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Abstract. This study aims to present a practical method for optimizing cold-formed steel (CFS) lipped 
channel beam-columns using an Accelerated Particle Swarm Optimization method (APSO). To 
eliminate impracticable cross-section shapes from the optimization results, several manufacturing and 
construction constraints are applied into the optimization process. Targeting this goal, 128 different 
lipped channel sections prototypes were selected and then optimized with respect to their buckling load, 
determined according to the finite strip method (FSM), then assessing the strength according to the 
provisions based on direct strength method (DSM). Comparing the structural resistance of the optimized 
sections with the sections of the original channel CFS with the same steel consumption, significant 
improvements were obtained. The results indicate that the optimized sections provide a compressive 
strength which is up to 50% higher than the initial shapes, and for flexural strength 30% higher than the 
reference profiles, while they meting predefined design and manufacturing constraints. The results of 
this study demonstrate the useful of APSO in CFS practical design problems. 

Keywords: Cold-formed steel, Lipped Channel, Accelerated Particle Swarm Optimization, Direct 
Strength Method. 
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1  INTRODUCTION 

Cold-formed steel (CFS) structural members are produced by bending thin metal sheets into a 
variety of cross-sectional shapes by either a cold-rolling or a press braking procedure, both performed 
at room temperature. They have several applications which are usually centered around their use in 
trusses, modular building panels, stud walls, purlins, side rails, cladding and even as the primary load-
bearing structure in low- to mid-rise buildings. Normally, cold-rolling manufactories are able to custom 
roll sections on demand, adapted to specific applications. This flexible manufacturing system, makes 
the problem of maximizing material efficiency through selection of cross-sectional shapes a relevant 
topic to structural engineering [1]. 

While sections in current production by industry hold certain advantages in logistic/constructive 
practices, they may not be the most efficient in a structural perspective. On this regard, significant works 
have developed seeking more efficient cross sections using optimization algorithms. Initial efforts on 
the optimization of cold-formed steel members focused on optimizing the strength based on rules 
provided in specifications such as AISI [2], NBR 14762 [3], or Eurocode [4]. In particular, all of these 
specifications employ the effective width method for strength determination [5]. This design method 
affords a limited degree of generality and for best accuracy the basic cross-section typology (shape) 
must be pre-determined.  

However, the Direct Strength Method (DSM), adopted by NBR 14762 in Appendix C [3], provides 
an analytical formulation capable to calculate the nominal load for diverse geometries of beam-columns, 
calibrated based on the appropriate categorization of the failure modes into the three buckling mode 
classes. The DSM applicability in arbitrary cross-sections favors the automatic strength computation of 
cold formed profiles, thus the development of optimization tools. In this work we used the open source 
software entitle FStr, developed in MATLAB by Thin Walled research group of  the Federal University 
of Rio de Janeiro (COPPE-UFRJ), which employs the Finite Strip Method (FSM), for finding L, D and 
G buckling modes and load factors, respectively local (L), distortional (D) and global-Euler or flexural-
torsional buckling (G). 

The CFS cross section optimization algorithms may progress based on gradient method 
programming, or based on principles of stochastic search. The first one is capable of identifying local 
optimum but are restricted to problems where design sensitivities, or derivatives of performance metrics 
with respect to cross section design variables, are available. On the other hand, stochastic search 
algorithms do not require sensitivity information and thus may be applied to discrete problems, such as 
optimizing cross section selected from a database. The disadvantages are that they are heuristic trial-
and-error methods, requiring a large number of analyses with no guarantee that an optimal solution will 
be found. In this paper the stochastic bio-inspired Accelerated Particle Swarm Optimization (APSO) 
algorithm was applied to maximize strength of cold-formed steel lipped channel profiles [6]. 

Several research projects have previously been carried out aimed at optimizing the relative 
dimensions of predefined conventional CFS cross-sections such as C, Z, or sigma– shapes. Near to the  
thematic of present paper, Ye et al. [7], [8] and Parastesh [9], using Particle Swarm Optimization (PSO) 
developed methodology using a combination of the Finite Strip Method (FSM) and the effective width 
method to optimize CFS beams-columns dimensions, considering conventional C– and sigma– variants, 
cross-sections. 

