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Abstract. In this paper, the Method of Fundamental Soluti¢ki$-S) is applied to predict the
insertion loss of thin acoustic barriers on a rigrdund in the vicinity of a tall building. The MFS

formulation makes use of suitable Green'’s functidefned by the image-source technique, allowing
decreasing the number of discretized surfaces andeguently reducing the computational cost of
the numerical model. Both the ground and the bujdire modeled as infinite rigid plane surfaces.
To validate the implementation of the proposed tdation, the MFS results are compared with those

provided by the Dual-BEM formulation. Numerical silations are carried out in order to illustrate
the acoustic performance of thin barriers of ddfarshapes for typical cases of traffic noise.

Keywords: Method of Fundamental Solutions, Dual-BEM formidat Green’s functions, Image-
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Prediction of Insertion Loss of Thin Acoustic Bars using the Method of Fundamental Solutions

1 Introduction

Acoustic barriers are widely used to reduce thesenqollution and to shield residencial areas
from the traffic noise. Different types of barriease used to obstruct the sightline between the
observer and the sound source. Many numerical rdsthave been developed to simulate sound
propagation around the acoustic barriers. Amongithtbe Boundary Element Method (BEM) has a
more compact description of the acoustic mediumnlireng only the discretization of the boundaries
of the problem and it is very well suited to simal@f homogeneous unbounded problems since it
automatically satisfies the Sommerfeld radiatiomdition. The BEM has a number of advantages
over other methods [1]. However, its applicationoféen limited by the requirement of prior
knowledge of Green’s functions and the appearamaeumerical and analytical integrals, and has
some difficulties for analysis of very thin bodi@sthe form of near-singularities and near-degaoer
of the final system of equations.

Filippi and Dumery [2], Cassot [3] and Terai [4]veéoped an efficient boundary integral
equation technique to analyse the scattering ofes/doy thin rigid screens in infinite domain. Later,
Kawai and Terai [5] applied the standard and hygiegular integral equations to analyse outdoor
sound attenuation by thin absorbing barriers oveigia ground using a suitable Green’s function
defined by the method of images to avoid the disaton of the infinite plane ground. This
formulation, which combines the use of standard laypkr-singular integral equations over the thin
bodies, is also called the dual Boundary Elemerthbté (dual-BEM).

More recently, mesh reduction methods have beeactttd great interesting of scientist for
acoustics engineering problems. Among these methbedvethod of Fundamental Solutions (MFS)
is a mesh-free boundary-type method and its mattiemhdormulation is quite simple. It is based on
the prior knowledge of fundamental solutions, buwtt mequiring the numerical and analytical
integrations that need to be performed in the BENe MFS formulation also makes use of Green’s
functions and it is also very well suited to thelgems of infinite and semi-infinite domains sirthe
Sommerfeld radiation condition is automaticallyis&d. However, one disadvantage of the MFS is
the determination of the position of the virtualusmes on which the singularities are placed.
Therefore, Karageorghis [6] has proposed a sinmglarigthm for estimating the optimal position of the
virtual sources for certain boundary value proble@asta et al. [7, 8] have shown that, despite its
simplicity, the MFS is suitable tool tdfiiently predict acoustic wave propagation in thegirency
domain.

This paper analyses the insertion loss of thin stitobarriers on a rigid ground in the vicinity of
a tall building by means of the MFS. The proposediilation makes use of the sub-region technique,
and the Green’s functions are employed for limiting number of discretized surfaces, consequently
reducing the computational cost of the numericadeholn this model, both the ground and the
building are modeled as infinite rigid plane suesc The proposed model is verified by the
comparison of numerical results with those provided the dual-BEM formulation. Numerical
simulations are carried out by using different g/pé thin acoustic barriers in order to evaluase it
insertion losses next to the facade of a building.

