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Abstract. One of the most common problems in solids mechanics is the determination of displacement, 

strain and/or stress fields of a sample, given the geometry, constitutive parameters and boundary 

conditions. This problem is known as Direct Problems, being solved numerically by techniques such as 

the Finite Element Method (FEM). In this work, however, it is explored how to solve the inverse 

problem. To calculate the constituent parameters of the sample, we use the displacement fields obtained 

with a Digital Image Correlation (DIC) algorithm. Then, FEM simulations are performed using the same 

geometry, loading, boundary conditions and an arbitrary set of elastic parameters (Young's Modulus and 

Poisson's Coefficient). Displacement data measured via DIC serves as a reference in an optimization 

algorithm that minimizes the difference between the FEM and DIC offset data set using the initial FEM 

simulation as kickstart and updating the set of constituent material parameters for subsequent iterations. 

Material parameters are obtained when the optimization is completed, and the two displacement fields 

are close enough. At the end of the work, numerical examples are presented and compared with those 

obtained by the Finite Element Method Updating (FEMU), which works with deformations states. 

Keywords: Digital Image Correlation, Finite Element Method Updating, Inverse Problem, Constitutive 

Materials Properties.  

 



Template for CILAMCE 2019 (Use of DIC and FEM to Solve Inverse Problem Using Displacement Fields) 

CILAMCE 2019 

Proceedings of the XL Ibero-Latin American Congress on Computational Methods in Engineering, ABMEC, 

Natal/RN, Brazil, November 11-14, 2019 

1  Introduction 
A common problem in solid mechanics is the estimation of the behavior of a specimen under 

stress given its geometric and constitutive parameters along with its boundary conditions. Behavior 

consists of displacement, strain and stress data, being of utmost importance to structural analysis. This 

problem is known as the direct problem and it is numerically solved with computational techniques such 

as the Finite Elements Method (FEM). 

Experimentally, the specimen’s reactions can be measured via a variety of methods. Some 

techniques are intrusive to the specimen, for instance speckle interferometry [1], moiré interferometry 

[2] and shearography [3]. Others are considered non-intrusive, like speckle [4] and grid method [5]. 

Between the latter, Digital Image Correlation (DIC) [6, 7, 8] stands out as a simple and inexpensive yet 

accurate way of measuring full-field displacement data. The method uses pairs of images taken from the 

specimen’s plane surface under controlled lightning and other factors during different stages of loading.  

The problem approached in this paper, however, is called the inverse problem or the 

identification problem [9, 10], as it utilizes a set of data measured by full-field methods like DIC to 

identify the elastic parameters of the specimen’s material, being essentially the opposite of the direct 

problem. Evaluation of results is advantageous for both materials scientists and constructors who need 

to verify unknown aspects of a material or to validate a batch of construction materials. 

Many solutions for this problem have been developed along the years, like the Virtual Fields 

Method [11], the Equilibrium Gap Method [12] and the Reciprocity Gap [13]. For this paper, the inverse 

problem is solved utilizing the Finite Elements Method Updating (FEMU) [14, 15, 16] in a displacement 

setup, supported by DIC measuring. It consists in an optimization of the difference between two sets of 

displacement data, the first measured by DIC and the second calculated by FEM using an arbitrary set 

of material parameters. The parameters are updated via Newton-Raphson model up to an iteration where 

the sets of displacement are sufficiently close to one another, meaning the adopted elastic parameters 

represent the real ones. 

As a better way to validate the results, pairs of images used as input for DIC are computationally 

generated using an analytical model where the loading, geometric and elastic parameters are 

determinated. 

2  Methodology 
The procedure used in this work uses three stages: image generation, displacement measurement 

and mechanical parameters identification. 

It starts with predetermining the loading and the constitutive parameters of the material. A pair 

of 1024x1024 images are generated via numerical model simulating a test. The images represent states 

before and after the loading. Both are created with a random speckled pattern in gray scale by a plugin 

in the software Itom [17]. 

Then, the images are analyzed with DIC algorithm, which is a full-field displacement 

nonintrusive measuring technique. Essentially, it can be translated as a minimization problem of a 

correlation coefficient between intensity functions of the original and deformed image plus an updating 

displacement field, according to the equation: 

𝐶𝑍𝑁𝑆𝑆𝐷 =∑(
𝐼(𝑥, 𝑦) − 𝐼𝑚

∆𝐼
−
𝐼′(𝑥 + 𝑢, 𝑦 + 𝑣) − 𝐼𝑚

′

∆𝐼′
)

2

Ω

 (1) 

also called Zero Normalized Sum of Squared Differences objective function. Intensity functions 𝐼(𝑥, 𝑦) 
and 𝐼′(𝑥 + 𝑢, 𝑦 + 𝑣) represent the color intensity in gray scale of a pixel given its position in the image, 

𝐼𝑚 and 𝐼𝑚
′  are the average intensity, ∆𝐼 and ∆𝐼′ are the standard deviation of the intensities in domain Ω 

as seen in [18]. Vector (𝑢, 𝑣) is the displacement field for the coordinates (𝑥, 𝑦), given by the 

interpolation of the nodal displacements using Q4 elements shape function. Each iteration updates those 

nodal displacements until the minimization process ends, resulting in the displacement field of the pair 

of images. The updating is evaluated by Newton-Raphson equation: 
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𝑝 = 𝑝𝑜 −
∇𝐶(𝑝𝑜)

∇∇𝐶(𝑝𝑜)
 (2) 

where 𝑝𝑜 and 𝑝 are the old and new nodal displacement vectors.  

