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Abstract. The main idea of this work is to solve elastic problems using Isogeometric Boundary Element
Formulation. A standard BEM with quadratic elements is also used in order to compare the efficiency of
both methods. In isogeometric method, instead of using polynomial shape functions, both geometry and
analysis use non-uniform rational B-splines (NURBS). NURBS are widely used for geometric modelling
in CAD software and, due to this, makes the discretization of the geometry unnecessary. One obvious
advantage of using this type of B-splines is that it can perfectly describe complex shapes, making results
more accurate. The most important feature, however, is the decrease in the amount of user’s work,
because the most time-consuming step – mesh generation – is reduced or even eliminated. In order to
easy implementation in existing boundary element codes, NURBS are transformed into Bézier curves
(Bézier decomposition). So, each Bézier curve can be viewed as a boundary element in a conventional
boundary element implementation.

It is worth mentioning that displacement and tractions have their values solved at the control points
and NURBS curves do not necessarily touch them. For the definition of collocation points, Gauss-
Legendre collocation points are used in this study. Therefore, a transformation matrix, which uses basis
functions for relating values at control and at collocation points, is needed. The equation for isogeometric
BEM is defined in terms of the control points and, after applying the transformation, can be solved as the
standard BEM. Lastly, numerical and analytical solutions are compared in order to validate the method.
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1 Introduction

Since the concept of isogeometric analysis (IGA) was introduced by Hughes et al. [1], it has received
attention from many researchers, given that it can improve the established analysis process. Among
other contributions is a decrease in the amount of user’s work, because the most time-consuming step
– mesh generation – is reduced or even eliminated. To evidence isogeometric analysis advantage over
isoparametric, they are compared in this study.

Four years after the previous work, a book has been published Cottrell et al. [2] about IGA. The
novelty about this approach is that instead of using polynomial functions to discretise geometry and
unknown fields, IGA uses the same basis as CAD (Computer Aided Design) softwares, which are often
NURBS (Non-Uniform Rational B-splines), but can also be T-splines or others. One of the reasons that
NURBS are widely used by CAD is because they can exactly describe complex geometries that are only
approximated using polynomials. Although it has been initially presented with Finite Element Method
(FEM) as in Cottrell et al. [2], isogeometric Boundary Element Method (IGABEM) for elastostatic was
developed in Simpson et al. [3, 4], in which NURBS are used to approximate the geometry along with
the displacement and traction fields around the boundary. Works such as Cabral et al. [5, 6] already used
B-splines as basis functions in BEM, however with no concern about integration with CAD.

Other applications of isogeometric such as contact mechanics are presented by Temizer et al. [7, 8],
Lu [9], shells Kiendl et al. [10, 11], Benson et al. [12], Deng et al. [13]. More recent studies such as Sun
et al. [14, 15, 16] use IGABEM in acoustics, potential and structural optimization.

Sun et al. [17] uses IGABEM with Bézier decomposition for solving crack propagation problems.
In the present study, IGABEM is also used with Bézier decomposition to facilitate incorporating NURBS
into existing boundary element codes for solving elastic problems.

2 Elasticity

Firstly, we must define what problem to solve. For elastostatics, under the conditions of equilibrium,
the summation of all forces on the elastic body equals zero, i.e.:

σij,j + bi = 0, (1)

where i, j = 1, 2, 3, subscript ,j denotes differentiation with respect to xj , σij is the Cauchy stress tensor
and bi are body forces. These external and internal loads induce linear and angular displacements in the
body. Assuming small displacements, strains εij are

εij =
1

2
(ui,j + uj,i) (2)

where ui represents displacement. Assuming an elastic, homogeneous and isotropic material and using
the constitutive equation (Hooke’s Law),

σij = λεkkδij + 2νεij , (3)

where λ is the Lamé constant λ = 2νµ
1−2ν , µ = E

2(1+ν) is the shear modulus, E is the Young modulus, ν is
Poisson’s ratio and δij is the Kronecker delta, defined as

δij =

{
1 if i = j

0 if i 6= j.
(4)

Now, consider a body with domain Ω and boundary Γ as represented in Fig. 1. It can have two
different types of boundary conditions, i.e., in Γu displacements are known and in Γt, tractions are
known:
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ui = ūi on Γu,

ti = t̄i on Γt,
(5)

where

Γ = Γu ∪ Γt and Γu ∩ Γt = Ø. (6)

Ω

Γt

Γu

n

s

t̄i

ūi

Figure 1. Definition of domain.

