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Abstract. In this work the dynamic instability of a coupled tower-blade wind turbine system is 

investigated numerically. For this, the linear Euler-Bernoulli theory is used to describe the coupled 

tower-blade system and considering the lateral acceleration of the nacelle at the top of the tower, 

which is the base of the flexible blade. The Galerkin method is applied to obtain a set of linear 

ordinary differential equations of dynamic equilibrium which are, in turn, solved using the runge-kutta 

method. First, the coupled eigenvalues are obtained considering several blade rotational speeds and 

both the veering and instability phenomena are studied. Second, an external harmonic load is applied 

to the system and the linear dynamic behavior is analyzed. A parametric analysis is performed to 

observe their influence on the linear oscillations of the system. Obtained results show that the tower-

blade system can show instability or veering regions mainly due to blade rotation and, it is possible to 

observe jumps or large amplitude oscillations due to external loads 
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1  Introduction 

Currently, several countries invest in various kinds of energy sources, this is because 

nonrenewable energy is running out (such as oil and coal); in the case of wind, Brazil has a high 

potential, being a source that will get more investments over the years. 

The present work fits in the structure analysis aiming to study the dynamic stability of the wind 

tower. Wind towers may present in their structure dynamic instability due to the coalescence effect of 

the tower and shovel system, a phenomenon that occurs because the tower and blade present natural 

frequencies that approach or join. The dynamic study of wind towers has been widely approached, 

such as Chen et al. [1] showed that when considering a coupled tower and blade system, and another 

considering the blade and nacelle masses at the top of the wind tower, the coupled system presents a 

much larger displacement at the top of the tower in relation to the uncoupled case. Murtagh et al. [2] 

demonstrated that increasing the rotational effect of the blades increases the natural frequencies. 

Increasing the rotational frequency decreases the tower's time responses and the blades have greater 

rigidity when this happens. Kang et al. [3] made a dynamic analysis of a coupled blade and tower 

experimentally and analytically. They found the eigenvalues of the dynamic system and showed that 

the frequencies coalesce as the vibration mode of the tower and blade approaches. With the 

experimental analysis validated the numerical and experimental results, showing good agreement 

between them. 

Through the study it is expected to prove that instability occurs when the natural frequencies of 

the system approach or join, analyzing the displacement of a point over time, showing the instability 

of displacement. The objective is to study the dynamic instability of the wind tower, to obtain 

responses in the time of displacement and to make parametric analyzes of the tower-blade system for 

instability. 

2  Mathematical Formulation 

Consider a wind tower of circular section, height H, Young´s modulus ET, moment of inertia 

IT, cross section AT and density ρT, while the blade has length L, Young´s modulus EB, moment of 

inertia IB and cross section AB and density ρB. The tower has vertical axis z and transverse 

displacement field v, while the blade has vertical axis x and transverse displacement field u as seen in 

Fig.1. The rotation speed of the blade is Ω, the centrifugal force on the blade is Fc, while the mass of 

the nacelle is Mo. 

 

Figure 1 – Wind Tower Modeling. 

In this work, the formulation is based on Kang et al. [3], Eq. (1) and Eq. (2) show, 

respectively, the dynamic equilibrium equations of coupled tower-blades system, considering the 

Euler-Bernoulli linear theory for beams.  
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Where the damping of the tower and blade are respectively cT and cB, where cT = 2ξT ωT AT ρT 

and cB = 2ξB ωB AB ρB. The term ξ is the critical damping for the tower and ξB for the blade, whilst ωT 

is the tower's natural frequency and ωB is the paddle's natural frequency. In Eq. (1), δ corresponds to 

the Dirac delta. The harmonic displacements of the tower and blade are given by: 
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The displacement V(z) and U(x) are given by: 
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Where Ψ(z) is the tower shape function and ϕ(x) is the blade shape function, aj and bj are 

constants. The field displacements for the tower and blades, are given in by (Kang et al. [3]). 
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In addition to the form equations presented in Eq. (5), the field displacement can also be 

described as in Eq. (6) and Eq. (7) (Rao [4]). 