2 Governing equation

The propagation of an acoustic wave in the homagenénear fluid medium at rest is governed
in the frequency domain by the Helmholtz equatianich can be written as:
V2p(z) + k*p(z) = 0, @
where p(x) is the acoustic pressure, akd= w/c is the wave number, withv = 27f being the
angular frequency and the speed of sound in the acoustic medium.
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Assuming an infinite medium excited by a harmonnp pressure source at positioy, the
incident pressure field at any poixtis given by:
i

p(x) = = H? ), @)

where 1, = \/(x — x0)2 + (y — y0)2 , HéQ) is the Hankel function of the second kind of ordero

andi = v—1.
3 Image-source Green’s function

In the acoustic analyses, the presence of totallgating plane surfaces can be taken into account
by using the image-source technique. Thus, cornBegi@n image source in relation to the horizontal
x-axis, as shown in Fig. 1(a), the corresponding @seeinction can be written as:

i

G(x,x,) = —Z[H((f)(kro) + H(g”(/crl)}, 3)

with , = \/(x — x0)2 + (y + yo)2 .
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Figure 1. The image-source technique for: a) hadfes; b) quarter-space and c) wedge with an
opining angles .
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The above described Green’s function can be furéixéended to incorporate more reflecting
planes. Thus, considering a quarter-space defigeidvb axes, one at-axis and other ay-axis, as
shown in Fig. 1(b), the Green’s function can berezped as:

Gl xy) = =3[ HE? (km) + HE by) + B (k) + HE k)|, (@)

with 7, = \/(:z + 2, +(y —y,)* andry = \/(x + 1z, +(y+y,) -
Assuming a wedge with an opining angle as shown in Fig. 1(cjhe Green'’s functions can be
expressed as:

. . NS
1 1
G(x,x,) = —ZHéQ)(krO) -2 [ H ) + H (k) + H o) + H (kry) |, (5)

n=1

, 2 , 2
with 7, = \/[x -1 COS(’Y]-)] + [y -1 Sln(’y]-)] ,o =0, =26(n—-1), v, =-0,+20n,
vy = 0, —206n and~y, = 6, + 20n.
where 6, and 7, are the azimuth and the distance from the wedgeecdo the source andSis the

number of sources. The number of image sourcdsiie because only the visible sources are taken
into account. Further details on the visible sosircan be found in Tadeu et al. [9] and Hasheminejad
and Mojahed [10].

4 MFS Formulation

The MFS model is here developed by assuming ansticadomain divided inte sub-domains,
as shown in Fig. 2, in which adequate Green’s fanstare used. For this purpose, the collocation
points placed at the circular fictitious interfaaae defined as CP and the virtual sources position
outside each sub-region are defined as VS. Thuthinveach sub-domain, the MFS allows the
acoustic field to be computed as a linear comlonadif Green’s functions, simulating the sound field
within each sub-domain through a set of virtualrses located outside it and at a fixed distancefro
the circular interfaces that limits each sub-domain

Thin Barrier
@)

: i Ground
WV 4444444444444444444444444
y

X
Figure 2. Schematic representation of the MFS model

For each sub-region, the acoustic pressure attemal pointx, can then be written as:
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A0 0 [0 o .
p(x,) = Zal Gy (x4, %)) 4 6,G,) (x, %), within 2,( = 1,2,3), (6)
=1

x,) =>4 Gy (x,,%,), within 2,(j = 4,...,n), @)
=1

and the normal component of the particle velocity a

02 02
ap(xk) VS} Q; aleJ (Xk7xl) aGksJ (Xk’xs) PR -
“on & om0 Viin2,(=123), 8)
3 G (x,,x )
Z 2, M, within 2,(j = 4,...,n), 9)

where n is the unit normal vector pointing outwards of teamb-region,alﬂf are the unknown
amplitudes to be determined for each virtual squrég the sub-domain in which the real source is

positioned,é;; is the Kronecker deltaG,ifﬁ (x,,x,) is the incident field regarding the acoustic puess

generated by the real source when placed in thelsotain {2, and G,gf (x,,x,) refers to the Green’s

function generated by the virtual sources. Theseef®s functions are obtained by means of the
image-source technigue, whose details were givémeiprevious section.

