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Abstract. The numerical material failures analysis is extremely important, since it allows predicting
the collapse and the structures post-critical behavior. Thus, in this work the implicit formulation of
the boundary element method is adopted to analyze material failures in models commonly studied in
literature. For this purpose, the continuum strong discontinuity approach together with an automatic
cell generation algorithm that accompanies the crack trajectory during the non-linear analysis are used.
Therefore, the main objective is the insertion of non-uniform jumps discontinuities in the displacement
field inside cells aiming at reducing the stress locking phenomenon presented by cells with constant
embedded jumps. This phenomenon is responsible for the stiffening in structural response due to the
constant cells inability to represent rotation movement. In this way, the results presented by linear cells
were more satisfactory than those presented by constant cells, since the stress locking phenomenon was
considerably reduced, demonstrating that the first class is more adequate in the representation of the
crack opening that occurs during the loading process.

Keywords: Linear displacements jumps, Cell with embedded discontinuity, Continuum strong disconti-
nuity approach, Boundary element method
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1 Introduction

The structural failure analysis has a leading role in engineering, since it makes possible to predict
the collapse and the post-critical behaviour of structures subjected to overload. In this sense, we can
classify these failures into two types: geometric failures and material failures. Geometric failures are
associated with the loss of spatial stability due to the geometrically non-linear behaviour of the structure.
On the other hand, material failures are related to the formation of inelastic strain localization bands
due to the concentration of micro-structural defects or voids at a material point that progress, as the
loading is imposed, until they become visible or macroscopic. This type of failures, in turn, may present
different profiles depending on the material type in which they occur, such as shear bands in ductile
materials, sliding surfaces in geomechanics or cracks in brittle or quasi-brittle materials. In this way,
several numerical techniques were created to analyse such failure types, among which we can highlight:
linear elastic fracture mechanics [1–7], discrete or cohesive models [8–12], distributed cracking models
[13–17], enriched continuous media [18–20] and the continuum strong discontinuity approach (CSDA)
[21–35].

In the CSDA, that was initially introduced by Simo et al. [21], it is considered a discontinuous dis-
placement field with the consequent emergence of unlimited strains (the strong discontinuity kinematics)
that are consistently applied to standard continuous constitutive models. This process induces a discrete
constitutive relation on the discontinuous surface [29, 30]. Another consequence is a regularization of the
softening modulus of the continuous constitutive law, resulting from the discontinuous interface equilib-
rium condition, which establishes that the stress fields should be limited even at points where the strain
is not. Thus, the so-called strong discontinuity conditions are obtained which are summarized to a set
of kinematic constraint equations necessary for compatibilization between the continuous constitutive
model and the strong discontinuity regime.

In many cases, the strong discontinuity surface can be imposed directly at the end of the elastic
regime. However, in some materials the formation of the macroscopic crack is preceded by the generation
and aggregation of micro-cracks that evolve from a macroscopically continuous state to a discontinuous
one. In this way, the fracture process zone has a not negligible size which, in turn, can be divided in three
regions: diffuse failure zone, weak discontinuity zone and strong discontinuity zone. In other words, for
a better representation of the fracture zone a transient phase should be considered, in weak discontinuity
regime, in addition to establishing an efficient procedure to predict the origin and direction of the strain
localization band. The weak discontinuity regime is characterized by the presence of jumps in the strain
field, however, with the displacement field remaining continuous. A common way to do this is taking
the acoustic tensor singularity as a necessary condition for the discontinuous bifurcation of the stress and
strain fields [36–38]. In this case, discontinuous bifurcation is characterized by the presence of softening
loading within the localization band and the occurrence of elastic unloading, or neutral loading, at the
adjacent region.

One of the main steps in the CSDA is the displacement jump field evaluation that is done within the
domain discretization elements. Thus, in the context of the finite element method (FEM), it can be shown
that finite elements with uniform embedded displacement fields induces the stress locking phenomenon
in the structural response when bilinear quadrilateral elements are used. As described in Oliver et al. [39],
it follows from an incompatibility between the approximation functions for the regular strains (linear) and
for the enhanced strains (constant), these last components associated to the displacement jump effects.
To overcome this limitation, Manzoli and Shing [40] proposed the insertion of non-uniform embedded
discontinuity in quadrilateral finite elements obtaining good results. In this case, the authors considered
two collocation points on the discontinuity line in order to obtain linear displacement jumps inside the
finite elements.

