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Abstract. This article aims to use a numerical algorithm in Matlab for the design of rectangular 

reinforced concrete columns under eccentric loads. Usually, both in academic and professional practice, 

the design of such columns makes use of dimensionless charts or tables. These charts are subject to 

specific restrictions as section shape, reinforcement positioning, covering dimensions, among others, so 

that the design is limited to their availability. The alternative described employs Newton-Raphson’s 

method to solve the nonlinear system of equations that arises from section equilibrium, keeping the 

neutral axis position and reinforcement diameters as variables. The nonlinear constitutive behavior of 

both materials involved is considered so that the equilibrium is expressed as a system of two nonlinear 

equations for bending normal to a symmetry axis. The concrete stress distribution proposed by Brazilian 

standard NBR 6118:2014 was used and a perfect elasto-plastic model was adopted for steel. The 

algorithm was validated by comparing the steel area and modes of failures obtained with traditional 

design methods, for several columns on different limit states. 
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1  Introduction 

The use of computer software in civil engineering, just as in many areas of study, allows for an 

improved data analysis and better design, as structural behavior can be simulated and analyzed for many 

different applications. This work aims at implementing an algorithm in MATLAB to find the necessary 

steel area in a reinforced concrete column section, subject to ultimate limit state design criteria, for a 

given loading condition. 

Mosley, Bungey and Hulse [1] states that the area of steel reinforcement needed for a cross-section 

is determined by (i) using design charts or constructing 𝑀 − 𝑁 interaction diagrams (ii) a solution of 

the basic design equations, or (iii) an approximate method. The first approach is the most usual for hand 

calculations of common geometries, but is subject to the availability of design charts as in Montoya, 

Messeguer and Cabré [2] or Venturini and Rodrigues [3], thus not suitable for computer implementation. 

This works describes a computer implementation for the design of reinforced concrete sections 

subject to normal forces and bending moment based on the solution of the section’s equilibrium 

equations using Newton-Raphson’s method (NRM). As a computer code, it is an automatic process that 

makes possible the easy manipulation for different sections. 

2  Section equilibrium 

 

Figure 1. Concrete cross-section 

Figure 1 shows a reinforced rectangular cross-section with sides 𝑏 × ℎ and symmetric by the 

vertical 𝑥 axis and with centroid coordinate 𝑥𝐶𝐺. Let this section have 𝑛 reinforcement rods each with 

area 𝐴𝑠 and position 𝑥𝑖, with the lowest bar having coordinate 𝑑. The section is subject to design normal 

force 𝑁𝑑 and bending moment 𝑀𝑑 that will cause stresses on the concrete that amount to the force 𝐹𝑐 on 

the concrete and 𝐹𝑠𝑖 in each steel bar. The section will be equilibrated if 

∑𝑀𝑠𝑖

𝑛

𝑖=1

+ 𝑀𝑐 − 𝑀𝑑 = 0 and ∑𝐹𝑠𝑖

𝑛

𝑖=1

+ 𝐹𝑐 − 𝑁𝑑 = 0, (1) 

where 𝑀𝑐 and 𝑀𝑠𝑖 are respectively the moments of the force acting on the concrete and steel in relation 

to the 𝑥𝐶𝐺 axis. 

The Bernoulli beam hypothesis is adopted so that the section remain plane and both steel (𝜀𝑠𝑖) and 

concrete (𝜀𝑐) strains are proportional to the distance to the neutral axis. The reinforcement area will be 

determined in ultimate limit state, where section strains are described trough the deformation domains 

defined by ABNT [4] by the position 𝑥𝑁𝐴 of the neutral axis. 

