proposed a new formulation to calculate the critical distortional 

stress using neural networks, being the results compared to different methods. 

In this sense, a comparative analysis based on numerical approaches is implemented in this paper, 

what helps dealing with local and distortional buckling in cold-formed beams. The Finite Element 

Method (FEM) and the Finite Strip Method (FSM) were selected and used to numerically obtain the 

critical loads for the issued buckling modes. Then, the accuracy of each selected theoretical model – 

ABNT NBR 14762 [1], AISI S100 [5], Hancock [16], Sharp [17] apud Hancock [16], Ellifritt et al. 

[18] and Douty [19] – could be determined. 
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2  Review of the literature 

In this topic, theoretical models for the assessment of critical buckling moments are presented, the 

basis for the comparative analysis performed afterwards. 

2.1 Local buckling 

When a CFS channel section, stiffened or not, is subjected to the action of a bending moment, 

each plate that composes webs, flanges or stiffeners behaves as a single element in bending and, thus, 

dislocates out of the cross-sectional plane. Although, the junction remains fixed in its original position. 

This phenomenon, understood as a consequence of plate flexure, is known as local buckling [20]. If 

the section is bent about the major inertia axis, compressing the flange or the flange and stiffener set, 

the out-of-plane observed displacements are a consequence of simply supported plates bending. 

Besides, plates with free edges that compose the stiffeners only suffer rigid body rotation, according to 

Figure 1a [21].  On the other hand, a rigid body rotation can be observed in the stiffeners and bending 

in the flanges when flexure happens about the minor axis, compressing the flange and stiffener set as 

well (Figure 1b). 

 

  
(a) (b) 

Figure 1. Cross section under local buckling: (a) bending about the major axis; (b) bending about the minor axis. 

Source: CUFSM 5.01 [22]. 

 

Two theoretical models for the determination of critical bending moments related to local 

buckling (𝑀𝑙) were selected, for both cases presented in Figure 1. Notice that 𝑊𝑐 indicates the elastic 

resistance modulus of the gross cross section about the bending axis. 

 

For flexure about the major axis of inertia: 

 

a) National Brazilian Code ABNT NBR 14762 [1], according to Eq. (1), where kl is the local 

buckling coefficient for the whole section, taken from Table 12 of ABNT NBR 14762 [1]; bw 

is the profile’s height; t is the plate thickness; E is the Young’s Modulus; and ν is the 

Poisson’s ratio, taken as 0.3. 

 

Ml = kl

π2E

12(1 − ν2) (
bw

t
)

2 Wc (1) 
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For flexure about the minor axis of inertia: 

 

a) North-American Code AISI S100 [5], according to Eq. (2), where σ_l is elastic buckling 

stress in respect of the extremely compressed plate (stiffener, web or flange). This parameter 

should be calculated in accordance with AISI S100 [5] annexes, whose procedure is too long 

to be presented in this paper. 

 

 

Ml = σlWc (2) 

2.2 Distortional buckling 

The distortional buckling mode, different from the local one, is only experienced by stiffened 

sections. The profile dimensions, specially related to flanges and edge stiffeners, are essentials to 

characterize the distortional buckling. The wider the flange is, higher are the probabilities to figure this 

mode as the critical one. Besides, elements made from steel plates with high resistance can also have 

the distortional mode as critical. 

In addition, Chodraui [23] points out that the distortional buckling in U stiffened sections is 

defined by the rotation and possible translation of compressed flange and stiffener set. In this case, 

only the edges not related to stiffener-flange junction remain in their original position, whichever is 

the bending axis (Figure 2). 

 

  
(a) (b) 

Figure 2. Cross section under distortional buckling: (a) bending about the major axis; (b) bending about the 

minor axis. Source: CUFSM 5.01 [22]. 

 

In the literature, there are different analytical models to calculate stresses or moments critical of 

distortional buckling. Five of them were selected and are presented in the sequence. Although, it’s 

important to state that all of these procedures are long and, hence, only a part summary of them is 

exhibited here. When only 𝜎𝑑𝑖𝑠𝑡 is provided, then 𝑀𝑑𝑖𝑠𝑡 = 𝜎𝑑𝑖𝑠𝑡  𝑊𝑐, where 𝜎𝑑𝑖𝑠𝑡 is the distortional 

buckling critical stress and 𝑀𝑑𝑖𝑠𝑡 is the distortional buckling critical moment. 

 

For flexure about the major axis of inertia: 

 

a) Hancock [16], according to Eq. (3), where 𝐸 is the Young’s Modulus; 𝐴𝑓 is the reduced 

section’s area; and 𝛼1, 𝛼2 and 𝛼3 are parameters that depend on the properties of reduced 

section. This model assumes the reduced section as the set formed by compressed flange and 

edge stiffener, replacing the web and web-flange junction by rigid support on the vertical 

direction and by elastic supports on the other directions. 

 

σdist =
E

2Af
[(α1 + α2) − √(α1 + α2)2 − 4α3] (3) 
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b) Sharp [17] apud Hancock [16], according to Eq. (4) and (5), where 𝑘𝜙 is the rotational elastic 

stiffness provided by the web-flange junction. This model, different from the previous one, 

considers no linear spring supports. 