In the works cited until here, only the standard FEM was adopted in the numerical solution of the
problems under study. However, other methods were also employed in the CSDA context. In this sense,
we can highlight the works of Oliver et al. [41], Belytscho et al. [42], Wells and Sluys [43] and Mariani
and Perego [44] that employs the generalized (or extended) finite element method (XFEM) and the work
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of Manzoli and Venturini [31] that adopt the implicit formulation of the boundary element method (BEM)
in fracture analysis of concrete structures. In this last work, the concept of cells with embedded discon-
tinuity was firstly introduced and only triangular cells with uniform (constant) displacement jumps were
considered. Also, associative elastoplastic constitutive models with a specific yield criterion, together
with an exponential softening law, were used to represent the cracks behaviour. In Manzoli et al. [45]
the same kind of cells were adopted, however, using an isotropic damage model and a cell generation
algorithm to follow the crack path. Besides this, the strong discontinuity regime was imposed directly
after the end of the elastic regime with the discontinuity line direction defined as perpendicular to the
maximum principal stress. Moreover, in Peixoto et al. [32, 33] quadrilateral cells, again with uniform
displacement jumps, were used together with another automatic cells generation algorithm. Particularly,
in these last works the phases with degradation in continuous media and with weak discontinuities, pre-
viously mentioned, were included to a better representation of the fracture process zone. However, as
extensively discussed in this paper, despite of the remarkable differences in the strain field evaluations
between FEM and BEM, the stress locking phenomenon was also reported for the second technique,
suggesting that the consideration of non-uniform displacement jumps inside a cell would be beneficial.

Thus, in the present work cells with two internal collocation points, that permits non-uniform dis-
placement jumps, is presented. Initially, in the linear elastic regime, the cells have, as in all works with
BEM cited above, only one collocation point located at their centroid. Subsequently, at the strong dis-
continuity regime, this point is excluded from the numerical model and two new points are added on
the discontinuity line inside the cell. This procedure is numerically translated by eliminating rows and
columns to the excluded point and by the addition of new rows and columns for the new points in the ap-
propriate matrices. In this way, these two new points are used in calculating the displacement field jumps
through the traction surface continuity condition which, in turn, must be evaluated on the discontinuity
line. The consideration of linear jumps inside the cells is justified, as mentioned above, by the emer-
gence of the stress locking phenomenon that occurs in quadrilateral constant cells [32, 33]. The results
presented through this new formulation are shown to be satisfactory in reducing such effect showing that
non-constant displacement jumps are more appropriate to represent the crack opening movement that
occurs during the loading process.

2 Integral Equations for Problems with Strong Discontinuities

In this section, the strong discontinuity kinematics and the integral equations for problems with
strong discontinuities, used in the BEM, are presented. Besides this, the discontinuous interface equilib-
rium equation necessary for the displacement jumps evaluation are also presented.

2.1 Strong discontinuity kinematics

For the numerical representation of a medium with discontinuities, it is necessary to determine a
regularized kinematics capable of distributing the effects of the discontinuous surface in a finite region
of the domain [25]. Therefore, we initially define an arbitrary sub-domain Ωϕ(⊂ Ω), around S as shown
through Fig. 1.

Also, it is defined a continuous function ϕ(X), arbitrary in Ωϕ(X), which satisfies the following
conditions:

ϕ(X) =

{
0, for X ∈ Ω−\Ω−ϕ
1, for X ∈ Ω+\Ω+

ϕ

(1)

where the material points are designated by X and a\b represents a− (a ∩ b).
Therefore, one can define the following expression for the regularized displacement rate:

u̇i(X, t) = ˙̄ui(X, t) + ϕ(X)[[u̇i]](X, t)︸ ︷︷ ︸
˙̂ui(X,t)

+ [HS(X)− ϕ(X)]︸ ︷︷ ︸
Mϕ

S(X)

[[u̇i]](X, t)

= ˙̂ui(X, t) +Mϕ
S(X)[[u̇i]](X, t)

(2)
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Figure 1. Discontinuous surface contained in an arbitrary subdomain Ωϕ

where HS is the Heaviside function (HS = 1 for X ∈ Ω+ and HS = 0 for X ∈ Ω−) an the terms
˙̄ui(X, t) and [[u̇i]](X, t) represent, respectively, the regular part of the displacement rate field and the
displacement rate jump components on the discontinuity surface S. Besides this, ˙̂ui(X, t) are continuous
functions andMϕ

S(X) has null value for all X in Ω, except for X ∈ Ωϕ.
The regularized strain field are given by the symmetric part of the gradient of Eq. (2), that is:

ε̇ij(X, t) =
1

2
( ˙̂ui,j + ˙̂uj,i)︸ ︷︷ ︸

˙̂εij

+
Mϕ
S

2
([[u̇i,j ]] + [[u̇j,i]])−

1

2
(ϕ,i[[u̇j ]] + ϕ,j [[u̇i]])︸ ︷︷ ︸

−ε̇ϕij

+
δS
2

([[u̇i]]nj + [[u̇j ]]ni)

= ˙̂εij − ε̇ϕij +
δS
2

([[u̇i]]nj + [[u̇j ]]ni)

(3)

where ε̇ϕij has non-zero values only in Ωϕ and the term ˙̂εij represents the strain field regular portion.
Moreover, the term δS represents the Dirac’s line delta function over S and ni are the components of the
unitary vector normal to the discontinuity surface.