The research presented in this paper aimed explore the performance of a family of cold-formed 
steel shapes constituted by 128 structural lipped channels elected from currently available industry 
sections. These CSF profiles are investigated in terms of their strength, given by the DSM, under axial 
uniform load and major-axis pure bending to establish the practical range of demands to be studied. 
Then, optimized them through APSO seeking for the best performance of lipped channel for a of axial 
and bending demand, for constants amounts of material. Given constraints imposed by NBR 14762, 
manufacturing limitations and practical considerations. 
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2  DESIGN OF CFS MEMBERS BASED ON NBR 14762 

2.1. Compressive strength  

        The calculation of the member strength follows the Direct Strength Method (DSM) adopted by 
NBR 14762 [3]. DSM  determines the nominal compressive strength 𝑃௡, assuming 𝑃௡ the lowest value 
between 𝑃௡௘, 𝑃௡௟ and 𝑃௡ௗ, of CFS  columns provided the user specifies the yield load 𝑃௬ and the elastic 
critical loads in global 𝑃௖௥௘, local 𝑃௖௥௟ and distortional 𝑃௖௥ௗ and buckling modes. Because the steel 
sheet width 𝑏 and thickness 𝑡 are fixed in each combination analysis, the cross-section area 𝐴 and the 
yield load (𝑃௬ = 𝐴 ∙ 𝐹௬ )  remain unchanged each combination. The finite strip method software FStr 
was applied to determine the critical load values 𝑃௖௥௟, 𝑃௖௥ௗ, and 𝑃௖௥௘. 

The nominal compressive strength in global buckling is given by: 
             

𝑃௡௘ = ൫0.658ఒబ
మ
൯ ∙ 𝑃௬             𝑓𝑜𝑟  𝜆଴ ≤ 1.5         (1.a) 

 

   𝑃௡௘ = ቀ
଴.଼଻଻

 ఒబ
మ ቁ ∙ 𝑃௬                  𝑓𝑜𝑟  𝜆଴ > 1.5          (1.b)  

 
where 𝜆଴  is the global buckling slenderness, given by: 
 

 𝜆଴ = ቀ
௉೤ 

௉೎ೝ೐
ቁ

଴.ହ

.                (2)

              
Because the local failure of compressed members might occur in combination with global buckling, 

DSM prescribes the calculation of the nominal strength of columns failing in local-global modes. The 
nominal strength for local-global buckling failure is given by: 
 
𝑃௡௟ = 𝑃௡௘                                                𝑓𝑜𝑟  𝜆௟ ≤ 0.776         (3.a) 

𝑃௡௟ = ൬1 −
଴.ଵହ

ఒ೗
బ.ఴ ൰ ∙

௉೙೐

ఒ೗
బ.ఴ                           𝑓𝑜𝑟  𝜆௟ > 0.776           (3.b) 

 
where 𝜆௟ is the local-global buckling slenderness, given by: 

𝜆௟ = ቀ
௉೙೐ 

௉೎ೝ೗
ቁ

଴.ହ

.                (4) 

Note that the global strength 𝑃௡௘ must always be calculated prior to local-global buckling strength 
𝑃௡௟. Additionally, the L-G strength 𝑃௡௟௘ was always considered in these calculations because 𝑃௡௘ ≤ 𝑃௡௟௘. 
The nominal strength for distortional buckling is given by: 
 
𝑃௡ௗ = 𝑃௬                                                𝑓𝑜𝑟  𝜆ௗ ≤ 0.561                                 (5.a) 

𝑃௡ௗ = ൬1 −
଴.ଶହ

ఒ೏
భ.మ ൰ ∙

௉೤

ఒ೏
భ.మ                          𝑓𝑜𝑟  𝜆ௗ > 0.561         (5.b) 

 
where 𝜆ௗ is the distortional buckling slenderness, given by: 
 

𝜆ௗ = ቀ
௉೤ 

௉೎ೝ೏
ቁ

଴.ହ

.                (6) 
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2.2. Flexural strength  

        The DSM determines the nominal flexural strength 𝑀௡ , assuming 𝑀௡ the lowest value between 
𝑀௡௘, 𝑀௡௟ and 𝑀௡ௗ, of CFS beams, subjected to simple bending, provided the user specifies yield 
moment  𝑊௬ (𝑊௬ = 𝑊 ∙ 𝐹௬ ) and the elastic critical loads in local 𝑀௖௥௟, distortional 𝑀௖௥ௗ and global 
𝑀௖௥௘ buckling modes. The finite strip method software FStr was employed to determine the critical 
load values 𝑀௖௥௟, 𝑀௖௥ௗ, and 𝑀௖௥௘.  