Our problem can be staded as follows: given ūi, t̄i and bi, find ui that satisfies Eq. (1).

3 Standard BEM

Before introducing the concept of isogeometric BEM, it is important to show the isoparametric
formulation, also used in this study for comparison. In this case, elements can be constant, linear,
quadratic etc. This section is aimed at outlining standard BEM, not presenting a detailed derivation of
the entire method. For the latter purpose, references such as Brebbia and Dominguez [18], Katsikadelis
[19], Cruse [20] can be useful.

Let Ω be the domain of a body with boundary Γ. It is possible to define two points P andQ, namely
source point and field point, respectively. They are separated by a distance r

r := ||P −Q|| (7)

as in Fig. 2.
Starting with the constraint equation, which relates the values of the surface displacements ui to the

surface tractions ti,

Cij(P )uj(P ) +−
∫

Γ
Tij(P,Q)uj(Q)dΓ =

∫
Γ
Uij(P,Q)tj(Q)dΓ (8)

where uj and tj are the components of displacement and traction, Uij and Tij are displacement and
traction fundamental solutions, respectively and Cij depends on geometry as

Cij =


1 if P ∈ Ω
θint
2π if P ∈ Γ

0 if P 6∈ (Ω ∨ Γ).

(9)
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Ω

Γ

P

Q

r

Figure 2. Domain, boundary with source and field points.

When the source point lies on a smooth part of boundary, Cij is

Cij =
θint
2π

=
π

2π
=

1

2
. (10)

The first integral of Eq. (8) must be evaluated in Cauchy Principal Value (CPV) due to the strong
singularity O(r−1) in Tij kernel. As Eq. (8) is in continuous form, it does not suit computational imple-
mentation yet. Thus, the next step is to discretise by dividing the real boundary into elements with local
coordinate ξ ∈ [−1, 1]. After doing the discretisation, geometry and unknown fields can be approximated
as

xe(ξ) =

m∑
k=1

Nk(ξ)xk, (11)

ue(ξ) =
m∑
k=1

Nk(ξ)uk, (12)

te(ξ) =
m∑
k=1

Nk(ξ)tk, (13)

where xk, uk, and tk are nodal coordinates, displacements and tractions, respectively;m is the number of
nodes per element (such as 2 for linear or 3 for quadratic elements);Nk(ξ) are the Lagrangian polynomial
basis functions; subscript e denotes that the value is for element e.

In order to allow computational implementation, it is necessary to map global coordinates into
local coordinates, with value [−1, 1] as stated previously, aiming to apply the Gaussian quadrature. The
jacobian of this transformation is given by

J(ξ) =

√(
∂x1

∂ξ

)2

+

(
∂x2

∂ξ

)2

. (14)

Substituting Eqs. (11) to (13) in Eq. (8), it is possible to write the discretised displacement boundary
integral equation as
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m∑
k=1

Cij(P )uj(P ) +

ne∑
e=1

m∑
k=1


∫ 1

−1
Tij(P,Q)Nk(ξ)J(ξ)dξ︸ ︷︷ ︸

H′
ij

uekj

=

ne∑
e=1

m∑
k=1


∫ 1

−1
Uij(P,Q)Nk(ξ)J(ξ)dξ︸ ︷︷ ︸

Gij

 tekj .
(15)

where Hij = H ′ij + Cij .
After considering the collocation point P over each boundary nodal point, it is possible to obtain a

system with N equations, where N is the number of degrees of freedom. This set of equations can be
written in matrix form as

Hu = Gt, (16)

where H and G have values of fundamental solutions Tij and Uij , t and u contain traction and dis-
placements, respectively. When dealing with a problem, often some traction and some displacement are
unknowns, and by using some algebra, it is possible to isolate these unknowns in a vector x. Hence,
Eq. (16) becomes:

Ax = b (17)

and only one solution is possible.

4 B-splines and NURBS

IGA allows using the same basis functions for modelling the geometry and analyzing the problem.
Thus, it is important to present the basic concepts of B-splines and NURBS. For a more detailed descrip-
tion, one can see Piegl and Tiller [21]. Throughout this section, it is going to be clear that NURBS are a
generalization of B-splines, so we start by presenting the latter definition.