The constitutive relation for concrete neglect tension and adopts a rectangular approximation for 

compressive stresses and a limited elasto-plastic relation is assumed for steel, also according to ABNT 

[4]. The design strength of concrete is 𝑓𝑐𝑑 and the resulting force on concrete is 

𝐹𝑐 = {

0, if 𝑥𝑁𝐴 < 0
−0.68 ∙ 𝑓𝑐𝑑 ∙ 𝑏 ∙ 𝑥𝑁𝐴, if 0 ≤ 𝑥𝑁𝐴 ≤ 1.25 ℎ
−0.85 ∙ 𝑓𝑐𝑑 ∙ 𝑏 ∙ ℎ, if 𝑥𝑁𝐴 > 1.25 ℎ

. (2) 
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The force on a steel rod of diameter 𝜙𝑖 depends on whether it has yielded, so that 

𝐹𝑠𝑖 = {

−𝐴𝑠 𝑓𝑦𝑑 , if 𝜀𝑠𝑖 ≤ −𝜀𝑦

𝐴𝑠 𝐸𝑠 𝜀𝑠𝑖 , if − 𝜀𝑦 ≤ 𝜀𝑠𝑖 ≤ 𝜀𝑦

𝐴𝑠 𝑓𝑦𝑑, if 𝜀𝑠𝑖 > 𝜀𝑦

 . (3) 

The moments due to these forces with respect to the centroid of the concrete area are 

𝑀𝑐 = 𝐹𝑐 ∙ (0.4 ∙ 𝑥𝑁𝐴 − 𝑥𝐶𝐺) and 𝑀𝑠𝑖 = 𝐹𝑠𝑖 ∙ (𝑥𝑖 − 𝑥𝐶𝐺). (4) 

2.1 Compatibility conditions 

Brazilian standards by ABNT [4] limit the strains on concrete ‖𝜀𝑐‖ ≤ 3.5‰ and steel ‖𝜀𝑠‖ ≤
10.0‰. Along with the linear strain distribution hypothesis, these limitations generate a compatibility 

statement of the strains on a section under failure described as five domains and governed by the position 

of the neutral axis 𝑥𝑁𝐴. 

For Domain 1, the neutral axis is over the cross-section so that 𝑥𝑁𝐴 ≤ 0, the whole section is under 

tension and the strains will be limited by the lowest steel rod. The strains on the other rods and on 

concrete will be respectively 

𝜀𝑠𝑖 =  10 ∙
𝑥𝑖 − 𝑥𝑁𝐴

𝑑 − 𝑥𝑁𝐴
 and 𝜀𝑐𝑢 = 0. (5) 

On Domain 2, compressive stresses arise. The neutral axis will be on 0 < 𝑥𝑁𝐴 < 0.259𝑑, the 

strains will be 10.0‰ on the lowest steel rod and 0 < 𝜀𝑐𝑢 ≤ 3.5‰ on the most compressed concrete 

fiber. 

𝜀𝑠𝑖 =  10 ∙
𝑥𝑖 − 𝑥𝑁𝐴

𝑑 − 𝑥𝑁𝐴
 and 𝜀𝑐𝑢 = −10 ∙

𝑥𝑁𝐴

𝑑 − 𝑥𝑁𝐴
. (6) 

When the neutral axis is in a position between 0.259𝑑 < 𝑥𝑁𝐴 ≤ 0.628𝑑, the section is said to 

failure on Domain 3. The largest strain in concrete will be 𝜀𝑐𝑢 = 3.5‰ and the most strained steel rod 

will still be under yield 𝜀𝑦𝑑 < 𝜀𝑠𝑖 ≤ 10‰. When the neutral axis is on Domain 4, its position will vary 

between 0.628𝑑 < 𝑥𝑁𝐴 ≤ ℎ, the maximum strain on concrete will be 𝜀𝑐𝑢 = −3.5‰ and the lowest 

reinforcement will be on the elastic regime. For both cases, the strain on the other rods will be 

𝜀𝑠𝑖 =  3.5 ∙
𝑥𝑖 − 𝑥𝑁𝐴

𝑥𝑁𝐴
. (7) 

Lastely, on Domain 5, the section is fully compressed, the neutral axis will be in a position such 

that 𝑥𝑁𝐴 > ℎ and the strain on the most compressed concrete area will vary between −2‰ < 𝜀𝑐𝑢 ≤
−3.5‰. Nevertheless, the whole section cannot be on the plastic region at the same time, so strains are 

limited around a point 𝑐 = 3ℎ/7 below the most compressed fiber. The strains are, then 