 

σdist =

2√EIxfbf
2kϕ +

EJf

2(1+ν)

Ixf + Iyf + Af(x̅2 + y̅2)
 

(4) 

kϕ =
2Et3

5,46 (bw +
2

3
bf)

 (5) 

 

 

c) Ellifritt et al. [18], according to Eq. (6) and (7), where 𝑏𝑓 is the flange width; 𝑏𝑤 is the web 

width; 𝑡 is the plate thickness; 𝑓𝑦 is the steel yield stress, in ksi; and 𝑀𝑦 is the bending 

moment that causes yielding in the section extreme compressed fiber. 

 

X = (
bf

t
)

1,1

(
bw

D
)

0,4 fy

50
  (6) 

Mdist

My
= −

8X3

109
+

X2

105
− 0,0048X + 1,2685 (7) 

 

 

d) AISI S100 [5], according to Eq. (8), where k represent all the rotational stiffness in the web-

flange junction:  𝑘𝜙𝑓𝑒 – provided by the flange; 𝑘𝜙𝑤𝑒 – provided by the web; 𝑘𝜙 – provided 

by an external element connected to the flange;  𝑘̃𝜙𝑓𝑔  – required by the flange; and 𝑘̃𝜙𝑤𝑔 – 

required by the web. 

 

σdist =
kϕfe + kϕwe + kϕ

k̃ϕfg + k̃ϕwg

 (8) 

 

For flexure about the minor axis of inertia: 

 

a) Douty [19], according to Eq. (9), where the conventional distortional buckling stress should 

be calculated based on the transformed section, only formed by elements in the gross cross 

section that can experience distortions. 

 

σdist =
π2E

λeq
2

dc

yc
 (9) 

 

3  Methods 

Two numerical experiments were carried out, using different approaches to solve the same 

problem. At first, the profile Ue100x40x17x1.2 was select to simulate a cold-formed beam with 

different lengths, bent about both main axes, in order to obtain the critical loads of local and 

distortional buckling. When bending occurs about the minor axis, the edge stiffeners are intended to be 

compressed by the action of the moment (sagging bending moment). The experiments are detailed in 

the sequence. 
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a) Experiment I: a Finite Element Analysis was conducted using ANSYS® 14.0 [24]. Several simply 

supported beams were modeled, with lengths varying from 2.0 to 6.0 m, with steps of 1.0 m. In these 

analyses, the four-node finite element Shell 181 was employed, once it’s suitable for linear or non-

linear analysis of thin to moderately thin walled structures, with six degrees of freedom at each node 

(three displacements and three rotations). The mesh size was adopted in accordance with Candido et 

al. [25], who conducted similar buckling experiments in the same cold-formed profile, suggesting that 

2 mm x 6 mm is an adequate dimension for the rectangular finite element. In addition, torsional and 

bending simple supports were provided to constrain the twist and y-direction displacement in the 

section plane at edges, letting warping free, although. In the web’s central node, a single support was 

provided to constrain longitudinal displacements (z direction), according to Figures 3a and 3b. Then, 

edge forces were applied assuming an elastic stress distribution (Figures 3c and 3d), resulting into an 

unitary bending moment – 1 Nm. Finally, the Lanczos Method has been employed for eigenvalue 

extraction so that 80 critical loads were obtained and processed to identify local and distortional 

modes. 

 

 

 
 

 
(a) (b) (c) (d) 

Figure 3. Information about the finite element model. Source: Favarato et al. (2019). 

 

b) Experiment II: a Finite Strip Analysis was carried out using CUFSM® 5.01 [22], adopting a mesh 

pattern in the section plane as refined as that used in the previous approach. The cold-formed beams 

are simply supported and, for the buckling analysis, warping is free. 

 

c) Material’s properties: For both analyses, Young’s Modulus was assumed as 200 GPa and Poisson’s 

ratio as 0.3, in accordance with Brazilian National Code ABNT NBR 14762 [1]. Besides, the steel 

yield strength was adopted as 340 MPa in the experiment II. 

 

Additionally to the local and distortional buckling loads obtained, the lateral-torsional critical loads 

were previously determined by Favarato et al. [26] and they were compared to the exact analytical 

formulation presented in the Brazilian National Code ABNT NBR 14762 [1]. The results have shown 

good agreement as numerical analyzed values deviate only -0.31% when bending happens about the 

major axis and -4.10% for minor bending, on mean. Thus, the finite element model can be considered 

as calibrated and appropriate to be employed as reference for the comparative analyses. 

4  Results and discussions 

The results obtained are shown in Table 1 to Table 4, where L indicates the span length. It can be 

observed that the values arisen from theoretical models are conservative in all cases, except for the 

Sharp [17] model for distortional buckling in beams bent about the minor axis of inertia. The 

deviations – calculated with basis on the finite element results – observed in the data set stem from 

simplifications made in the analytical models, derived for bar elements, while numerical experiments 

have been carried out with shell elements. 