2.2 Integral equations with discontinuities

The governing integral equations with discontinuities [32], in the absence of body forces, can be
expressed as:

cij(ξ) ˙̂uj(ξ) =

∫
Γ
u∗ij(ξ,X)ṫj(X)dΓ(X)−

∫
Γ

− t∗ij(ξ,X) ˙̂uj(X)dΓ(X)

+

∫
Ω
σ∗ijk(ξ,X)ε̇ϕjk(X)dΩ(X)

(4)

˙̂εij(ξ) =

∫
Γ
u∗ijk(ξ,X)ṫk(X)dΓ(X)−

∫
Γ
t∗ijk(ξ,X) ˙̂uk(X)dΓ(X)

+

∫
Ω

− σ∗ijkl(ξ,X)ε̇ϕkl(X)dΩ(X) + F εεijklε̇
ϕ
kl(ξ)

(5)

where Eq. (4) is the displacement boundary integral equation and Eq. (5) is the integral equation for
internal strains. In this case, the integral equation for internal displacements (Somigliana’s identity) is
obtained from Eq. (4) by cij(ξ) = 1 with ξ ∈ Ω and ξ 6∈ Γ.

In Eqs. (4) and (5) the terms ûi and tj are, respectively, the regular displacements and the tractions
on boundary Γ. Moreover, the tensors u∗ij(ξ,X), t∗ij(ξ,X) and σ∗ijk(ξ,X) are the Kelvin’s fundamental
solutions and represent, respectively, displacements and tractions in the j direction and jk stress compo-
nents, at a field point X, due to a concentrated unit load at the source point ξ applied in the i direction.
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Already the tensors u∗ijk(ξ,X), t∗ijk(ξ,X) and σ∗ijkl(ξ,X) represent the Kelvin’s fundamental solutions
derivatives with respect to the source point ξ and the terms F εεijkl and cij(ξ) are free terms associated with
particular analytical integrations. It is also worth to mention that the first and third integrals on the right
side the Eq. (4) have weak singularities and the second integral on the right side of the same equation
together with the third integral on the right side of the Eq. (5) have strong singularities when ξ and X
coincide. In these cases, special integration techniques need to be used. In this work, the methodolo-
gies adopted can be seen in Lachat and Watson [46] and Gao and Davies [47] in the evaluation of the
weak and strong singularities, respectively. The remaining integrals do not have any singularity and can,
therefore, be integrated by conventional gauss quadrature.

2.3 Equilibrium equation of the discontinuous interface

Equations (4) and (5) do not completely define the boundary value problem, since the internal con-
tinuity condition of the surface forces is not met [32, 33]. Therefore, the interface equilibrium equation
must also be satisfied:

fi =
{
Eoijkl

[
ε̂kl − εϕkl([[ui]], [[ui,j ]])

]
− σSij(εij)

}
nj = 0 (6)

In this equation εij is given by the time integration of Eq. (3) which, for points on S , corresponds to
the following expression:

εij = ε̂ij − εϕij +
1

2h
([[ui]]nj + [[uj ]]ni); h −→ 0 (7)

In the context of the boundary element method, Eq. (6) can be solved numerically by the adoption
of cells with embedded discontinuities that provide the displacement jump components ([[ui]]) required
to evaluate εϕij . These components are considered linear inside the cells and are obtained through the
adoption of two collocation points in opposition to the previous works with BEM in which only uni-
form jump components have been used inside a cell. In this way, considering a given regular strain
ε̂ij for each collocation point, and taking into account Eq. (7), we have that Eq. (6) can be written as
fi ≡ fi([[ui]], [[ui,j ]] = 0. Therefore, after linearization of this equation, its solution can be obtained
through Newton’s method.

From these considerations, a regularized constitutive equation that relates stresses and regular strains
(ε̂ij) can be defined, that is:

σ̃ij(ε̂ij) = σ
Ω\S
ij

(
ε̂ij − εϕij

(
[[ui]](ε̂ij), [[ui,j ]](ε̂ij)

))
= Eoijkl(ε̂kl − ε

ϕ
kl) (8)

where [[ui]](ε̂ij) and its gradient, [[ui,j ]](ε̂ij), comes from solution of Eq. (6).

3 Implicit Formulation of the BEM for Problems with Discontinuities

After BEM standard discretization, Eqs. (4) and (5) can be rewritten in matrix form as [32, 33]:

[H]{ ˙̂u} = [G]{ṫ}+ [Qεϕ ]{ε̇ϕ} (9)

{ ˙̂ε} = [Gε]{ṫ} − [Hε]{ ˙̂u}+ [Qεεϕ ]{ε̇ϕ} (10)

where matrix [H] is composed by the free terms (cij) and the terms from the second integral on the right
hand side of Eq. (4). Already the matrices [G] and [Qεϕ ] are composed by the terms from the first and
third integrals on the right hand side of this same equation. With respect to matrices in Eq. (10) we have
that [Gε] and [Hε] are composed by the terms in the first and second integrals in the right hand side of
Eq. (5), respectively, and [Qεεϕ ] is formed by the third integral and the last term in the right hand side of
this same equation.
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Applying the essential and natural boundary conditions, the Eqs. (9) and (10) can be re-arranged as:

