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Abstract. In this paper, the Method of Fundamental Solutions (MFS) is applied to predict the 
insertion loss of thin acoustic barriers on a rigid ground in the vicinity of a tall building. The MFS 
formulation makes use of suitable Green’s functions defined by the image-source technique, allowing 
decreasing the number of discretized surfaces and consequently reducing the computational cost of 
the numerical model. Both the ground and the building are modeled as infinite rigid plane surfaces. 
To validate the implementation of the proposed formulation, the MFS results are compared with those 
provided by the Dual-BEM formulation. Numerical simulations are carried out in order to illustrate 
the acoustic performance of thin barriers of different shapes for typical cases of traffic noise. 
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1  Introduction 

Acoustic barriers are widely used to reduce the noise pollution and to shield residencial areas 
from the traffic noise. Different types of barriers are used to obstruct the sightline between the 
observer and the sound source. Many numerical methods have been developed to simulate sound 
propagation around the acoustic barriers. Among them, the Boundary Element Method (BEM) has a 
more compact description of the acoustic medium, requiring only the discretization of the boundaries 
of the problem and it is very well suited to simulate of homogeneous unbounded problems since it 
automatically satisfies the Sommerfeld radiation condition. The BEM has a number of advantages 
over other methods [1]. However, its application is often limited by the requirement of prior 
knowledge of Green’s functions and the appearance of numerical and analytical integrals, and has 
some difficulties for analysis of very thin bodies, in the form of near-singularities and near-degeneracy 
of the final system of equations. 

Filippi and Dumery [2], Cassot [3] and Terai [4] developed an efficient boundary integral 
equation technique to analyse the scattering of waves by thin rigid screens in infinite domain. Later, 
Kawai and Terai [5] applied the standard and hyper-singular integral equations to analyse outdoor 
sound attenuation by thin absorbing barriers over a rigid ground using a suitable Green’s function 
defined by the method of images to avoid the discretization of the infinite plane ground. This 
formulation, which combines the use of standard and hyper-singular integral equations over the thin 
bodies, is also called the dual Boundary Element Method (dual-BEM). 

More recently, mesh reduction methods have been attracted great interesting of scientist for 
acoustics engineering problems. Among these methods, the Method of Fundamental Solutions (MFS) 
is a mesh-free boundary-type method and its mathematical formulation is quite simple. It is based on 
the prior knowledge of fundamental solutions, but not requiring the numerical and analytical 
integrations that need to be performed in the BEM. The MFS formulation also makes use of Green’s 
functions and it is also very well suited to the problems of infinite and semi-infinite domains since the 
Sommerfeld radiation condition is automatically satisfied. However, one disadvantage of the MFS is 
the determination of the position of the virtual sources on which the singularities are placed. 
Therefore, Karageorghis [6] has proposed a simple algorithm for estimating the optimal position of the 
virtual sources for certain boundary value problems. Costa et al. [7, 8] have shown that, despite its 
simplicity, the MFS is suitable tool to efficiently predict acoustic wave propagation in the frequency 
domain. 

This paper analyses the insertion loss of thin acoustic barriers on a rigid ground in the vicinity of 
a tall building by means of the MFS. The proposed formulation makes use of the sub-region technique, 
and the Green’s functions are employed for limiting the number of discretized surfaces, consequently 
reducing the computational cost of the numerical model. In this model, both the ground and the 
building are modeled as infinite rigid plane surfaces. The proposed model is verified by the 
comparison of numerical results with those provided by the dual-BEM formulation. Numerical 
simulations are carried out by using different types of thin acoustic barriers in order to evaluate its 
insertion losses next to the façade of a building. 

2  Governing equation 

The propagation of an acoustic wave in the homogeneous linear fluid medium at rest is governed 
in the frequency domain by the Helmholtz equation, which can be written as: 

 2 2( ) ( ) 0p x k p x∇ + = , (1) 

where ( )p x  is the acoustic pressure, and =k cω  is the wave number, with 2 fω π=  being the 

angular frequency and c  the speed of sound in the acoustic medium.  
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Assuming an infinite medium excited by a harmonic point pressure source at position 0x , the 

incident pressure field at any point x  is given by: 

 
i (2)
0 0( ) ( )

4
p H kr= −x , (2) 

where 2 2
0 0 0( ) ( )r x x y y= − + − , (2)

0H  is the Hankel function of the second kind of order zero 

and i 1= − . 