The nominal strength in the lateral torsional buckling is given by: 
 

             
𝑀௡௘ =  𝑊௬                                                          𝑓𝑜𝑟  𝜆଴ ≤ 0.6        (7.a) 

𝑀௡௘ = 1.11 ∙ ൫1 − 0.278ఒబ
మ
൯ ∙ 𝑊 ∙ 𝐹௬          𝑓𝑜𝑟  0.6 < 𝜆଴ < 1.336      (7.b) 

𝑀௡௘ =
ௐ೤

 ఒబ
మ                                                          𝑓𝑜𝑟  𝜆଴ ≥ 1.336       (7.c) 

 
where 𝜆଴  is the global buckling slenderness, given by: 
 

 𝜆଴ = ቀ
𝑊𝑦 

௉೎ೝ೐
ቁ

଴.ହ

.            (8) 

 
Because the local failure of flexed members might occur in combination with lateral torsional 

buckling, DSM prescribes the calculation of the nominal strength of beams failing in local-global modes. 
The nominal strength for local-global buckling failure is given by: 
 
𝑀௡௟ = 𝑀௡௘                                                𝑓𝑜𝑟  𝜆௟ ≤ 0.776        (9.a) 

𝑀௡௟ = ൬1 −
଴.ଵହ

ఒ೗
బ.ఴ ൰ ∙

ெ೙೐

ఒ೗
బ.ఴ                           𝑓𝑜𝑟  𝜆௟ > 0.776        (9.b) 

 
where 𝜆௟ is the local-global buckling slenderness, given by: 

𝜆௟ = ቀ
ெ೙೐ 

ெ೎ೝ೗
ቁ

଴.ହ

.           (10) 

 
       The nominal strength for distortional buckling is given by: 
 
𝑀௡ௗ = 𝑊௬                                                𝑓𝑜𝑟  𝜆ௗ ≤ 0.673       (11.a) 
 

𝑀௡ௗ = ቀ1 −
଴.ଶଶ

ఒ೏
ቁ ∙

ௐ೤

ఒ೏
                         𝑓𝑜𝑟  𝜆ௗ > 0.673       (11.b) 

 
where 𝜆ௗ is the distortional buckling slenderness, given by: 
 

𝜆ௗ = ቀ
𝑊𝑦 

ெ೎ೝ೏
ቁ

଴.ହ

.          (12) 
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3   DEFINITION OF OPTIMIZATION PROBLEM 

The optimization problem can be mathematically formulated as follows: 
 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒:     𝑓(𝑥ଵ, 𝑥ଶ, 𝑥ଷ … 𝑥ௗ) =  𝑃௡  𝑜𝑟   𝑓(𝑥ଵ, 𝑥ଶ, 𝑥ଷ … 𝑥ௗ) =  𝑀௡                      (13) 
 

where 𝑃௡  and 𝑀௡ , nominal compressive strength flexural and nominal flexural strength, 
respectively, are the objective functions. Throughout the optimization process two yield strengths 𝑓௬ 
values was taken ( 𝑓௬ = 345 𝑀𝑃𝑎,  𝑓௬ = 410 𝑀𝑃𝑎 ) , the Young’s 𝐸 modulus was kept constant at 
210 𝐺𝑃𝑎. 

The design variables are represented as follows: 𝑥ଵ = 𝑏௪,   𝑥ଶ = 𝑏௙ ,   𝑥ଷ = 𝑏௦,  𝑥ସ = 𝜙, where 𝑏௪, 
𝑏௙ and 𝑏௦ represent web length, flange length and lip length, respectively, as Fig. 1 illustrates. 
 

 

Figure 1. Lipped-channel’s design variables  

For each design variable 𝑥௜, lower and upper bounds were determined based on a combination of 
the constraints imposed by NBR 14762 and certain manufacturing limitations and practical 
considerations, which will be explained further in this section. Throughout the optimization process, 
eight  cross-sections thickness 𝑡௖ was taken ( 𝑡௖ = 1.50 𝑚𝑚, 𝑡௖ = 2.00 𝑚𝑚 , 𝑡௖ = 2.25 𝑚𝑚,  𝑡௖ =
2.65 𝑚𝑚 , 𝑡௖ = 3.00 𝑚𝑚,  𝑡௖ = 3.25 𝑚𝑚, 𝑡௖ = 3.75 𝑚𝑚 , 𝑡௖ = 3.75 𝑚𝑚) and  eight total developed 
length of the cross-section (the coil width)  𝐿௙  was  taken ( 𝐿௙ = 120 𝑚𝑚, 𝐿௙ = 200 𝑚𝑚 , 𝐿௙ =
250 𝑚𝑚,  𝐿௙ = 300 𝑚𝑚 , 𝐿௙ = 350 𝑚𝑚, 𝐿௙ = 400 𝑚𝑚, 𝐿௙ = 450 𝑚𝑚, 𝑡௖ = 500 𝑚𝑚 ). These 
values were taken from a commercially available channel section. 