[A]{ẋ} = [B]{ẏ}+ [Qεϕ ]{ε̇ϕ} (11)

{ ˙̂ε} = [Aε]{ẋ}+ [Bε]{ẏ}+ [Qεεϕ ]{ε̇ϕ} (12)

where the matrices [A] and [B] are composed by the coefficients from the matrices [H] and [G] and the
matrices [Aε] and [Bε] are composed by the coefficients from the matrices [Hε] and [Gε]. In vectors {ẏ}
and {ẋ} are grouped, respectively, the prescribed and the unknown values of the boundary stemming
from { ˙̂u} or {ṫ}.

From Eq. (11), we find:
{ẋ} = [N ]{ẏ}+ [Mεϕ ]{ε̇ϕ} (13)

where:
[N ] = [A]−1[B], [Mεϕ ] = [A]−1[Qεϕ ] (14)

Now replacing Eq. (13) in (12), it is found:

{ ˙̂ε} = [N ε]{ẏ}+ [M ε
εϕ ]{ε̇ϕ} (15)

being that:
[N ε] = [Aε][A]−1[B] + [Bε], [M ε

εϕ ] = [Aε][A]−1[Qεϕ ] + [Qεεϕ ] (16)

The constitutive model considered in this work is a rate independent model, in such a way that time
derivatives can be substituted by finite increments, i.e.,

{ε̂}i = λi[N ε]{y}+ [M ε
εϕ ]{εϕ}i (17)

being that, ˙(·) = (·)i − (·)i−1, where i is an incremental index. In addition, λi is a cumulative scalar
value called load factor and whose evolution depends on a specific control method [48].

From Eq. (17), we can now define an equilibrium vector, {Q}i ≡ {Q(ε̂i, λi)}, as a function of the
regular strains and the load factor, that is:

{Q}i = λi[N ε]{y}+ [M ε
εϕ ]
(
{ε̂}i − [Eo]−1{σ̃(ε̂)}i

)
− {ε̂}i = {0} (18)

where it was taken into account the matrix form of the regularized constitutive equation (Eq. 8) applied to
the complete set of internal cells. In addition, in Eq. (18) the term [Eo] now represents the linear elastic
quasi-diagonal matrix.

Equation (18) in then linearized and solved by Newton’s method in each load increment. The
complete algorithm can be seen in Peixoto et al. [33].

4 Isotropic Damage Constitutive Model

In the numerical analyses performed in this work, an isotropic damage constitutive model is used.
This model can be synthesized through the following equations [32]:

ψ(εij , r) = [1−D(r)]ψo(εij), ψo(εij) =
1

2
εijE

o
ijklεkl (19)

σij =
∂ψ(εij , r)

∂εij
= (1−D)Eoijklεkl = Eijklεkl (20)

D ≡ D(r) = 1− q(r)

r
, D ∈ [0, 1] (21)

ṙ = γ̇,

{
r ∈ [ro,∞),

ro = r|t=0 = ft√
E

(22)
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F̄ (εij , r) = τε − r (23)

F̄ 6 0, γ̇ > 0, γ̇F̄ = 0, γ̇ ˙̄F = 0 (24)

q̇ = H(r)ṙ, (H = q′(r) 6 0),

{
q ∈ [0, ro],

q|t=0 = ro
(25)

Equation (19) represents the expression for Helmholtz free energy. In this equation the term r is the
strain-like scalar internal variable. In addition, D is the damage variable and Eoijkl represents the elastic
constitutive tensor for isotropic materials which is given by:

Eoijkl = λ̄δijδkl + µ(δikδjl + δilδjk) (26)

where δij is the Kronecker delta and the terms µ and λ̄ represent the Lamé constants that are expressed
as:

µ =
E

2(1 + ν)
; λ̄ =

2µν̄

1− 2ν̄
(27)

where E is the elasticity modulus, ν is the Poisson’s ratio and ν̄ is given by:

ν̄ =

ν, for 3D and plane strain state
ν

1 + ν
, for plane stress state

(28)

Already Eqs. (20) to (25) represent, respectively, a constitutive equation, an expression for the dam-
age variable, the evolution law of the internal variable, a damage criterion, the Kuhn-Tucker conditions
and a softening law. In these expressions, the term σij represents the Cauchy stress tensor, Eijkl repre-
sents the secant tensor of the constitutive relation, q is the stress-like internal scalar variable, ft refers to
the material tensile strength, F̄ represents the damage function in the strain space, τε is the equivalent
strain and H is the hardening-softening modulus.

