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Abstract. Trusses are a type of structural system widely applied in Engineering, performing, in many 

cases, as an agile and economically advantageous solution. In Structural Engineering, computational 

modeling consists of a powerful tool for representing the behavior of structural elements and systems, 

especially if a non-linear approach is utilized, allowing the evaluation of its mechanical performance 

both in the design phase and throughout its lifetime. Metal alloys, specially the steel, are currently 

employed on the construction of trusses. This kind of ductile material presents a pronounced non-

linear mechanical behavior, more specifically an elastoplastic one. Therefore, it is of importance the 

consideration of the hardening effect in the structural analysis of structural systems constituted by 

ductile materials, for allowing a better understanding of the structural behavior of these systems and 

the study of their resistance in the post-yield regime. This work aims to develop numerical models of 

trusses, considering different elastoplastic models – e.g., perfectly elastoplastic, isotropic hardening 

and Ramberg-Osgood – in order to verify its influence on the response of the trusses, regarding 

serviceability limit state (SLS) failure modes, in terms of allowable displacements and stresses. The 

models are implemented in Python language and validated according to examples presented in the 

literature. 
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1  Introduction 

Over time, engineers have become increasingly bold in building projects, developing larger and 

more complex structures, subjecting the structural materials to high stress levels. Thus, the trusses 

arise as a structural solution to extend the dimensions of structures, while also allowing them to bear 

elevated loads. Since then, trusses have become a type of structural system widely applied in 

Engineering, performing, in many cases, as an agile and economically advantageous solution.  

Moreover, computational modeling consists of a powerful tool for representing the behavior of 

structural elements and systems, especially if a non-linear approach is addressed, allowing the 

evaluation of its mechanical performance both in the design phase and throughout its lifetime. Metal 

alloys are currently employed on the construction of trusses. This kind of ductile material presents a 

pronounced elastoplastic behavior. Therefore, the consideration of the hardening effect stands out, for 

allowing a better understanding of the behavior of these structures, including in the post-yield regime. 

In this paper, the direct stiffness method is implemented and combined with different elastoplastic 

models – perfectly elastoplastic, isotropic hardening and Ramberg-Osgood – in order to analyze plane 

trusses in terms of force-displacement curves. The results obtained are verified by using analytical 

solutions and softwares. Finally, a comparative analysis on the different plasticity models is made, 

based on serviceability limit states. 

2  Numerical modeling of plane trusses 

The method utilized in this paper for the linear analysis of plane trusses is the Direct Stiffness 

Method. In this method, according to Papadrakakis and Sapountzakis [1], the implementation in 

Python 3 language can be made in four stages: firstly, the data of the structure is provided to the 

program (nodes coordinates, connectivity of members, mechanical properties of the material and 

boundary/loading conditions). Then, the computation of each element’s stiffness matrix is performed, 

and its stiffness terms are properly placed in the global stiffness matrix. In the third stage, the global 

matrix representing the equilibrium condition is solved with the appropriate numerical method, 

providing the nodal displacements. Lastly, the resultant stresses are computed, which subsequently can 

be used for dimensioning of the structural element. 

2.1 Perfectly elastoplastic model 

According to Proença [2], the perfectly elastoplastic model can be characterized by the non-

existence of the hardening phenomenon. Therefore, once the yield point stress is reached, the material 

yields indefinitely in a viscoplastic behavior. As such, Eq. (1) and Eq. (2) are valid.  

 𝜀 = 𝜀𝑒 + 𝜀𝑝 (1) 

 σ = Eεe = E(ε − εp) (2) 

Where E is Young’s modulus, σ is the stress on the material, ε is the strain and εe and ε p  are the 

elastic and plastic components, respectively. 

2.2 Isotropic hardening model 

In the elastoplastic model with linear isotropic hardening, after the yield stress of the material is 

reached, the total stress grows with the increase of strain. Such behavior characterizes the positive 

hardening, as affirmed by Silva and Lima Jr. [3]. 

The yield criterion for the linear isotropic hardening, whose positive value indicates that the 

material is in process of hardening, is represented in Eq. (3).  

 f(σ, α) = |σ| − (σy + Kα) (3) 
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where σ y  is the stress at yield point, K is the isotropic hardening modulus and α is a parameter 

that measures the accumulated plastic strain, whose variation is defined through Eq. (4). Additionally, 

the stress-strain relation and the plastic strain evolution law are shown in Eq. (5) and Eq. (6), 

respectively. 

 �̇� = |𝜀�̇�| (4) 

 �̇� = 𝐸(𝜀̇ − 𝜀�̇�) (5) 

 𝜀�̇� =
𝐸�̇�

𝐸+𝐾
 (6) 

2.3 Ramberg-Osgood equation 

Ramberg and Osgood [4] proposed an equation to approximate the stress-strain curve in terms of 

three parameters: Young’s modulus and two secant yield strengths. The exponential term in the 

equation is used to describe the behavior of the material regarding its plastic strain. In short, if we 

consider the strain at yield point to be 0.2%, which is a widely made assumption, the equation can be 

represented as follows (Eq. (7)). 