The optimization problem is bounded the following constraints: 
 

0.10 ≤  𝑏௦/𝑏௪ ≤ 0.30,                                                  (14.a) 
0.25 ≤  𝑏௙/𝑏௪ ≤  1.00,                                (14.b) 
0.25 ≤  𝑏௦/𝑏௙ ≤  0.60 .                                               (14.c) 

 
The lower and upper bounds are given by following equations: 

 
                           50 𝑚𝑚 ≤ 𝑏௪ ≤  0.90 ∙ 𝐿௙,                                               (15.a)            
                           30 𝑚𝑚 ≤ 𝑏௙ ≤  0.75 ∙ (𝐿௙ 2)⁄ ,                                       (15.b)            
                           10 𝑚𝑚 ≤ 𝑏௦ ≤  0.25 ∙ (𝐿௙ 2)⁄ .                                       (15.c)            
 

 
Combining all  𝑓௬, 𝑡௖ , 𝐿௙, values, this work prosed to optimize 128 different sets of domains to 

cold-formed steel lipped channel prototypes. In the calculus of nominal compressive strength and 
nominal flexural strength, was assumed beam-columns length  𝐿=1000 mm, simply supported, in both 
cases. 
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To ensure that the optimization process resulted in practically useful cross-sections, the following 
measures were taken. The basic overall shape of the cross-section was restricted to a lipped channel. In 
current construction practice, channels are the most commonly used CFS beam sections. The succession 
of flat plate elements within the cross-section permits a straightforward manufacturing process and 
allows for easy connections with trapezoidal steel deck or other roof/floor systems, as well as bridging, 
cleat plates, etc. This stands in contrast with the often complex and curved shapes typically encountered 
as the result of unrestricted shape optimization procedures. All prototypes are based on a traditional 
lipped channel shape typically within the capability of commercial cold-rolling enterprises. Each 
prototype was optimized individually, after which the overall optimum among the 128 optimized 
prototypes was identified.  

In practical situations, additional constraints come out. These constraints may be quite case-
dependent and may, for instance, be related to the ability to connect the beam-columns to other elements, 
or be imposed by the manufacturing process itself. In this particular case the following constraints were 
imposed: 

a. The width of the flanges was required to be at least 30 𝑚𝑚  in order to connect trapezoidal 
decking or plywood boards to the beam by means of screws. This width was based on industrial 
practices; 

b. The lip needs to be of a sufficient length. A lip of, for instance, 1 mm length cannot be rolled or 
brake-pressed. The industrial project practice suggested a minimum length of 5–10 mm. 
Therefore, as indicated in Eq. (15.c), 𝑏௦ ≥ 10 𝑚𝑚  was imposed for a single lip; 

c. The height of the web was specified to be at least 50 𝑚𝑚   in order to allow a connection to be 
made (e.g. to a cleat plate) with at least two bolts and/or for bridging to be connected; 

d. The cross-sections must be symmetrical and lip’s opening angles  𝜙 was fixed in 𝜋 2⁄ . 

One of the major advantages of the PSO algorithm is that these constraints can easily be altered 
and others added. The constraints merely result in a restriction of the search space of the particle swarm. 

In addition to the practical constraints mentioned above, the NBR 14762 design rules also impose 
certain limits on the plate width-to-thickness ratios, the relative dimensions of the cross-section and the 
angle of the edge stiffeners. These constraints were also taken into account in the optimization 
procedure.  

The prototype’s fundamental shape and the addition of practical constraints significantly restrict 
the solution space. An unconstrained ‘free-form’ optimization would most likely result in a cross-section 
with a higher ultimate capacity, with this ‘overall optimum’ solution not being contained within the 
current restricted search space. However, the aim of the research was to produce cross-sections with 
practical relevance. 

4  PARTICLE SWARM OPTIMIZATION 

Particle swarm optimization (PSO) was developed by Kennedy and Eberhart in 1995 based on 
swarms founded in nature, such as bird flock and fish shoal. Since then, PSO has generated much wider 
interests and forms an exciting, ever-expanding research subject, called swarm intelligence. PSO has 
been applied to almost every area in optimization, computational intelligence, and design applications. 
There are at least two dozen PSO variants, and hybrid algorithms by combining PSO with other existing 
algorithms are also investigated extensively [10]. 

4.1 Swarm Intelligence  

The Swarm intelligence is an artificial intelligence (AI) field which studies the behavior of 
decentralized and self-organized systems, understanding by self-organization the ability of some 
physical systems formed by many individuals, to create behavior patterns adaptable and not predictable, 
without a central intelligence. Observing social organizations found in nature, as well as the behavioral 
characteristics of their colonies, inspires many swarm intelligence algorithms such as Ant Colony 
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Optimization (ACO) and Firefly Optimization Algorithm (FOA), e.g. 
The PSO become one of the most popular swarm-intelligence-based algorithms due to its 

programming simplicity and flexibility face of several problems. Instead of using mutation and 
crossover, techniques applied in Genetic Algorithms (GA), PSO uses real-numbers randomness and 
collective communication between particles. Thus, there is no decoding of the parameters in binary 
numbers such as those present in AG. 