3  Image-source Green’s function 

In the acoustic analyses, the presence of totally reflecting plane surfaces can be taken into account 
by using the image-source technique. Thus, considering an image source in relation to the horizontal 
x-axis, as shown in Fig. 1(a), the corresponding Green’s function can be written as: 

 
i (2) (2)

0 0 0 0 1( , ) ( ) ( )
4

G H kr H kr = − +  
x x , (3) 

with 2 2
1 0 0( ) ( )r x x y y= − + + . 

 
 
 
 

 
a) 

 
b) 
 

 
                     c) 

Figure 1. The image-source technique for: a) half-space; b) quarter-space and c) wedge with an 
opining angle β . 
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The above described Green’s function can be further extended to incorporate more reflecting 
planes. Thus, considering a quarter-space defined by two axes, one at x-axis and other at y-axis, as 
shown in Fig. 1(b), the Green’s function can be expressed as: 

 
i (2) (2) (2) (2)

0 0 0 0 1 0 2 0 3( , ) ( ) ( ) ( ) ( )
4

G H kr H kr H kr H kr = − + + +  
x x , (4) 

with 2 2
2 0 0( ) ( )r x x y y= + + −  and 2 2

3 0 0( ) ( )r x x y y= + + + . 

Assuming a wedge with an opining angle β , as shown in Fig. 1(c), the Green’s functions can be 
expressed as: 

 
i i(2) (2) (2) (2) (2)

0 0 0 0 1 0 2 0 3 0 4
1

( , ) ( ) ( ) ( ) ( ) ( )
4 4

NS

n

G H kr H kr H kr H kr H kr
=

 = − − + + +  ∑x x , (5) 

with    = − + −   
2 2

0 0cos( ) sin( )j j jr x r y rγ γ , 1 0 2 ( 1)nγ θ β= − − − , 2 0 2 nγ θ β= − + , 

3 0 2 nγ θ β= −  and 4 0 2 nγ θ β= + . 

where 0θ  and 0r  are the azimuth and the distance from the wedge corner to the source and NS is the 

number of sources. The number of image sources is finite because only the visible sources are taken 
into account. Further details on the visible sources can be found in Tadeu et al. [9] and Hasheminejad 
and Mojahed [10]. 

4  MFS Formulation 

The MFS model is here developed by assuming an acoustic domain divided into n sub-domains, 
as shown in Fig. 2, in which adequate Green’s functions are used. For this purpose, the collocation 
points placed at the circular fictitious interfaces are defined as CP and the virtual sources positioned 
outside each sub-region are defined as VS. Thus, within each sub-domain, the MFS allows the 
acoustic field to be computed as a linear combination of Green’s functions, simulating the sound field 
within each sub-domain through a set of virtual sources located outside it and at a fixed distance from 
the circular interfaces that limits each sub-domain. 

 
Figure 2. Schematic representation of the MFS model. 

For each sub-region, the acoustic pressure at an internal point kx  can then be written as: 
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    within ,

1

( ) ( , ) ( , ), ( 1,2, 3)
j

j j j

VS

k l kl k l ij ks k s j
l

p a G G j
Ω Ω Ω

δ Ω
=

= + =∑x x x x x , (6) 

    within 
1

( ) ( , ), ( 4, , )
j

j j

VS

k l kl k l j
l

p a G j n
Ω Ω

Ω
=

= =∑x x x … , (7) 

and the normal component of the particle velocity as: 

 
VS

   within 
1

( ) ( , ) ( , )
, ( 1,2, 3)

j jj

jk kl k l ks k s
l ij j

l

p G G
a j

Ω Ω
Ω

δ Ω
=

∂ ∂ ∂
= + =

∂ ∂ ∂
∑

x x x x x

n n n
, (8) 

 
VS

   within 
1

( ) ( , )
, ( 4, , )

jj

jk kl k l
l j

l

p G
a j n

Ω
Ω

Ω
=

∂ ∂
= =

∂ ∂
∑

x x x

n n
… , (9) 

where n  is the unit normal vector pointing outwards of each sub-region, j

l
a
Ω

 are the unknown 

amplitudes to be determined for each virtual source, i is the sub-domain in which the real source is 

positioned, ijδ  is the Kronecker delta, ( , )j

ks k s
G
Ω
x x  is the incident field regarding the acoustic pressure 

generated by the real source when placed in the sub-domain jΩ  and ( , )j

kl k l
G
Ω
x x  refers to the Green’s 

function generated by the virtual sources. These Green’s functions are obtained by means of the 
image-source technique, whose details were given in the previous section. 