B-splines

Given a knot vector U = (u0, u1, · · · , un+p+1) where ui ∈ R is the i-th knot, i is the knot index,
i = 1, 2, · · · , n+p+1, p is the order of the polynomial and n is the number of functions used to generate
the B-spline. By definition, the basis of order zero (p = 0) is

Ni,0(t) =

 1 if ui ≤ t < ui+1

0 otherwise
(18)

Functions are recursively calculated as in Eq. (19), known as Cox-de-Boor recursive formula:

Ni,k(t) =
(t− ui)

ui+k−1 − ui
Ni,k−1(t) +

(ui+k − t)
ui+k − ui+1

Ni+1,k−1(t). (19)

Number of knots m, number of control points (CP), k, and order n are related as m = k+n+ 1. A
B-spline curve can be described as

P (t) =
n+1∑
i=1

BiNi,k(t) , tmin ≤ t ≤ tmax , 2 ≤ k ≤ n+ 1. (20)

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.

Natal/RN, Brazil, November 11-14, 2019



IGABEM APPLIED TO ELASTIC PROBLEMS

NURBS

After describing B-splines, NURBS are easily defined. Before presenting the formal definition,
however, it is interesting to explain why we chose to use NURBS instead of B-splines in this study.
When describing a quarter-circle using B-splines three control points, for example, a large discrepancy is
seen between the interpolated curve and the exact, according to Simpson et al. [3]. If NURBS are used,
the circle is exactly described with the same number of control points, in addition to a weight associated
with each CP.

A NURBS is a Non-Uniform Rational B-spline and it is defined as

P (t) =

∑n+1
i=1 BiNi,k(t)wi∑n+1
i=1 Ni,k(t)wi

=

n+1∑
i=1

BiRi,k(t), (21)

where

Ri,k(t) =
Ni,k(t)wi∑n+1
i=1 Ni,k(t)wi

(22)

is the rational basis function, Ni,p(t) is the B-splines basis function and wi is the weight associated with
the i-th control point. Note that if all weights are equal to one (wi = 1 ∀ i), the NURBS curve becomes
a B-spline.

5 Bézier decomposition

As presented by Borden et al. [22] and used in Sun et al. [17] for crack propagation, one can obtain
a Bézier decomposition inserting repeated knots in all knots of the vector until they have multiplicity
equal to the curve degree (p + 1). For each inserted knot, the continuity of basis function is reduced
while the curve itself remains unchanged. The resulting basis is decomposed in a set of Bézier elements
in which every element corresponds to a knot span in the original knot vector. The Bézier decomposition
operator provides a mapping from a piecewise Bernstein polynomial basis onto a NURBS basis. For a
better understanding of the Bézier extraction consider Figs. 3 and 4.

Figure 3. The 3 order polynomial curve and 7 control points and respective B-splines basis functions
Sun et al. [17].

Considering two knot vectors, the first one U1 = (0 0 0 0 1
4

1
2

3
4 1 1 1 1) for Fig. 3 and the second

one U2 = (0 0 0 0 1
4

1
4

1
4

1
2

1
2

1
2

3
4

3
4

3
4 1 1 1 1) for Fig. 4 after the Bézier decomposition process. It is

important to note that the curve remains the same, despite the higher number of control points. As this is
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Figure 4. The 3 order polynomial curve and 13 control points and respective Bernstein basis functions
Sun et al. [17].

a 3rd order polynomial, a Bézier curve is defined for each 4 control points, resulting in 4 curves in total,
taking into consideration that two adjacent curves share a control point. In other words, the last control
point of n-th curve is the first control point of the (n+ 1)-th curve.

6 Results

This chapter presents examples used for validating the code, comparing IGABEM with standard
BEM using quadratic elements and both with analytical results for elastic problems.

Displacement norms were used for estimating error. Root Mean Square Error (RMSE), which has
been used for this comparison, can be defined as:

RMSE =

√√√√ 1

N

N∑
j=1

[unumerical − uanalytical]2 (23)

where N is the number of nodes.

6.1 A thick-walled tube

A thick-walled tube is the first example, with only a quarter of it being modelled as in Fig. 5. The
tube is assumed to be in plane strain state. Geometric and material properties can be seen in Table 1.

Table 1. Geometric and material properties - tube.

Property Symbol Value

Inner Radius Ra 50 mm

Outer Radius Rb 100 mm

Young’s Modulus E 200 GPa

Poisson’s Coefficient ν 0, 32

Pressure P 100 N/mm
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Ra

Rb

1

2

3

4

P

Figure 5. Boundary conditions of problem 1.