Many new algorithms that are based on swarm intelligence may have drawn inspiration from 
different sources, but they have some similarity to some of the components that are used in PSO. In this 
sense, PSO pioneered the basic ideas of swarm-intelligence based computation [11].   

4.2 PSO algorithm   

The PSO algorithm consists in particle sets with 𝑛 individuals, where each is random positioned 
within a parameters space (limiting a feasible region), each representing a possible solution of proposed 
problem. Each particle has velocity 𝑣 which changes its position through the feasible region using a 
series of discrete timesteps 𝑡 (iterations), in this work the PSO main algorithm was implemented in 
MATLAB. The velocity vector 𝑣 for each particle is adjusted at each timestep 𝑡 according to the best 
individual performance of that specific particle, as well as best performance of the swarm as a whole. 
The performance of each new candidate solution is quantified using an objective function, and the 
process is repeated until the convergence criteria are met. In this work, was adopt a swarm size  𝑛 = 20 
and a maximum iteration  𝑡௠௔௫ = 500. 

The potential solutions are represented by a vector 𝑥, which comprises a specific parameter set 
entering the possible solutions of a problem within a feasible region. In the PSO, the vector 𝑥 represents 
a particle position. The particular particle position 𝑖 at each timestep 𝑡 is given by 𝑥௧

௜ and the velocity of 
particle 𝑖 at each timestep 𝑡 is given by 𝑣௧

௜. The objective function 𝑓(𝑥) determines the performance of 
the position of each particle, the best  value of objective function of any particle in the swarm at time 𝑡 
is given by 𝑓௧

௜ ,the historical best value of objective function  in the swarm particle 𝑖 until the time 𝑡 is 
given by 𝑓௧

௚. The global best position of any particle in the swarm at time 𝑡 is given by 𝑃௧
௜, while the 

historical best position in the swarm particle 𝑖 until the time 𝑡 is given by 𝑃௧
௚. 

The velocity of each particle is updated at each timestep according to Eq. (16), following: 
 

𝑣௧ାଵ
௜ = 𝑤 ∙ 𝑣௧

௜ + 𝐶ଵ ∙ 𝑛௥ଵ ∙ ൫𝑃௧
௜ − 𝑥௧

௜൯ + 𝐶ଶ ∙ 𝑛௥ଶ ∙ ൫𝑃௧
௚

− 𝑥௧
௜൯         (16) 

 
where 𝑛௥ଵ and 𝑛௥ଶ are random numbers from a Gaussian distribution with values between 0 to 1, 𝐶ଵ and 
𝐶ଶ are cognitive acceleration factor and the social acceleration factor, respectively, and 𝑤 is the inertia 
factor. These weighting factors are bounded according to the rules of Eq. (17) for algorithm 
convergence. 
 

                                             0 < (𝐶ଵ +  𝐶ଶ) < 4                                      (17.a) 
(஼భା ஼మ)

ଶ
− 1 < 𝑤 < 1 .       (17.b) 

 
 The inertia term 𝑤, determines how much of the speed from the previous timestep is over to the 

next one. High inertia values cause particles to behave more independently and explore the solution 
space more meticulously, while lower values cause faster swarm convergence. One popular strategy for 
selecting the inertia term is to use a dynamic factor that begins at high value, and gradually decreases 
during algorithm interactions. This approach brings with it the advantage of a timely convergence while 
to force the particles to fully explore the solution space [12]. 

 The cognitive acceleration factor 𝐶ଵ (also known as the cognitive factor), multiplied by a random 
number 𝑛௥ଵ ∈ [0,1], determines the influence of the best historical performance of each individual 
particle. The social acceleration factor 𝐶ଶ (also known as the swarm factor) multiplied by a random 
number 𝑛௥ଶ ∈ [0,1],  determines the influence of the best historical performance of swarm. A high social 
acceleration factor value causes a quicker algorithm convergence to the best swarm position, but limits 
individual particle exploration. On the other hand, a high self-confidence parameter causes each particle 
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to fully explore any optimal regions each particle encounters, but may delay convergence. It is common 
for the cognitive acceleration factor to be equal to or slightly larger than the swarm influence parameter 
(in the range of 1.5 to 2.5), due to the convergence criteria in Eq. (17) leads to the best behavior of the 
PSO algorithm.  