When dealing with distortional buckling, the variability and dispersion in the results indicate 

there’s no agreement in the theoretical models in order to provide a single critical bending moment or 

results close to each other. On the other hand, assuming that the boundary conditions are satisfactory 
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in the finite element model – since they provided excellent results for lateral-torsional buckling as 

stated by Favarato et al.  – and comparing these results with those from the finite strip analyses, both 

alternatives based on the elastic stability provided confident results, with good agreement between 

them, differing less than 7% from each other. 

 

For local buckling: 

  
Table 1. Bending about the major axis. 

L (m) 
Local buckling bending moment (Nm) Deviation (%) 

ANSYS CUFSM NBR 14762 [1] CUFSM NBR 14762 [1] 

2.0 5547.67 5320.07 5110.66 -4.10% -7.88% 

3.0 5545.18 5320.07 5110.66 -4.06% -7.84% 

4.0 5544.39 5320.07 5110.66 -4.05% -7.82% 

5.0 5544.07 5320.07 5110.66 -4.04% -7.82% 

6.0 5543.92 5320.07 5110.66 -4.04% -7.82% 

  Average deviation -4.06% -7.83% 

 
Table 2. Bending about the minor axis. 

L (m) 
Local buckling bending moment (Nm) Deviation (%) 

ANSYS CUFSM AISI S100 [5] CUFSM AISI S100 [5] 

2.0 2062.00 1970.66 1230.63 -4.43% -40.32% 

3.0 2061.23 1970.66 1230.63 -4.39% -40.30% 

4.0 2060.98 1970.66 1230.63 -4.38% -40.29% 

5.0 2060.85 1970.66 1230.63 -4.38% -40.29% 

6.0 2060.78 1970.66 1230.63 -4.37% -40.28% 

  Average deviation -4.39% -40.30% 

 
For distortional buckling: 

 
Table 3. Bending about the major axis. 

L (m) 

Distortional buckling bending moment (Nm) Deviation (%) 

ANSYS CUFSM HANCOCK  SHARP 
AISI S100 

[5] 

ELLIFRITT 

et al. 
CUFSM HANCOCK  SHARP 

AISI S100 

[5] 

ELLIFRITT 

et al. 

2.0 5561.59 5182.27 4114.48 5951.90 4306.87 2039.28 -6.82% -26.02% 7.02% -22.56% -63.33% 

3.0 5561.55 5182.27 4114.48 5951.90 4306.87 2039.28 -6.82% -26.02% 7.02% -22.56% -63.33% 

4.0 5547.84 5182.27 4114.48 5951.90 4306.87 2039.28 -6.59% -25.84% 7.28% -22.37% -63.24% 

5.0 5429.37 5182.27 4114.48 5951.90 4306.87 2039.28 -4.55% -24.22% 9.62% -20.67% -62.44% 

6.0 5512.44 5182.27 4114.48 5951.90 4306.87 2039.28 -5.99% -25.36% 7.97% -21.87% -63.01% 

     Average deviation -6.15% -25.49% 7.78% -22.01% -63.07% 
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Table 4. Bending about the minor axis. 

L (m) 
Distortional buckling bending moment (Nm) Deviation (%) 

ANSYS CUFSM DOUTY CUFSM DOUTY 

2.0 1709.11 1685.84 1400.01 -1.36% -18.09% 

3.0 1713.24 1685.84 1386.91 -1.60% -19.05% 

4.0 1714.86 1685.84 1382.32 -1.69% -19.39% 

5.0 1708.91 1685.84 1380.20 -1.35% -19.24% 

6.0 1704.52 1685.84 1379.04 -1.10% -19.10% 

  Average deviation -1.42% -18.97% 

 

With respect to the design of CFS elements under flexure via DSM, the resistances calculated 

using the analytical formulations presented herein do not threaten structural safety and stability, since 

they underestimate buckling loads. Thus, buckling would occur at an early load stage than if correctly 

calculate with numerical approaches, which gives rise to an uneconomical design philosophy. Setting 

the coefficient of utilization as the unit, heavier sections would be needed to resist to the same bending 

moment. In this sense, an unique formulation based on the elastic stability analysis should be 

determined to standardized critical buckling loads of CFS profiles, especially in minor bending for the 

distortional mode. This tool is quite important and it’s needed by engineers for, at least, preliminary 

calculations. 

5  Conclusions 

In this paper, a set of comparative analyses was performed in order to evaluate the accuracy of 

some theoretical models found in the literature to determine local and distortional critical loads in 

cold-formed U stiffened sections. The results suggested that both numerical alternatives produce close 

results, however different from the analytical ones with deviations more than 40% for some cases.  

The calculation of these buckling loads for design solutions can surely make use of analytical 

models, although leading to sections with more material waste, once they suggest that buckling will 

occur in a lower stress magnitude. Thus, when results based on the elastic stability analysis are used, 

buckling loads usually reach more elevated values and allows for optimized design solutions of cold-

formed U sections in flexure. 
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