By enforcing at each collocation poigf, the continuity condition of the acoustic pressame of

the normal component of the particle velocity wispect to the circular fictitious interfaces, the
following 2CPx 2V< system of equations can be obtained:

Ax = b, (10)
where
I7)
G'(kl 1L,CP;I=1,VS,) ~G; (k=1,CP;l=1,Vs,) 0
o,
8Gk LCRI=LYVS) 0, 0
on (k=1,CP;I=1,VS,)
A= : : : , (12)
G 0 . g%
(k=1,CP, ;I=1,VS,) (k=1,CP, ;I=1,VS,)
G ac;”n
(k=1,CP, ;I=1,VS,) 0 (k=1,CP, |;I=1,VS,)
On on
T
o) I7) 0,
x= a(zlzl,vsl) a(lzzl.vs2) T Bsvs,) | (12)

For example, if the real source is positioned ib-damain {2, , the right-hand-side term is
defined as:

) 0 !
— Ql _ Ql — Ql — Ql
b‘[_G(kzl,cas) %G(m,ch) - =G 1R ) 3p -G & LGR s} ' (13)

Once this system of equations is solved, the amopsessure at any domain point may be
obtained by using the Egs. (6) and (7).
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5 MFS validation

In order to validate the implementation of the megd formulation, the results are compared
with those provided by the standard Dual-BEM foratidn. We consider thin acoustic barriers of
different shapes located on a rigid ground at (0.0fm). The fluid medium is excited by a point
source placed at position (-10.0m, 1.0m), as shiowkig. 3. The length of the upper section in each
profile is 1.0m and the slope of the arms of thedd Y-profiles is 4% The effective height of the T-
and Y-profile barriers is 2.0m. In this analysiglain thin barrier 2.0m height is also considefEake
acoustic medium is assumed to be air afQ0and atmospheric pressure of latm, with density of
1.21kgnm?® and sound propagation velocity of 343msHere, computations are performed for
frequencies up to 1000Hz, with a frequency ste@5dz. A dual-BEM model is used as a reference
model for comparison of the computed results ofptopposed modeT his model was discretized with
a very large number of elements (about 50 elemeetsvavelength) to ensure the accuracy of the
numerical solution. fie number of collocation points is defined by meainthe relation between the
incident wavelength and distance between collonapoints. This relation is defined as The
distance between the virtual sources and theidigst circular interface is defined ass@nd the
distance of the collocation points is defined @s [ all results, the number of virtual sourcesqsial
to the number of collocation points, and a distabetween collocation and source points of
Ds=2.0D, is always used. Further details on this distaaeebe found in Costa et al. [11].
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Figure 3. Geometry of the problem considering déife types of thin acoustic barriers: a) PlainTb)
andc) Y.

Figure 4 displays the comparison between the d&tBnd the MFS results as a function of the
frequency range 50-1000Hz, with a frequency step5bfz. A logarithmic scale was used to allow a
better observation of the difference between agoystessure amplitudes of the MFS and the
reference solutions. Analysis of the results cleabnfirms that as the relation increases, an

CILAMCE 2019

Proceedings of the XL Ibero-Latin American Congr@ssComputational Methods in Engineering, ABMEC,
Natal/RN, Brazil, November 11-14, 2019



Edmundo G. de A. Costa, Samuel B. Velten, Wiligiod Santos, José A. F. Santiago

excellent agreement among the two solutions isidda(see Fig. 4(al-cl)). The results presented in
Fig. 4(a2-c2) show that the MFS response convetgethe reference solution as the relation
increases. This behavior indicates the good acgwhthe MFS model with respect to the relation
for a fixed distance between the virtual sourcesthe fictitious circular interfaces.
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Figure 4.Dual-BEM and MFS results as a function of the feary range 50-1000Hz for different
relations between incident wavelength and spacetgden collocation points, considering different
types of thin acoustic barriers: a) Plain, b) T ah¥.