After DIC evaluation of the displacement field, parameters estimation process starts with a 

normalized sum of squared differences minimization process:  

𝐶𝑁𝑆𝑆𝐷(𝑝) = √∑((
𝑢𝑖
𝐹𝐸𝑀(𝑝) − 𝑢𝑖

𝐷𝐼𝐶
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2

+ (
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𝐹𝐸𝑀(𝑝) − 𝑣𝑖

𝐷𝐼𝐶

𝑣𝑖
𝐷𝐼𝐶 )

2

)

𝑛

𝑖=1

 (3) 

between the displacement sets from DIC and FEM simulation with similar boundary conditions and a 

set of arbitrary constitutive parameters.  

Considering an isotropic material, the set of elastic parameters 𝑝, comprised by the Young 

modulus (𝐸) and the Poisson’s ratio (𝜈), is updated each iteration by the following Newton-Raphson 

expression: 

∆𝑝 = (𝑆𝑡𝑆)−1𝑆𝑡(𝑢𝐷𝐼𝐶 − 𝑢𝐹𝐸𝑀(𝑝𝑘)) (4) 

 

where 𝑝𝑘 is the former set of parameters and 𝑆 is the sensitivity matrix, given by: 

𝑆 = [

𝜕𝑢

𝜕𝐸

𝜕𝑢

𝜕𝜐
𝜕𝑣

𝜕𝐸

𝜕𝑣

𝜕𝜐

] (5) 

 

Overall, the FEMU procedure implemented for this paper works according to the flow chart: 

 
Figure 1: Flow chart describing the functioning of the FEMU algorithm. Source: Adapted from 

Martins et al. (2018) [9]. 

3  Results and Validation 
By the end of the FEMU process, material’s constitutive parameters are identified. They are 

compared to the values used for the image generation for method validation. The data acquired using 

the formulation proposed in this paper is also compared to the set of data coming from a formulation 

based on [19], where the minimization is done using deformation data. The test was executed multiple 

times with a different element discretization for each case. 
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The software simulates an uniaxial tension test, where the specimen is under a 0,01 KN/mm 

traction load, having predeterminated Young modulus 𝐸 (kN/cm²) and Poisson’s ratio 𝜐. Using these 

values as model for validation, the following table compares them with both FEMU acquired set of 

elastic parameters, using displacement and deformation: 

Table 1. Comparison between constitutive parameters for the uniaxial tension test. 

Nº of 

elements  

Predeterminated Present work Error (%) Def. formulation Error (%) 

𝐸 𝜐 𝐸 𝜐 𝐸 𝜐 𝐸 𝜐 𝐸 𝜐 

100 

15 0,3 

14,647 0,321 2,4 -6,9 13,998 0,273 6,7 8,9 

400 14,333 0,299 4,5 0,3 13,997 0,272 6,7 9,4 

900 14,952 0,292 0,3 2,8 14,002 0,270 6,7 9,9 

1600 14,186 0,286 5,4 4,8 14,004 0,269 6,6 10,3 

2500 14,158 0,286 5,6 4,7 13,996 0,272 6,7 9,5 

100 

28 0,2 

28,367 0,239 -1,3 -19,5 26,988 0,181 3,6 9,7 

400 27,696 0,216 1,1 -8,1 27,022 0,186 3,5 7,0 

900 28,839 0,209 -3,0 -4,3 26,987 0,186 3,6 6,8 

1600 27,378 0,204 2,2 -1,9 26,996 0,186 3,6 7,0 

2500 27,287 0,202 2,5 -1,2 26,957 0,186 3,7 6,9 

100 

31 0,15 

31,643 0,181 -2,1 -20,8 29,982 0,131 3,3 12,8 

400 30,838 0,164 0,5 -9,3 30,002 0,140 3,2 6,9 

900 32,120 0,158 -3,6 -5,3 30,008 0,140 3,2 6,4 

1600 30,474 0,154 1,7 -2,7 30,018 0,143 3,2 4,7 

2500 30,421 0,152 1,9 -1,0 30,035 0,145 3,1 3,5 

 

As seen in Table 1, the data acquired by the FEMU algorithm developed for this paper had quite 

satisfactory results for the uniaxial tension test, if the image was divided in at least 900 elements. After 

this threshold the results doesn’t seem to get significantly more accurate with more elements. Also, the 

algorithm doesn’t seem to perform differently for different values of predeterminated parameters. 

The average error relative to the original parameters for the displacement FEMU algorithm 

running with at least 900 elements was 2,9% for the Young modulus and 3,2% for the Poisson’s ratio. 

The displacement formulation presented in this paper seems to perform slightly better than its 

deformation counterpart in every situation considered. Thus, the utility for this method applied to this 

test for constitutive parameter identification is noticeable. 

4  Conclusion 
The identification problem is one of the most common in modern structural engineering. Among 

many solutions to it, Finite Elements Method Updating (FEMU) shines as a simple yet accurate form of 

acquiring material parameters through experiments. 

This paper presented a procedure of using FEMU together with Digital Image Correlation (DIC) 

for an easy, inexpensive and accessible technique for constitutive parameter identification, and utilizes 

simulations made by Itom with a set of parameters for better validation. 

Applying this method for uniaxial tension test resulted in an accurate identification of the 

parameters, if at least 900 elements were used. The output of the displacement FEMU algorithm had an 

average error of 2,9% for the Young modulus and 3,2% for the Poisson’s ratio relative to the original 

set of parameters, being more accurate than its deformation counterpart. 
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