 The essence steps of optimization algorithm through particle examination can be summarized 
in the pseudocode shown in Fig. 2.  
 

PARTICLE SARW OPTIMIZATION  
1: Objective function  𝒇(𝒙) , 𝒙 = (𝒙𝟏, 𝒙𝟏, 𝒙𝟏 … 𝒙𝒅)𝑻 
2: Initialize locations   𝒙𝒊 and velocity  𝒗𝒊 of 𝒏 particles 
3: Finding 𝑷𝒊

𝒈 from min  {𝑓(𝑥ଵ), 𝑓(𝑥ଶ), 𝑓(𝑥ଷ) … . 𝑓(𝑥௡)} at  𝒕 = 𝟎 
4: while (criterion) 
5:         for loop over all 𝒏 particles and all 𝑑 dimensions     
6:      Calculate new velocity  𝒗𝒕ା𝟏

𝒊 = 𝒘 ∙ 𝒗𝒕
𝒊 + 𝑪𝟏 ∙ 𝒏𝒓𝟏 ∙ ൫𝑷𝒕

𝒊 − 𝒙𝒕
𝒊൯ + 𝑪𝟐 ∙ 𝒏𝒓𝟐 ∙ ൫𝑷𝒕

𝒈
− 𝒙𝒕

𝒊൯ 
7:      Calculate new locations 𝒙𝒕ା𝟏

𝒊 = 𝒙𝒕
𝒊 + 𝒗𝒕ା𝟏

𝒊   
8:      Evaluate objective functions at new locations 𝒙𝒕

𝒊ା𝟏 
9: end for  
10: Find the current global best 𝑷𝒕

𝒊  
11: Update 𝒕 = 𝒕 + 𝟏 (pseudo time or iteration counter) 
11: end while  
12: Output the final results   𝒇𝒕

𝒈 and 𝑷𝒊
𝒈 

Figure 2. PSO pseudocode [13] 

4.3 Accelerated PSO 

 The standard PSO uses both best the current global best and the individual best. Using the 
individual best mostly to increase the diversity in the quality solutions. But this diversity can be 
simulated using some randomness. Thus, there is no compelling reason for using the individual best 
unless the optimization problem of interest is highly nonlinear and multimodal [13].  

 A simplified PSO version which uses only the global best to accelerates algorithm’s 
convergence, is called of Accelerated Particle Swarm Optimization (APSO), its velocity vector is given 
by: 
 

𝑣௧ାଵ
௜ = 𝑣௧

௜ + 𝐶ଵ ∙ (𝑛௥ − 1/2) + 𝐶ଶ ∙ ൫𝑃௧
௚

− 𝑥௧
௜൯     (18)  

 
where 𝑛௥ is a random variable with values from 0 to 1. Here the shift 1/2 is purely out 
of convenience. We can also use a standard normal distribution 𝐶ଵ ∙ 𝑛௥௧, where 𝑛௥௧ is drawn 
from N (0, 1) to replace the second term. Now we have 
 

𝑣௧ାଵ
௜ = 𝑣௧

௜ + 𝐶ଶ ∙ ൫𝑃௧
௚

− 𝑥௧
௜൯ + 𝐶ଵ ∙ 𝑛௥௧     (19) 

 
where 𝑛௥௧ can be drawn from a Gaussian distribution or any other suitable distributions. 
The update of the position is simply 
 

𝑥௧ାଵ
௜ = 𝑥௧

௜ +  𝑣௧ାଵ
௜ .          (20) 

 
We can also simplify the formulation writing the update of the location in a single step 

 
𝑥௧ାଵ

௜ = (1 − 𝐶ଶ) ∙ 𝑥௧
௜ + 𝐶ଶ ∙ 𝑃௧

௚
+  𝐶ଵ ∙ 𝑛௥௧.    (21) 

 
The typical initial values for the PSO are 𝐶ଵ ≈ 0.2 and 𝐶ଶ ≈ 0.5 , for unimodal objective functions. 
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It is worth pointing out that the parameters 𝐶ଵ and 𝐶ଶ should in general be related to the scales of the 
independent variables 𝑥௧

௜ and the search domain.  
In addition, the APSO brings an improvement reducing the randomness as interaction process 

proceeds. Usually using a monotonically decreasing function such as: 
 

𝐶ଵ = 𝐶଴ ∙ 𝛾௧       (22) 
 

where  𝐶଴ ≈ 0.5~1.0 is the initial value of the randomness parameter. Here 𝑡 is the timesteps 
number,0 < 𝛾 < 1 is a control parameter. In this work, was adopt 𝛾 = 0.9. 