By enforcing at each collocation point kx , the continuity condition of the acoustic pressure and of 

the normal component of the particle velocity with respect to the circular fictitious interfaces, the 
following 2CP 2VS×  system of equations can be obtained: 

 =Ax b , (10) 

where 

 

CP VS CP VS

CP VS

CP VS

CP VS CP VS

CP VS CP VS

1 2

1 1 1 2

1

1 1 2

1 2

1

1 1 1

1

1 1 1

( 1, ; 1, ) ( 1, ; 1, )

( 1, ; 1, )

( 1, ; 1, )

( 1, ; 1, ) ( 1, ; 1, )

( 1, ; 1, ) ( 1, ; 1, )

n

n n n

n

n n n
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Ω Ω

Ω
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∂ ∂
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G 0
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⋮ ⋮ ⋱ ⋮
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

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 
 
 
 
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 
 
 

, (11) 

 
VS VS VS

1 2

1 2( 1, ) ( 1, ) ( 1, )
n

n

T

l l l

Ω Ω Ω

= = =
 =   

x a a a⋯ . (12) 

For example, if the real source is positioned in sub-domain 1Ω , the right-hand-side term is 

defined as: 

 1 1 1 1

1 1 1 1( 1,CP ; ) ( 1,CP ; ) ( 1,CP ; ) ( 1,CP ; )n n

T

k s k s k s k s− −

Ω Ω Ω Ω
= = = =

∂ ∂ = − − − − ∂ ∂ 
b G G G G

n n
⋯ , (13) 

Once this system of equations is solved, the acoustic pressure at any domain point may be 
obtained by using the Eqs. (6) and (7). 
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5  MFS validation 

In order to validate the implementation of the proposed formulation, the results are compared 
with those provided by the standard Dual-BEM formulation. We consider thin acoustic barriers of 
different shapes located on a rigid ground at (0.0m, 0.0m). The fluid medium is excited by a point 
source placed at position (-10.0m, 1.0m), as shown in Fig. 3. The length of the upper section in each 
profile is 1.0m and the slope of the arms of the T- and Y-profiles is 45o. The effective height of the T- 
and Y-profile barriers is 2.0m. In this analysis, a plain thin barrier 2.0m height is also considered. The 
acoustic medium is assumed to be air at 20 oC and atmospheric pressure of 1atm, with density of 
1.21kgm-3 and sound propagation velocity of 343ms-1. Here, computations are performed for 
frequencies up to 1000Hz, with a frequency step of 25Hz. A dual-BEM model is used as a reference 
model for comparison of the computed results of the proposed model. This model was discretized with 
a very large number of elements (about 50 elements per wavelength) to ensure the accuracy of the 
numerical solution. The number of collocation points is defined by means of the relation between the 
incident wavelength and distance between collocation points. This relation is defined as r. The 
distance between the virtual sources and the fictitious circular interface is defined as Dvs and the 
distance of the collocation points is defined as Dcp. In all results, the number of virtual sources is equal 
to the number of collocation points, and a distance between collocation and source points of 
Dvs=2.0Dcp is always used. Further details on this distance can be found in Costa et al. [11]. 

 
a) 

 
b) 

 
c) 

Figure 3. Geometry of the problem considering different types of thin acoustic barriers: a) Plain, b) T 
and c) Y. 

Figure 4 displays the comparison between the dual-BEM and the MFS results as a function of the 
frequency range 50-1000Hz, with a frequency step of 25Hz. A logarithmic scale was used to allow a 
better observation of the difference between acoustic pressure amplitudes of the MFS and the 
reference solutions. Analysis of the results clearly confirms that as the relation r increases, an 

x

Source
(-10.0 m, 1.0 m) 

Groundy

B
ar

rie
r 

h
ei

gh
t

  
   

  
2

.0
 m

           Receiver
 (10.0 m, 1.0 m)

x

Source
(-10.0 m, 1.0 m) 

Groundy

E
ffe

ct
iv

e 
h

e
ig

ht
   

   
 2

.0
 m

           Receiver
 (10.0 m, 1.0 m)

   Length
    1.0 m

x

Source
(-10.0 m, 1.0 m) 

Groundy

E
ffe

ct
iv

e 
he

ig
h

t
   

   
 2

.0
 m

           Receiver
 (10.0 m, 1.0 m)

   Length
    1.0 m

45°



Edmundo G. de A. Costa, Samuel B. Velten, Wilian J. dos Santos, José A. F. Santiago 

CILAMCE 2019 
Proceedings of the XL Ibero-Latin American Congress on Computational Methods in Engineering, ABMEC, 

Natal/RN, Brazil, November 11-14, 2019 

excellent agreement among the two solutions is obtained (see Fig. 4(a1-c1)). The results presented in 
Fig. 4(a2-c2) show that the MFS response converges to the reference solution as the relation r 
increases. This behavior indicates the good accuracy of the MFS model with respect to the relation r 
for a fixed distance between the virtual sources and the fictitious circular interfaces. 

 
a1) 

 
a2) 

 
b1) 

 
b2) 

 
c1) 

 
c2) 

Figure 4. Dual-BEM and MFS results as a function of the frequency range 50-1000Hz for different 
relations between incident wavelength and spacing between collocation points, considering different 
types of thin acoustic barriers: a) Plain, b) T and c) Y. 