Different damage criteria can be obtained from the choice of the τε parameter (Eq. 23). In this work,
the same damage criterion used by Oliver et al. [49] is adopted, that is:

τε =
√
ε+ijE

o
ijklεkl (29)

In Eq. (29) the tensor ε+ij is defined, taking into account a coordinate system aligned with the strain
principal directions, such as:

ε+ij =

ndim∑
k=1

〈εk〉êk ⊗ êk (30)

where the term εk represents the k-th principal strain, êk represents a unit vector in the corresponding
principal direction and 〈εk〉 = (|εk|+ εk)/2. Thus, this model becomes suitable for the representation of
quasi-brittle materials, since the degradation will occur in traction states preferentially.

An incremental constitutive equation can be obtained from Eq. (20) considering the inelastic loading
condition (ṙ = τ̇ε), that is:

σ̇ij = (1−D)Eoijklε̇kl − ḊEoijklεkl

= Eijklε̇kl −
(
∂D

∂r

)
ṙEoijklεkl

=

[
Eijkl −

(
∂D

∂r

)(
∂τε
∂εkl

)
Eoijrsεrs

]
ε̇kl

= Etijklε̇kl

(31)

where Etijkl is the tangent operator of the constitutive model.
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For the strong discontinuity regime an exponential softening law, that compatibilizes the continuous
constitutive model with the strong discontinuity kinematics [32, 45], is adopted for Eq. (25), that is:

q(r) = roe
r2oh

Gf

(
1− r

ro

)
(32)

where Gf represents the fracture energy.
From Eqs. (21) and (32) we find the following expression for the damage variable evolution:

D(r) = 1− ro
r
e

r2oh

Gf

(
1− r

ro

)
for r > ro (33)

5 Cells with non-uniform embedded discontinuity

In this section we describe the new class of cells with embedded strong discontinuity that is devel-
oped through this work. These cells present non-uniform displacement jumps in their interior and until
the present moment have not yet been studied. Although the focus of this section is on the description
of cells with non-uniform displacement jumps, the methodology used here is easily extended to cells
with higher approximation orders for the displacement jumps, thus contributing to a generalization of
the concept of cells with embedded strong discontinuity.

5.1 Description of a cell with linear displacement jump

From the definition of the function ϕ(X) (Eq. 1), we can see that the dissipative effects are restricted
to the subdomain Ωϕ. Therefore, only this region needs to be discretized by cells, as illustrated by Fig. 2a.

Figure 2. BEM discretization of a solid with discontinuity surface: a) Boundary and domain discretiza-
tion, b) Cell with embedded discontinuity

In this work, the strong discontinuity regime is directly imposed at the end of the elastic regime.
Thus, as previously mentioned in Section 1, before the inelastic behaviour the cells have only one col-
location point at their centroid. Subsequently, in the strong discontinuity regime, this collocation point
is excluded from the numerical model and two other points are created along the discontinuity line, as
illustrated in Fig. (2b). This process is more detailed in Section 6.

The displacement jumps inside the cells are obtained through the numerical solution of the interface
equilibrium equation (Eq. 6). In this way, it is considered that the displacement jumps have a linear
variation inside a cell which are approximated through the following expression:

[[ui]](ξ̄) ≈ N1(ξ̄)[[ui]]
1 +N2(ξ̄)[[ui]]

2 (34)

where [[ui]]
1 and [[ui]]

2 represent the displacement jumps at collocation points P1 and P2, respectively
(see Fig. 3).
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Therefore, based on Eq. (34), we have:

[[u1]](ξ̄)

[[u2]](ξ̄)

 ≈
N1(ξ̄) 0 N2(ξ̄) 0

0 N1(ξ̄) 0 N2(ξ̄)




[[u1]]1

[[u2]]1

[[u1]]2

[[u2]]2


(35)

In Eqs. (34) and (35) the terms N1 and N2 are interpolation functions such that:

N1 = (1− ξ̄)/2; N2 = (1 + ξ̄)/2; (36)

where the term ξ̄ represents a dimensionless coordinate axis defined along the discontinuity line (Fig. 3)
which can be expressed as:

ξ̄(x, y) = ax+ by + c; (37)

The parameters a, b and c in Eq. (37) are constant scalars, obtained through the following conditions:

ξ̄(x1, y1) = −1; ξ̄(x2, y2) = +1; ξ̄(xn, yn) = −1; (38)

where (x1, y1) and (x2, y2) represent the coordinates of the collocation points P1 and P2, respectively,
and (xn, yn) represents the coordinates of a fictitious point, PN , whose orthogonal distance to the collo-
cation point 1 is equal to one unit. This scheme is shown in Fig. 3.