5  RESULTS AND DISCUSSION  

5.1. Compressive strength  

Overall, the mean strength increase was 19.04%. The lowest strength increment was 0.09%, which 
indicates that some standard profiles already are close to the best performance. On the other hand, the 
largest difference was 50.36%, which suggests a reasonable possibility of improvement of some 
prototypes. The Fig. 3 shows results obtained by the APSO process. 

Figure 3. Compressive strength optimization results  

Table 1 summarize the general results obtained by the APSO process. 

Table 1. Descriptive Statistics over all compressive strength optimization   

Descriptive  
Statistics 

Pn  

(Increase) 
bf/bw  

(Modification) 
bs/bw  

(Modification) 

Mean 19.04% 70.05% 111.88% 

Standard Deviation 15.83% 84.90% 80.64% 

Minimum  0.09% -19.23% 13.64% 

Maximum 50.36% 239.84% 248.00% 

 
The mean  𝑏௙ 𝑏௪⁄   ratio was 0.65, which corresponds to 65% of imposed upper bound (Eq. (14.b)), 

and mean  𝑏௦ 𝑏௪⁄  was 0.29, which corresponds to 96.67% of imposed upper bound (Eq. (14.a)). Is noted 
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a high value of standard deviation of nominal strength indicating a variance in the optimization process, 
this fact is attributed to a greater or lesser proximity of some standard profiles of the best performance. 
It's worth pointing out that the 𝑏௦ 𝑏௪⁄  ratio of optimized profiles indicates there were lip’s 
underutilization in all adopted protypes. 

The results indicate great influence of local buckling and distortional buckling in the optimization 
problem, which was expected given the trend the of short beam-columns, as adopted in this work 
(𝐿=1000 mm), to distance of Euler’s buckling. The high shape variation rate is attributed to the 
negligible influence of the global buckling in these profiles, which makes the prototypes, basically 
subject to L and D buckling modes which are fundamentally governed by the cross-section geometry 
and sub-elements slender. 

 
Table 2 presents the features of prototype with the lowest strength increment. 

Table 2. Lowest compressive strength increment 

Profile 
fy                

(MPa) 
Lf                

(mm) 
t                  

(mm) 
Pn                    

(kN) 
bw                  

(mm) 
bf                  

(mm) 
bs                  

(mm) 
bf/bw bs/bw 

Standard 410.00 120.00 2.00 42.90 50.00 25.00 10.00 0.50 0.20 
Optimized 410.00 120.00 2.00 42.94 48.00 24.00 12.00 0.50 0.25 

 
Table 3 presents the features of prototype with the greatest strength increment. 

Table 3. Greatest compressive strength increment 

Profile 
fy                

(MPa) 
Lf                

(mm) 
t                  

(mm) 
Pn                    

(kN) 
bw                  

(mm) 
bf                  

(mm) 
bs                  

(mm) 
bf/bw bs/bw 

Standard 345.000 500.00 2.00 143.08 290.00 80.00 25.00 0.28 0.09 
Optimized 345.000 500.00 2.00 212.97 144.00 135.00 43.00 0.94 0.30 

 
Figure 4 presents the shape modification of the prototype with the greatest strength increment. 

Figure 4. Shape modification of compressive strength optimization 

The results in Figure 5 indicate that profiles manufactured from larger coils are more susceptible 
to optimization. This fact is related to the trend of the larger sub elements, which composes these 
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profiles, has in develop the L and D due to 𝜆௟  and 𝜆ௗ increase.   
 

 

Figure 5. Compressive strength increase per coil width 

The results in Figure 6 indicate that profiles manufactured from thinner coils are more susceptible 
to optimization. This fact is related to natural trend of slender sub-elements has in develop the L and D. 
 

 

Figure 6. Compressive strength increase per coil thickness 

The results indicate a possible L-D interaction, which would result in strength erosion not predicted 
by NBR 17642 even I the DSM formulation.  
 
5.2. Flexural strength  

Considering all protypes, the mean strength increase was 14.08%. One prototype could not be 
optimized, and the largest strength increase was 33.33%. The results indicate that, compared to the 
results observed in the compressive strength the APSO achieved a worse performance for flexural 
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strength, possibly due to the complex nature of the problem of flexional buckling. The Fig. 7 shows 
results obtained by the APSO process. 

 

Figure 7. Flexural strength optimization results  

Table 4 summarize the general results obtained by the APSO process. 