Given this problem’s symmetry, only a quarter of the tube needs to be modelled. According to
Timoshenko et al. [23], the analytical solution for radial displacement ur is:

ur =
(1 + ν)pa2

E(b2 − a2)

[
(1− 2ν)r +

b2

r

]
(24)

Standard BEM

For the standard isoparametric simulation, 5 different meshes were used (Table 2). They all used
quadratic elements, with 3 nodes per element. Numerical results for stresses were also solved, and the
color map is in Fig. 6. Deformed configuration was also plotted as the black line.

Table 2. Number of elements per segment for the 5 meshes - tube.

Elem. per segment

Mesh 1 2 3 4 Total nodes DOF

ST-1 1 3 1 2 14 28

ST-2 2 6 2 4 28 56

ST-3 3 9 3 6 42 84

ST-4 4 12 4 8 56 112

ST-5 5 15 5 10 70 140

Isogeometric BEM

Isogeometric simulation, by its turn, used 10 different meshes (Table 3). Meshes 1 to 5 used p-
degree = 2, while meshes 6 to 10 used p-degree = 3. Both of them used h-refinement equals 0, 1, 2, 4
and 8.

Afterwards, displacements were measured over segment 1, for different radius. For this part of
the study, only the finest mesh of each method was used, i.e., ST-5 and IT-10. It is noticed that for
displacements over the first segment, both methods are accurate compared to analytical solution, as seen
in Fig. 7.

The last comparison for this example is regarding error. Meshes ST-5, IT-5 and IT-10 were compared
using Eq. (23) for displacement and are shown in Fig. 8. It is easily seen that even with less degrees of
freedom, both isogeometric meshes (I-5 and I-10) were consistently more accurate than isoparametric
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Figure 6. Stresses in tube - numerical results.

Table 3. Number of elements per segment for the 5 meshes.

Order of segment

Mesh 1 2 3 4 p- h- DOF

IT-1 2 3 2 3 1 0 28

IT-2 2 3 2 3 1 1 36

IT-3 2 3 2 3 1 2 44

IT-4 2 3 2 3 1 4 60

IT-5 2 3 2 3 1 8 92

IT-6 3 4 3 4 2 0 36

IT-7 3 4 3 4 2 1 44

IT-8 3 4 3 4 2 2 52

IT-9 3 4 3 4 2 4 68

IT-10 3 4 3 4 2 8 100

with quadratic elements (S-5). Furthermore, it can be inferred that the two isogeometric meshes have
similar behaviour.

6.2 Infinite plate with a circular hole

The second example of this part is an infinite plate with a circular hole, with a P distributed tension
along x direction, as in Fig. 9. Geometric and material properties are in Table 4.

One important difference between tube in example 1 and plate in example 2 is related to the stress
state. While the former is considered under plane strain state, the latter is simulated as under plane
stress state. According to Brebbia and Dominguez [24], ”boundary elements for these cases are based
on the plane strain approach but can be extended to plane stress if the elastic coefficients are replaced
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Figure 7. Displacements of the thick-walled tube discretization.

Figure 8. Displacement RMSE vs degrees of freedom for tube.

Table 4. Geometric and material properties - plate.

Property Symbol Value

Radius R 50 mm

Young’s Modulus E 105 Pa

Poisson’s ratio ν 0, 25

Distributed load P 1 N/mm
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by the corresponding equivalent values”. This means that, for plane stress, fundamental solutions can be
obtained by substituting Poisson’s ratio and Young’s modulus as follows:

ν
′

=
ν

1 + ν
(25)

E
′

= E

[
1− ν

′2

(1 + ν ′)2

]
(26)

So, after adjustment, mechanical properties of the plate become E′ = 179520 and ν ′ = 0.2424.

Figure 9. Boundary conditions for the plate Oliveira and Portela [25].

Figure 10 illustrates the plate with more details and boundary conditions.

-1 0 1 2 3 4 5 6

-1

0

1

2

3

4

5

6

Figure 10. Detailed representation of plate with boundary conditions.