Figure 3. Conditions for defining the coordinates transformation ξ̄(x, y)

In addition, for the strong discontinuity regime, the field εϕij is considered linear through the follow-
ing expression:

{εϕ} = N1{εϕ,1}+N2{εϕ,2} (39)

where the terms {εϕ,1} and {εϕ,2} represent the initial fields at collocation points P1 and P2, respectively.
The cell geometry is parametrized by conventional linear shape functions Mα(η1, η2) defined by

the natural coordinates ηi, that is:

Xj(η1, η2) ≈Mα(η1, η2)Xα
j (40)

where the α index refers to the corner points (numbered from 1 to 4 in Fig. 2b).
Therefore, in a non-constant cell with embedded discontinuity, a set of internal collocation points

and a set of geometric interpolation points can be distinguished. In addition, the discontinuity line
orientation is defined by its unit normal vector, ni, and a very small value parameter, h (see Eq. 7), is
used to regularize the Dirac delta function.

The geometry interpolation functions can also be used to define the function ϕ(X) inside the cell
since the conditions, ϕ(X) = 0 in Ω−\Ω−ϕ and ϕ(X) = 1 in Ω+\Ω+

ϕ , are satisfied by the choice:

ϕ(X(η1, η2)) =
∑
α+

Mα+
(η1, η2) (41)
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In this case, the summation is performed considering the interpolation functions associated with the
corners located in Ω+

c (e.g., points 2 and 3 in Fig. 2b).

5.2 Evaluation of displacement jumps

From Eq. (3), the vector {εϕ} in a collocation point inside a cell may be written as:

{εϕ} =


εϕ11

εϕ22

εϕ12

 =


ϕ,1 0

0 ϕ,2

1
2ϕ,2

1
2ϕ,1


[[u1]]

[[u2]]

−Mϕ
S


[[u1,1]]

[[u2,2]]

1
2 [[u1,2]] + 1

2 [[u2,1]]

 (42)

where, from Eqs. (40) and (41), we have that:

ϕ,i =
∂ϕ

∂ηk

∂ηk
∂Xi

=

(
∂Mα

∂ηk
Xα
i

)−1( ∂

∂ηk

[∑
α+

Mα+

])
(43)

Thus, considering Eq. (35) and the gradient of the linear displacement jumps, we can rewrite
Eq. (42) as:

{εϕ} =


εϕ11

εϕ22

εϕ12

 =


ϕ,1 0

0 ϕ,2

1
2ϕ,2

1
2ϕ,1


N1(ξ) 0 N2(ξ) 0

0 N1(ξ) 0 N2(ξ)




[[u1]]1

[[u2]]1

[[u1]]2

[[u2]]2


−Mϕ

S


−1

2a 0 1
2a 0

0 −1
2b 0 1

2b

−1
4b −

1
4a

1
2b

1
4a




[[u1]]1

[[u2]]1

[[u1]]2

[[u2]]2


= [∇sϕ][N ]{[[u]]} −Mϕ

S [J̄ ]{[[u]]}

=
(

[∇sϕ][N ]−Mϕ
S [J̄ ]

)
{[[u]]}

(44)
Besides this, considering Eqs. (7) and (44), we find the following expression for the interface equi-

librium equation (Eq. 6), for each collocation point inside a cell:

{fk} = [N̄ c]T
(
[Eo]{ε̂k} − [Eo]

[
[∇sϕ][N ]−Mϕ

S [J̄ ]
]
{[[u]]}

− {σSk ({ε̂k} −
[
[∇sϕ][N ]−Mϕ

S [J̄ ]
]
{[[u]]}+

1

h
[N c][N ]{[[u]]})}

)
= {0}

(45)

where k = 1, 2 and:

[N̄ c] =


n1 0

0 n2

n2 n1

 ; [N c] =


n1 0

0 n2

1
2n2

1
2n1

 (46)

Now, for a given regular strain state in each collocation point, {ε̂k}, Eq. (45) can then be solved by
Newton’s method after its linearization, i.e.,

{fk}j−1 +

[
∂{fk}
∂{[[u]]}

]
j−1

{δ[[u]]}j ≈ 0 (47)

where j is an iterative index, {δ[[u]]}j = {[[u]]}j − {[[u]]}j−1, and:[
∂{fk}
∂{[[u]]}

]
j−1

=[N̄ c]T
{
− [Eo]

(
[∇sϕ][N ]−Mϕ

S [J̄ ]

)
−
[
∂σS

∂ε

]
j−1

[
− [∇sϕ][N ] +Mϕ

S [J̄ ] +
1

h
[N c][N ]

]} (48)
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where the term
[
∂σS

∂ε

]
is the tangent operator of the continuous constitutive model, presented in Eq. (31),

used to represent the dissipative effects on the discontinuity line S.
Therefore, Eqs. (45), (47) and (48) are applied simultaneously to the two collocation points located

on the cell’s discontinuity line generating a 4× 4 equation system, that is:

f1

f2


j−1

+

[ ∂{f1}∂{[[u]]}

]
[
∂{f2}
∂{[[u]]}

]

j−1



δ[[u1]]1

δ[[u2]]1

δ[[u1]]2

δ[[u2]]2


j

≈



0

0

0

0


(49)

Thus, once Eq. (49) is solved by Newton’s iterative method, the components of the displacement
jumps inside the cells with embedded discontinuity are obtained.