𝜀𝑐𝑢 = −2 ∙
𝑥𝑁𝐴 − 𝑑

𝑥𝑁𝐴 − 𝑐
 and 𝜀𝑠𝑖 =  2 ∙

𝑥𝑖 − 𝑥𝑁𝐴

𝑥𝑁𝐴 − 𝑐
. (8) 

3  Nonlinear system 

The nonlinear system of equations arises from Eq. (1) and (2) with the appropriate substitutions for 

each domain. As described in Ruggiero and Loppes [5], in order to use NRM, there is the need to find 

the Jacobian of the equations, composed by the derivative of the equilibrium equations by the system 
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variables, conveniently chosen to be the position of the neutral axis 𝑥𝑁𝐴 and the diameter of a rod 𝜙. 

𝐽 =

[
 
 
 
 
 ∑

𝑑𝑀𝑠𝑖

𝑑𝑥𝑁𝐴

𝑛

𝑖=1

+
𝑑𝑀𝑐

𝑑𝑥𝑁𝐴
∑

𝑑𝑀𝑠𝑖

𝑑𝜙

𝑛

𝑖=1

+
𝑑𝑀𝑐

𝑑𝜙

∑
𝑑𝐹𝑠𝑖

𝑑𝑥𝑁𝐴

𝑛

𝑖=1

+
𝑑𝐹𝑐

𝑑𝑥𝑁𝐴
∑

𝑑𝐹𝑠𝑖

𝑑𝜙

𝑛

𝑖=1

+
𝑑𝐹𝑐

𝑑𝜙 ]
 
 
 
 
 

 

The derivatives of concrete stresses (𝑀𝑐 and 𝐹𝑐) are all zeros if the section is on Domain 1 or 𝑥𝑁𝐴 ≥
1.25 ℎ. If the section is in 0 ≤ 𝑥𝑁𝐴 ≤ 1.25 ℎ, 

𝑑𝑀𝑐

𝑑𝑥𝑁𝐴
= 𝐹𝑐 ∙ 0.4 + 0.68 ∙ 𝑓𝑐𝑑 ∙ 𝑏 ∙ 𝑥𝑐𝑔;  

𝑑𝐹𝑐

𝑑𝑥𝑁𝐴
= −0.68 ∙ 𝑓𝑐𝑑 ∙ 𝑏; 

𝑑𝑀𝑐

𝑑𝜙
= 0 and 

𝑑𝐹𝑐

𝑑𝜙
= 0. 

The following are the derivatives pertaining to the steel forces, for a rod is in its elastic regime.  