This problem has an analytical solution for stress field as follows Timoshenko et al. [23]:
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σ11(r, θ)

σ22(r, θ)

σ12(r, θ)

 =


1− a2

r2
(3

2cos(2θ) + cos(4θ) + 3a4

2r4
cos(4θ))

−a2

r2
(1

2cos(2θ)− cos(4θ)−
3a4

2r4
cos(4θ))

−a2

r2
(1

2sin(2θ) + sin(4θ) + 3a4

2r4
sin(4θ))

 , (27)

where r and θ are the usual polar coordinates, centered at the centre of the hole. Exact solution for
displacement (Fan et al. [26] apud Timoshenko et al. [23]):

 u1(r, θ)

u2(r, θ)

 =

 10a
8G

{
r
a(κ+ 1)cos(θ) + 2a

r [(1 + κ)cos(θ) + cos(3θ)]− 2a3

r3
cos(3θ)

}
10a
8G

{
r
a(κ− 3)sin(θ) + 2a

r [(1− κ)sin(θ) + sin(3θ)]− 2a3

r3
sin(3θ)

}
 . (28)

Surface tractions t represent the force acting P on the surface per unit areaA. Let dA be an element
of area on a surface and suppose that dA is subjected to a force dP as in Fig. 11:

dA

dP

dA

t
n

tn

tt

Figure 11. Surface tractions.

t = lim
dA→0

dP

dA
(29)

It can also be defined in terms of stress σij and the normal vector nj as:

ti = σijnj . (30)

Standard BEM

Simulations for the infinite plate have results in good agreement with the exact solution. It is possible
to see in Fig. 12 that numerical (blue x) and analytical (red line) are close.

Table 5. Number of elements per segment for the 5 meshes - plate.

Elem. per segment

Mesh 1 2 3 4 5 Total nodes DOF

SP-1 1 1 1 1 1 10 20

SP-2 2 2 2 2 2 20 40

SP-3 5 5 5 5 5 50 100

SP-4 10 10 10 10 10 100 200

SP-5 25 25 25 25 25 250 500
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Figure 12. Displacement for plate.

Figure 13. Displacement RMSE vs degrees of freedom for plate.

Comparing errors for displacement and tractions, it is possible to notice that tractions demand a finer
mesh in relation to displacement in order to achieve the same magnitude of errors. With the coarsest mesh
SP-1, displacements ux and uy both have error of the order of 10−6. This very refined mesh produces
error of about 10−1 for tractions. Now, looking at results from mesh SP-5, both displacements and
tractions have errors smaller than 10−3, which was considered acceptably low in this study.

Numerical results for stresses were also solved, and the color map is in Fig. 15. Deformed configu-
ration was also plotted as the black line.
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Figure 14. Tractions RMSE vs degrees of freedom for plate.

Figure 15. Stresses in plate - numerical results.

7 Conclusions

This work presented an isogeometric formulation for modelling elasticity problems and compared
it to standard BEM using quadratic elements. Among the advantages of using NURBS instead of poly-
nomials as basis for approximation of geometry and unknown fields are more accuracy and less time
needed from the engineer due to a simplification or even elimination of meshing. Despite being harder
to implement, IGABEM can be adapted in regular BEM codes if Bézier decomposition is made. Bézier
decomposition is achieved by inserting repetead knots in knot vector, until they reach a multiplicity
equals to the curve’s degree. It is clear from examples that the proposed approach is more accurate when
compared to quadratic elements, even with a coarser mesh.
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8 Appendix A

For plane strain problems, displacement and traction fundamental solutions are given, respectively,
by:

Uij(p,Q) =
1

8µπ(1− ν)
[(3− 4ν)log

(
1

r

)
δij + r,ir,j ] (31)

Tij(p,Q) =
−1

4π(1− ν)r

{
[(1− 2ν)δij + 2r,ir,j ]

∂r

∂n
+ (1− 2ν)(r,inj − rjni)

}
. (32)
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data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods
in Engineering, vol. 87, n. 1-5, pp. 15–47.

[23] Timoshenko, S. P., Goodier, J. N., & Abramson, H. N., 1970. Theory of elasticity. Journal of
Applied Mechanics, vol. 37, pp. 888.

[24] Brebbia, C. A. & Dominguez, J., 1977. Boundary element methods for potential problems. Applied
Mathematical Modelling, vol. 1, n. 7, pp. 372–378.

[25] Oliveira, T. S. & Portela, A., 2016. Weak-form collocation – A local meshless method in linear
elasticity. Engineering Analysis with Boundary Elements, vol. 73, n. April, pp. 144–160.

[26] Fan, L., Coombs, W. M., & Augarde, C. E., 2018. The point collocation method with a local
maximum entropy approach. Computers and Structures, vol. 201, n. May 2019, pp. 1–14.

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
Natal/RN, Brazil, November 11-14, 2019


	Introduction
	Elasticity
	Standard BEM
	B-splines and NURBS
	Bézier decomposition
	Results
	A thick-walled tube
	Infinite plate with a circular hole

	Conclusions
	Appendix A