5.3 Regularized constitutive model and its tangent operator

Based on the formulation presented above, the regularized constitutive relation of Eq. (8) assumes
the next form for an individual collocation point inside a cell:

{σ̃(ε̂k)} =[Eo]({ε̂k} − {εϕ,k})

=[Eo]
[
{ε̂k} −

(
[∇sϕ][N(ξ̄k)]−Mϕ

S [J̄ ]
)
{[[u]]}

] (50)

In addition, the non-linear solution strategy requires a tangent operator from this regularized consti-
tutive equation, which can be done by taking the derivative:[

∂σ̃

∂ε̂k

]
= [Eo]

(
[I]−

[
∂{εϕ}
∂{ε̂k}

])
= [Eo]

(
[I]−

[
∂{εϕ}
∂{[[u]]}

]
︸ ︷︷ ︸

1st term

[
∂{fk}
∂{[[u]]}

]−1

︸ ︷︷ ︸
2st term

[
∂{f}
∂{ε̂k}

]
︸ ︷︷ ︸

3st term

)
(51)

The first term highlighted in Eq. (51) can be expressed as:[
∂{εϕ}
∂{[[u]]}

]
=
(

[∇sϕ][N(ξ̄k)]−Mϕ
S [J̄ ]

)
(52)

where Eq. (44) has been taken into account.
The second term is obtained by employing the pseudo-inverse concept [50], since

[
∂{fk}
∂{[[u]]}

]
is a

non-square matrix. In this way, one has to:[
∂{fk}
∂{[[u]]}

]−1

=

[
∂{fk}
∂{[[u]]}

]T([ ∂{fk}
∂{[[u]]}

][
∂{fk}
∂{[[u]]}

]T)−1

(53)

Finally, the third and last term, in turn, is obtained from Eq. (45), i.e.,[
∂{fk}
∂{ε̂k}

]
= [N̄ c]T

(
[Eo]−

[
∂{σSk }
∂{ε̂k}

])
(54)

6 Discontinuity line tracking algorithm

The discontinuous line is propagated along the solid domain through an automatic cell generation
algorithm according to the scheme shown in Fig. 4.
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Figure 4. Automatic cell generation algorithm: a) Cell i under elastic regime, b) Tracing of the discon-
tinuity line in cell i, c) Elimination of the collocation point in cell i, d) Insertion of 2 new collocation
points in cell i, e) Generation of a new cell in elastic regime (cell (i+ 1))

In front of the last cell in strong discontinuity regime (Cell (i − 1) in Fig. 4a) there is always a
cell in elastic regime (Cell i also in Fig. 4a). When the elastic limit is reached, a straight discontinuity
segment is introduced, perpendicularly to the maximum principal stress direction (Fig. 4b), ensuring
discontinuous line continuity (lines Si−1 and Si). Then, the collocation point located in the centroid of
the cell i is excluded from the numerical model (Fig. 4c) and other two collocation points are inserted
over the discontinuity line (Fig. 4d). In this case, the points are inserted at a distance of 1/3 and 2/3 of
the discontinuity line length. Finally, with reference to the Fig. 4e, a new cell (Cell (i+ 1)) is generated
from the following steps:

i. The edge of the cell i that contains the end of the discontinuity line is assumed to be the starting
edge of the cell (i+ 1);

ii. A straight segment is drawn from the end point of the discontinuity segment of the previous cell
following the same orientation as this, but with length weighted by a scalar factor, β;

iii. The opposite side of the new cell is created perpendicularly to this segment, with its same size and
taking its final point as the side’s midpoint;

iv. The other two sides of the new cell are created by connecting the endpoints of these first two sides.
In this case, the use of β parameter becomes important in some cases to prevent the occurrence of

numerical instabilities and for the reduction of numerical processing time [51].

7 Numerical Examples

In the numerical analyses carried out in this work, the isotropic damage constitutive model described
in Section 4 is adopted to represent the dissipative affects over the discontinuity line. The strong discon-
tinuity regime is imposed directly at the end of the elastic regime assuming h = 0.01 mm in Eqs. (32)
and (33). Besides this, the discontinuity segment orientation inside the cell was adopted as perpendicu-
lar to the maximum principal stress direction. For the non-linear analysis, a tolerance of 1 × 10−4 was
considered with the cells generation occurring (if necessary) only after a step convergence.

7.1 Example 1: Bending Test

The first example analyzed is a simple bending test. A schematic drawing of such test is shown
through Fig. 5, where the geometry, loads and the material properties are also presented.