 

( ) ( )
( ) ( )
( ) ( )

( ) ( )( )zz
HH

HH
zzz jj

jj

jj

jjj 



 senhsen

senhsen

coscos
coshcos)( −

+

+
−−=

 (6) 

 

( ) ( )
( ) ( )
( ) ( )

( ) ( )( )xx
LL

LL
xxx jj

jj

jj

jjj 



 senhsen

senhsen

coscos
coshcos)( −

+

+
−−=

 (7) 

The values for βjH and βjL are constants for the free vibration of cantilever beams and can be 

found in (Rao [4]). The centrifugal force of the blade in Eq. (2) is described by: 
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This work also considered an external harmonic force, Fv, applied to the tower looking to 

evaluate the time response of the system, for this the force was represented according to Eq. (9), where 

P represents the amplitude of force at the top of the tower and Ωf represents the frequency of the force. 
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The Galerkin method is applied to obtain a set of ordinary dynamic equilibrium equations, in 
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free vibrations, it allows to obtain the natural frequencies of the system and, when forced externally, it 

can be integrated numerically using the Runge-Kutta method. 

3  Numerical Results 

3.1 Natural Frequencies 

A tower with height H = 46 m, density ρt = 7850 kg/m³, internal diameter of 1.49 m and 

external diameter of 1.50 m and Young´s modulus Et = 210 GPa, while the blade with length L = 22 

m, density ρB = 2770 kg/m³, thickness 0.1 m, width 0.5 m, Young´s modulus Eb = 69 GPa with zero 

damping of both tower and blade and no external load, and mass of nacelle Mo  = 30000 kg. The 

natural frequency values of the coupled system for these conditions are shown in Fig. 2. Were 

analyzed five modes of vibration, and coupled system results in two eigenvalues. Where natural 

frequencies approach or come together, they correspond respectively to the phenomena of veering and 

coalescence, where dynamic instability occurs, that is, they will cause large displacement vibrations. It 

is at these points that the responses in time must be analyzed to prove instability. 

 

(a) 

 

(b) 

Figure 2 – Frequency values for coupled tower-blade system. (a) Considering Eq (5). (b) According to Eq. (6) 

and Eq. (7). 

3.2 Response in time 

All responses in time were made considering the analysis at the highest point of the blade, 

therefore, being x = L, and the fact that the blade is coupled to the tower adds this displacement with 

that of the tower so that z = H. In addition, Eq (5) was considered, therefore, the natural frequencies 

shown in Fig. 2a. The blade rotation speed values of 50 rpm and 73.5 rpm, respectively corresponding 

to Fig. 3a and Fig. 3b, were used. The blade rotational speed values were chosen to exemplify 

displacement before, during and after the natural frequency approximations shown in Fig. 2a. For the 

processing of the time response in these cases two vibration modes were used and because of this we 

chose the value of 73.5 rpm, which occurs when the first two vibration modes are approached. It is 

noticed that the displacement remains periodically at frequencies of 50 rpm but, with 73.5 rpm it 

grows indefinitely, becoming unstable when coupling occurs. So what makes it unstable is not to 

increase the rotational speed of the blade, but rather as the natural frequencies approach. 

3.3 Response in time with force applied to the tower 

The time response was analyzed for two different cases: P = 10000 N with Ωf = ωT1 (Fig. 4a) 

and P = 10000 N with Ωf = 2ωT1 (Fig. 4b) considering 1% of the damping coefficient in all modes, 

where ωT1 is the first natural frequency of the tower. Comparing the time response figures with force, 
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it is observed that the application of force demonstrates greater displacement with the value of smaller 

Ωf, that is, with the value of the frequency of application of force in the largest tower, the displacement 

decreases.  

 
(a) 

 
(b) 

Figure 3 – Tower time response in coupled tower-blade system. (a)  = 50 rpm. (b)  = 73.5rpm. 

 
(a) 

 
(b) 

Figure 4 – Tower time response in coupled tower-blade system. (a) Considering P = 10000 N and Ωf = ωT1. (b) 

Considering P = 10000 N and Ωf = 2ωT1. 

4  Conclusion 

It was possible to observe the phenomenon of "veering" and coalescence, where the system 

becomes unstable, thus showing the importance of the study of wind towers in the coupled system. 

Furthermore, it has been shown that when a harmonic wind force is applied, the transverse 

displacements of the tower increase and decrease depending on the wind frequency ratio as a function 

of the natural frequency of the system. 
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