 𝜀 =
𝜎

𝐸
+ 0.002 (

𝜎

𝜎𝑦
)

𝑛

 (7) 

If we consider 𝐸0 the initial Young’s modulus and differentiate Eq. (7) with respect to strain, we 

can relate the current Young’s modulus with the stress, as shown in Eq. (8). This equation can be used 

in incremental algorithms that provide force-displacement curves of the Ramberg-Osgood method.  

 𝐸 =
𝑑𝜎

𝑑𝜀
=

1

1

𝐸0
+0.002

𝑛

𝜎𝑦
(

𝜎

𝜎𝑦
)

𝑛−1 (8) 

And finally, by knowing the material’s yield stress, ultimate stress, its associated strains and the 

Young’s modulus, we can determine the value for the constant n, as shown in Eq. (9).  

 𝑛 =
𝑙𝑜𝑔(𝜀𝑢−𝜀𝑦)

𝑙𝑜𝑔(𝜎𝑢−𝜎𝑦)
 (9) 

3  Results and discussion 

The plane truss analyzed in this paper can be seen in Fig. 1. 

 

Figure 1. Structural scheme of the analyzed truss with loading applied to the central node 

The bars utilized in the analyzed truss have custom-dimension double angle profile and, in the 

force-displacement analysis, the loading is applied to the central node of the bottom chord, as shown 

in Fig. (1). Information regarding the properties of the bars and parameters of the applied methods can 

be seen in Table 1. 

Table 1. Terms utilized in the structural analysis 
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Name Nomenclature Value 

Isotropic hardening modulus K 77.5 kN/cm² 

Young’s modulus E 20000 kN/cm² 

Cross section area S 0.02 m² 

Stress at yield point 

Strain at yield point 

Stress at ultimate point 

Strain at ultimate point 

Hardening behavior constant 

σy 

εy 

σu 

εu 

n 

25 kN/cm² 

0.002 

40 kN/cm² 

0.2 

9.798159 

In order to obtain the stress-strain curves of the material, an incremental algorithm was 

implemented in Python 3 language, in which small increments of stress (∆𝜎 = 0.005 𝑘𝑁/𝑐𝑚²) were 

applied to the analyzed member and its strain evaluated for each new accumulated stress, according to 

the criteria of each of the plasticity models addressed in this paper, which resulted in Fig. 2. The 

results were validated with the analytical equations. It is worth mentioning that, according to Euler’s 

critical load formula, none of the bars buckle before collapse. 

 

Figure 2. Stress-strain curve of the adopted material according to different plasticity chord 

The Direct Stiffness Method algorithm directly provides the force-displacement relation for the 

load applied to the node. In the perfectly elastoplastic method, successively larger values of loading 

are applied, and its respective displacements evaluated. In the Ramberg-Osgood method (and, 

similarly, in the isotropic hardening method), an incremental approach is added, in which steps of 

loading are applied to the structure in its initial configuration and the respective displacements 

evaluated, and, after each step, its Young modulus updated to correspond to the new accumulated 

loading. The force-displacement curves obtained from the adopted methods can be seen in Fig. (3). 

 

Figure 3. Force-displacement curve for loading applied to the central node of the bottom chord 

The structure collapses in the perfectly elastoplastic model by yielding of the top chord, whereas, 

in both Ramberg-Osgood and isotropic hardening methods, the structure collapses by tensile rupture of 
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the top chord. The corresponding force-displacement values for each method are shown in Table 2. 

Table 2. Maximum force and displacement values for different plasticity models 

Method Maximum Force Maximum Displacement 

Perfectly elastoplastic 3511.23 𝑘𝑁 4.35 𝑐𝑚 

Isotropic hardening 5617.98 𝑘𝑁 625.67 𝑐𝑚 

Ramberg-Osgood 5617.98 𝑘𝑁 541.00 𝑐𝑚 

The inferior maximum displacement of the Ramberg-Osgood method, in relation to the isotropic 

hardening model, can be explained by the smoother process of hardening, which can be seen in Fig. 3, 

in contrast to the abrupt hardening of the isotropic hardening model. 

According to the [5], the serviceability limit state for maximum allowable displacement for roof 

beams is given by the Eq. (10). 

 δ =
𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑏𝑒𝑎𝑚

250
 (10) 

In the present case, the allowable displacement is 4.80 𝑐𝑚, which is barely in the plastic section 

of the material’s stress-strain curve. 

4  Conclusions 

From the force-displacement analysis of the studied case, it is evident that the serviceability limit 

state proposed by the NBR8800 stands out as relatively conservative if compared to the maximum 

displacement observed in the ultimate limit state, as it sticks to a behavior region where the material’s 

response can be easily predicted with relatively high conviction. 

If we analyze the force-displacement graphs past the serviceability limit state, we can confirm 

how the non-linearity of constitutive properties of the material can greatly influence the response of 

the structural system. 

The authors suggest for future works, as a continuity of this study, the consideration of geometric 

non-linearity in the structural analysis, as well as adaptation of the algorithm to process spatial trusses. 
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