In Domains 1 and 2: 
𝑑𝐹𝑠𝑖

𝑑𝜙
=

𝜙 ∙ 𝜋

2
∙ 𝐸 ∙ 10 ∙

𝑥𝑖 − 𝑥𝑁𝐴

𝑑 − 𝑥𝑁𝐴
 and 

𝑑𝐹𝑠𝑖

𝑑𝑥𝑁𝐴
=

𝜙² ∙ 𝜋

4
∙ 𝐸 ∙ 10 ∙

𝑥𝑖 − 𝑑

(𝑑 − 𝑥𝑁𝐴)2
 

In Domains 3 and 4: 
𝑑𝐹𝑠𝑖

𝑑𝜙
=

𝜙 ∙ 𝜋

2
∙ 𝐸 ∙ 3.5 ∙

𝑥𝑖 − 𝑥𝑁𝐴

𝑥𝑁𝐴
 and 

𝑑𝐹𝑠𝑖

𝑑𝑥𝑁𝐴
=

−𝜙² ∙ 𝜋

4
∙ 𝐸 ∙ 3.5 ∙

𝑥𝑖

(𝑥𝑁𝐴)2
 

For Domain 5: 
𝑑𝐹𝑠𝑖

𝑑𝜙
=

𝜙 ∙ 𝜋

2
∙ 𝐸 ∙ 2 ∙

𝑥𝑖 − 𝑥𝑁𝐴

𝑥𝑁𝐴 − 𝑐
 and 

𝑑𝐹𝑠𝑖

𝑑𝑥𝑁𝐴
=

−𝜙² ∙ 𝜋

4
∙ 𝐸 ∙ 2 ∙

𝑥𝑖 − 𝑐

(𝑐 − 𝑥𝑁𝐴)2
 

For the moment, the derivatives are, for all Domains,  

𝑑𝑀𝑠𝑖

𝑑𝜙
=

𝑑𝐹𝑠𝑖

𝑑𝜙
∙ (𝑥𝑖 − 𝑥𝑐𝑔) and 

𝑑𝑀𝑠𝑖

𝑑𝑥𝑁𝐴
=

𝑑𝐹𝑠𝑖

𝑑𝑥𝑁𝐴
∙ (𝑥𝑖 − 𝑥𝑐𝑔). 

When the steel rod is on the plastic region, 

𝑑𝐹𝑠𝑖

𝑑𝜙
=

𝜙 ∙ 𝜋

2
∙ (±𝑓𝑦𝑑); 

𝑑𝑀𝑠𝑖

𝑑𝜙
=

𝑑𝐹𝑠𝑖

𝑑𝜙
∙ (𝑥𝑖 − 𝑥𝑐𝑔); 

𝑑𝐹𝑠𝑖

𝑑𝑥𝑁𝐴
= 0; and 

𝑑𝑀𝑠𝑖

𝑑𝑥𝑁𝐴
= 0 

4  Results 

To validate the algorithm, some examples of design of steel reinforcement where carried out using 

design charts. The physical and geometrical characteristics of the sections where fixed (𝑓𝑐𝑑, 

reinforcement position, section and cover sizes), just as the design stresses. From an initial guess for the 

neutral axis position and the rod diameters, the program solves the equilibrium equations. 

4.1 First set  

The first set of sizing examples comes from Chust and Pinheiro [6], imposing different stresses for 

a fixed size 20 × 30 𝑐𝑚 section with 3 𝑐𝑚 cover and 4 reinforcement bars. The results are in Table 1. 

4.2 Second set 

This second set is proposed by Araújo [7] for different concrete strength 𝑓𝑐𝑑 = 𝑓𝑐𝑘/1.4. The section 
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consists of a 20 × 40𝑐𝑚 rectangle, with 4 𝑐𝑚 cover and 4 rows of 2 bars each, subject to a normal force 

of 𝑁𝑑  =  574𝑘𝑁 and bending moment 𝑀𝑑 = 143.5 𝑘𝑁𝑚. The results are shown in Table 2. 

Table 1. Results for the first set of examples 

𝑁𝑑 (𝑘𝑁) 𝑀𝑑  (𝑘𝑁𝑚) 𝜙 chart (𝑐𝑚) 𝜙 algor. (𝑐𝑚) Difference 

276 0 1,683139 1,6819 0,0736% 

0 110 3,069523 3,0554 0,4601% 

-367 110 2,640263 2,6487 0,3196% 

-643 55 1,938055 1,9716 1,7309% 

-1010 55 2,746624 2,6599 3,1575% 

Table 2. Results for the second set of examples 

𝑓𝑐𝑘(𝑀𝑃𝑎) 𝜙 chart (𝑐𝑚) 𝜙 algor. (𝑐𝑚) Difference 

25 1,841627 1,8362 0,2947% 

30 1,717306 1,7117 0,3265% 

40 1,485223 1,4787 0,4392% 

50 1,318925 1,3186 0,0247% 

5  Conclusions 

It is important to note the need for a good initial guess for the problem, as convergence of NRM is 

only guaranteed close to the solution. 

For the cases of pure tension (Domain 1) and pure compression (5), the algorithm converges slowly, 

as the neutral axis will approximate ±∞. This consideration can be explored in future works. 

The difference between the results described herein and those found in the reference works is small 

and probably due to approximations both in the computational approach and the use of charts. 

The algorithm introduced is then flexible, as it is readily adaptable for different reinforcement 

distributions, reliable and easy to implement in a computation environment. It can also be improved as 

to provide commercially available diameters as an output. 
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