Table 4. Descriptive Statistics over all flexural strength optimization   

Descriptive  
Statistics 

Mn 

(Increase) 
bf/bw  

(Modification) 
bs/bw  

(Modification) 
Mean 14.08% -34.84% -35.52% 

Standard Deviation 8.61% 14.44% 31.12% 

Minimum  0.00% -55.92% -72.22% 

Maximum 33.20% 22.61% 69.94% 

 
The mean  𝑏௙ 𝑏௪⁄   ratio was 0.27, which corresponds to 27.00% of imposed upper bound (Eq. 

(14.b)), and mean  𝑏௦ 𝑏௪⁄  was 0.10, which corresponds to lower bound (Eq. (14.a)). Observing mean of 
both ratios, is noticed a reduction of lips and flange dimension.  

Table 5 presents the features of prototype which could not be optimized 

Table 5. Not optimizable profile 

Profile 
fy                

(MPa) 
Lf            

(mm) 
t                  

(mm) 
Mn                    

(kN.m) 
bw                  

(mm) 
bf                  

(mm) 
bs                  

(mm) 
bf/bw bs/bw 

Standard  
& 

Optimized 
410.00 120.00 1.50 954.89 50.00 25.00 10.00 0.50 0.20 

 
Table 6 presents the features of prototype with the greatest strength increment. 
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Table 6. Greatest flexural strength increment 

Profile 
fy                

(MPa) 
Lf                

(mm) 
t                  

(mm) 
Mn                    

(kN.m) 
bw                  

(mm) 
bf                  

(mm) 
bs                  

(mm) 
bf/bw bs/bw 

Standard 345.00 250.00 4.00 10781.25 100.00 50.00 25.00 0.50 0.25 
Optimized 345.00 250.00 4.00 14360.13 144.00 43.00 10.00 0.30 0.10 

 
Figure 8 presents the shape modification of the prototype with the greatest flexural strength 

increment. 

 

Figure 6. Shape modification of flexural strength optimization 

The means of 𝑏௙ 𝑏௪⁄  (-34.84%) and 𝑏௙ 𝑏௪⁄  (-35.52%), indicate a trend of web’s length increasing 
and consequently the rise of inertia moment perpendicular to the web’s plane (which is a common 
solution of flexural strength problems). The results also indicate that profiles manufactured from coils 
are with widths between 200mm to 300m are more susceptible to optimization. The Fig 7 illustrates 
general results per coil width. 

 

Figure 7. Flexural strength increase per coil width 
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The results in Figure 8 do not indicate a clear correlation between thickness and the flexural strength 
increase. Contributing with idea of inertia moment significance’s in optimization problems of this 
nature.  
 

 

Figure 8. Flexural strength increase per coil thickness 

The flexural strength optimization achieved in this work is close obtained by Ye [7], [8], for CFS 
lipped channel profiles with similar conditions, suggesting that given the methodology applied in this 
paper, the results are near of best possible. 

6  CONCLUSIONS AND FUTURES WORKS  

This paper presents a practical method to obtain more efficient CFS lipped channel sections for 
simply supported beam-columns by optimizing the dimensions of the cross-section and allowing for the 
addition of double-fold (return) lips. The optimization process is thereby based on the Accelerated 
Particle Swarm Optimization (APSO) algorithm, while the flexural strength and compressive strength 
of the sections is determined using the Direct Strength Method (DMS) as implemented in NBR 14762. 
One hundred twenty-eight different prototypes were considered based on practical considerations. Based 
on the results of this study, the following conclusions could be drawn: 

 
a. By applying the proposed optimization method to simply supported columns, significant gains 

in cross-sectional compressive capacity can be achieved: in the examples, the compressive 
capacity of a CFS cross-section was increased by up to 50% compared to the commercially 
available section taken as prototype. 

b. The APSO can achieve significant gains in cross-sectional bending capacity of simply 
supported beams: in the examples, the bending capacity of a CFS cross-section was increased 
by up to 30% compared to the commercially available section taken as a starting point.  

c. The strength erosion is a possible consequence of L-D interaction, such as those suggested in 
the optimized CFS of this work. Thus, case erosion be confirmed in futures analyses, there is 
demand to create new constrains which avoid the areas strength leak in the feasible region 
determined by NBR 14762. 

The actual work in progress is seeking to explore different cold-formed steel shapes (Hat, Z and 
Rack, e.g.), variables and constrains for an unsymmetrical optimization of lipped channel shapes 
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(𝑏௙ ௌ௨௣௘௥௜௢௥ ≠ 𝑏௙ ூ௡௙௘௥௜௢௥,𝑏௦ ௌ௨௣௘௥௜௢௥ ≠ 𝑏௦ ூ௡௙௘௥௜௢௥,e.g.) ,beam-columns  lengths and support conditions. 
The L-D interaction in optimized CFS is an especial thematic which future works intends to developed, 
through FEM analysis and experimental study.  
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