6 Numerical examples

In order to show the applicability of the propodedmulation, the problem is analysed in this
section using thin acoustic barriers of differdmises on a rigid ground. Once again, the lengtheof
upper section for each profile is 1.0m and the eslopthe arms of the T- and Y-profiles is’4%he
effective height of the T- and Y-profile barriess2.0m. In this example, the response provided by a
plain thin barrier 2.0m height is displayed andduse a reference solution. The simulations are
analysed for thel/8octave frequency bands of 500Hz and 1000Hz, whiehcommonly used for
traffic noise. Here, an excitation source is plaaegosition (-3.0m, 0.5m) and the barriers arated
at position (0.0m, 0.0m), as shown in Fig. 5. Agéive acoustic medium is assumed to be air 4€20
and atmospheric pressure of latm, with density .8fKgm® and sound propagation velocity of
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343ms". The Insertion Loss IL:—20Log10(|p|/|p0|)with p, being the acoustic pressure

generated by a point source without the presendbkeobarrier) is used to show the influence of the
thin noise barrier on an infinite rigid ground. this example, IL values are calculated at a set of
receivers located along a vertical line 0.5m awaynfthe building. The virtual sources are placed at
Ds=2.0D,, from the circular fictitious interfaces, and aatedn of 50 was always used to ensure the
accuracy of the numerical method. In this examptgh the ground and the building are treated as
infinite plane surfaces, and the thin acousticibars placed 30.0m from the facade of a building.
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Figure 5. Geometry of the problem considering difife types of thin acoustic barriers: a) PlainTp)
andc) Y.
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Figure 6. IL values at a set of receivers localed@a vertical line 0.5 m away from the buildiray f
the 1/% octave frequency bands of 500Hz and 1000Hz, cerisigl different types of thin acoustic
barriers: a) Plain, b) Tand c) Y.

Figure 6 exhibits the IL values for thin acoustarrpers of different profiles on a rigid ground for
the 1/3" octave frequency bands of 500Hz and 1000Hz. Aisbyfsthese results reveals increased IL
values for the receivers placed close to the grpemdept for the Y-shaped barriers that present
reduced IL values as the distance to the grountkdses. After reaching the maximum performance,
all the barriers become less efficient and thusegative contribution may also be observed. This
negative contribution is more pronounced at y=12fdmthe frequency band of 500Hz (see Figs.
6(al-cl)). It is interesting to note that the THjes present a very similar behavior with respgedhe
plain barriers, with reductions of near 5dB beiagistered, in specific points. However, the T-peofi
provides a maximum IL value of 25.7dB at y=2.0m ttee frequency band of 500Hz (see Fig. (b1)).
Analysing the Y-profiles, some differences can @entified with respect to the plain and T-profile
barriers. In this case, the Y-profile barriers lass well efficient for the receivers placed belbOm,
except at y=6.0m for the frequency band of 1000¢¢= (Fig. (c2)). However, for the frequency band
of 500Hz, the acoustic performance of these barimaproves as the distance to the ground increases
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(see Fig. 6(cl)), and for the frequency band of0HX) this improvement only occurs at y=14.0m (see
Fig. 6(c2)). It is important to note that, in geadethe thin acoustic barriers are more efficiamtthe
frequency band of 1000Hz, thus leading to a grestenuation of the sound pressure level near the
facade.

7 Conclusions

In this paper, a two-dimensional numerical modaldobon the Method of Fundamental Solutions
was presented and used to predict the insertiandbthin acoustic barriers on a rigid plane groimd
the vicinity of a tall building. The proposed forkation made use of adequate Greens functions
defined by the image-source technique, which altbwesignificant reduction of the computational
cost of the numerical model. The MFS was impleneated verified against the classical Dual-BEM
formulation, revealing good accuracy of the propogermulation. Numerical simulations were
performed by using different types of thin barrjezgaluating its insertion losses next to the bogd
facade.

This analysis makes it clear that the MFS is a vatgresting tool to efficiently predict the
acoustic performance of thin barriers of differsinapes.
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