The discontinuity line was pre-fixed at the center of the cell with embedded discontinuity. This cell
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Figure 5. Example 1: Simple bending test

is represented by the dark gray area in Fig. 5. In addition, 8 linear elements are employed in the boundary
discretization. Prescribed displacements of 0.300 mm and 0.315 mm were imposed on collocation points
4 and 5, respectively, and analyzes were performed considering a cell with 1 collocation point, i.e.,
with uniform displacement jumps components as in the works of Peixoto et al. [32, 33], and the cell
developed in this work with 2 collocation points, i.e., with non-uniform displacement jumps components.
The horizontal traction obtained for the collocation points 4 and 5 were plotted in function of point 4
displacement. The results are shown in Figs. 6 and 7.
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Figure 6. Example 1: Traction surface in collocation point 4

It can be seen by Fig. 6 that an elevated spurious negative traction is required in collocation point
4, when cells with uniform displacement jumps are used, to accomplish the displacement difference
between points 5 and 4, while a more realistic traction curve is verified for the case with cell with non-
uniform displacement jumps components.

Moreover, as depicted in Fig. 7, an adequate unloading branch was observed only when a cell with
non-uniform displacement jumps components was used, while an accentuated stress locking behaviour
was verified in the other case. It can be explained by the fact that the cell with only one collocation
point is not able to capture rotational movements as the new cell here proposed. That is, a cell with
uniform displacement jumps components can only capture translational rigid body motions between the
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Figure 7. Example 1: Traction surface in collocation point 5

two portions of the cell. Thus, the cells with non-uniform displacement jumps components is more
appropriate to be used.

7.2 Example 2: Four point bending

The second example analyzed is the four point bending test that was experimentally studied by Arrea
and Ingraffea [52]. This problem is showed in Fig. 8, where the material properties are also presented.

Figure 8. Example 2: Four point bending test

The boundary discretization was performed with 642 linear elements. To capture the beginning of
the discontinuity line, a square cell with diagonal of 1.6 mm was previously introduced at the notch tip.
In this cell the origin of the discontinuity segment was imposed at the midpoint of the side common to
the notch boundary. The automatic cell generation algorithm was adopted with β = 1.001, but with
cell growth being interrupted when the discontinuity segment exceeded 8.0 mm. In addition, 170 steps
are considered in the non-linear analysis with its progression being controlled through the vertical dis-
placement component of point A, highlighted in Fig. 8. In this way, the final mesh obtained is shown
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in Fig. 9.

(a) (b)

Figure 9. Example 2: (a) Total mesh, (b) Detail

The results for the applied load versus the relative vertical displacement between the two sides at
the botton portion of the notch (the crack mouth sliding displacement - CMSD) is presented through the
Fig. 10, again considering the analyses with cells with uniform and non-uniform displacement jumps
components, plotted over the experimental envelopment results [52]. Beside this, for comparison pur-
poses, the results obtained by Manzoli and Venturini [31] and Manzoli et al. [45] are also presented
in this same figure. In these both works, triangular cells with embedded uniform displacement jumps
(only one collocation point) were employed. In the firs one, an standard associative elastoplastic consti-
tutive model with a tensile strength of 2.5 MPa were employed, while in the second, an isotropic damage
model, similar to the one here employed, was adopted with ft = 3.5 MPa. All the remaining physical
properties follows the same values as presented in Fig. 8.
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Figure 10. Example 2: Results for load P versus CMSD

It is possible to verify that all the three analyses using cells with embedded uniform displacement
jumps presented the stress locking behaviour, preventing the total stress release associated to the final
fracture of the structure. On the other hand, the complete unloading occurs for the analysis with the new
type of cells here proposed.
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8 Concluding remarks

Until the present moment, only uniform quadrilateral cells had been employed in crack propagation
problems within the BEM. Thus, in the present work quadrilateral cells with non-uniform embedded
discontinuity were developed. In numerical analysis, the implicit formulation of the boundary element
method was considered together with the CSDA. Initially was analyzed a simple bending test and, subse-
quently, numerical simulations were performed with an automatic cell generation algorithm considering
one classical problem whose experimental results are available in the literature. All analyses were per-
formed with uniform and non-uniform cells in order to demonstrate the efficacy in the use of the cells
developed here.

The results obtained for the simple bending test showed that uniform quadrilateral cells present the
stress locking phenomenon, which, in turn, is greatly reduced with the use of non-constant quadrilateral
cells. This phenomenon arises due to the inability of uniform quadrilateral cells to represent the relative
rotational movement between their two parts inducing, in turn, an unrealistic stiffening in the structural
response. That is, this type of cell is not able to completely relieve the stresses within it when requested in
mixed-modes of fracture. Subsequently, in the example 2, the stress locking phenomenon was completely
removed due to the continuous softening present in the curve (Load × CMSD - Fig. 10), until the end
of the analysis. This event is not observed in analyses with uniform cells which, in turn, show a slight
stiffening in this same curve in its final stage. Another important fact to be highlighted in this last
example is the almost complete unloading of the structural response. That is, as the generated cells
approach the top of the model, the collapse of the structure and the consequent complete unloading in
curve (Load × CMSD) is expected, evidencing that the cells developed in this work are more consistent
with the physical reality of the problem.
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