6  Numerical examples 

In order to show the applicability of the proposed formulation, the problem is analysed in this 
section using thin acoustic barriers of different shapes on a rigid ground. Once again, the length of the 
upper section for each profile is 1.0m and the slope of the arms of the T- and Y-profiles is 45o. The 
effective height of the T- and Y-profile barriers is 2.0m. In this example, the response provided by a 
plain thin barrier 2.0m height is displayed and used as a reference solution. The simulations are 
analysed for the1/3rd octave frequency bands of 500Hz and 1000Hz, which are commonly used for 
traffic noise. Here, an excitation source is placed at position (-3.0m, 0.5m) and the barriers are located 
at position (0.0m, 0.0m), as shown in Fig. 5. Again, the acoustic medium is assumed to be air at 20 oC 
and atmospheric pressure of 1atm, with density of 1.21kgm-3 and sound propagation velocity of 
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343ms-1. The Insertion Loss ( ( )IL Log10 020 p p= − with 0p  being the acoustic pressure 

generated by a point source without the presence of the barrier) is used to show the influence of the 
thin noise barrier on an infinite rigid ground. In this example, IL values are calculated at a set of 
receivers located along a vertical line 0.5m away from the building. The virtual sources are placed at 
Dvs=2.0Dcp from the circular fictitious interfaces, and a relation of 50 was always used to ensure the 
accuracy of the numerical method. In this example, both the ground and the building are treated as 
infinite plane surfaces, and the thin acoustic barrier is placed 30.0m from the façade of a building. 

 
a) 

 
b) 

 
c) 
Figure 5. Geometry of the problem considering different types of thin acoustic barriers: a) Plain, b) T, 
and c) Y. 
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500Hz 1000Hz 

a1) a2) 

b1) b2) 

c1) c2) 
Figure 6. IL values at a set of receivers located along a vertical line 0.5 m away from the building for 
the 1/3rd octave frequency bands of 500Hz and 1000Hz, considering different types of thin acoustic 
barriers: a) Plain, b) T and c) Y. 

Figure 6 exhibits the IL values for thin acoustic barriers of different profiles on a rigid ground for 
the 1/3rd octave frequency bands of 500Hz and 1000Hz. Analysis of these results reveals increased IL 
values for the receivers placed close to the ground, except for the Y-shaped barriers that present 
reduced IL values as the distance to the ground decreases. After reaching the maximum performance, 
all the barriers become less efficient and thus a negative contribution may also be observed. This 
negative contribution is more pronounced at y=12.0m for the frequency band of 500Hz (see Figs. 
6(a1-c1)). It is interesting to note that the T-profiles present a very similar behavior with respect to the 
plain barriers, with reductions of near 5dB being registered, in specific points. However, the T-profile 
provides a maximum IL value of 25.7dB at y=2.0m for the frequency band of 500Hz (see Fig. (b1)). 
Analysing the Y-profiles, some differences can be identified with respect to the plain and T-profile 
barriers. In this case, the Y-profile barriers are less well efficient for the receivers placed below 10.0m, 
except at y=6.0m for the frequency band of 1000Hz (see Fig. (c2)). However, for the frequency band 
of 500Hz, the acoustic performance of these barriers improves as the distance to the ground increases 
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(see Fig. 6(c1)), and for the frequency band of 1000Hz, this improvement only occurs at y=14.0m (see 
Fig. 6(c2)). It is important to note that, in general, the thin acoustic barriers are more efficient for the 
frequency band of 1000Hz, thus leading to a greater attenuation of the sound pressure level near the 
façade. 

7  Conclusions 

In this paper, a two-dimensional numerical model based on the Method of Fundamental Solutions 
was presented and used to predict the insertion loss of thin acoustic barriers on a rigid plane ground in 
the vicinity of a tall building. The proposed formulation made use of adequate Greens functions 
defined by the image-source technique, which allowed a significant reduction of the computational 
cost of the numerical model. The MFS was implemented and verified against the classical Dual-BEM 
formulation, revealing good accuracy of the proposed formulation. Numerical simulations were 
performed by using different types of thin barriers, evaluating its insertion losses next to the building 
façade. 

This analysis makes it clear that the MFS is a very interesting tool to efficiently predict the 
acoustic performance of thin barriers of different shapes. 
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