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Abstract. This work presents a numerical formulation based on the Boundary Element Method (BEM) 

for the mechanical analysis of reinforced viscoelastic materials. The reinforced domain is represented 

by a numerical methods coupling technique, in which the material matrix is modelled by the usual 

two-dimensional singular BEM formulation and a one-dimensional approach of the BEM, called 

1DBEM, is used for the reinforcements. The 1DBEM is based on an axial fundamental solution for 

elastic 1D domains, easily found in the literature. No relative displacements between matrix and 

reinforcements are considered to formulate the coupling and the contact force is a one-dimensional 

load distributed along the reinforcement’s line, which define this 1DBEM/BEM coupling as an 

alternative to the usual FEM/BEM coupling. The viscoelastic response is added to the matrix behavior, 

using the Kelvin-Voigt rheological model in the two-dimensional BEM formulation. This approach 

enables introducing the time-dependent material properties without the need for cells within the 

domain or convolution integrals. A time discretization is needed to solve the resulting time-dependent 

equation. However, as previously mentioned in the literature, this approach shows a good convergence 

behavior regarding the time step size. Finally, the proposed formulation is able to represent reinforced 

domains with a viscoelastic matrix, such as reinforced structures or fiber-reinforced materials. 

Numerical applications exhibit the convergence of the model and compare the answer obtained with 

both 1DBEM/BEM coupling and FEM/BEM coupling techniques with reference results, available in 

the literature. The results obtained are stable and accurate, which demonstrates the robustness of the 

formulation proposed in this work.  
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1  Introduction 

In recent decades, the human being and the society have evolved significantly. Then, advanced 

manufactures and products are in constant process of evolution, which lead to the development of 

complex materials compositions and methods for its mechanical analysis. For example, the structural 

design of mechanical components and structures using reinforced domains and viscoelastic materials, 

such as composites, polymers and even concrete, has become crucial in several engineering fields. 

Considering the search for projects and components mechanically efficient, i.e., high strength with low 

weight, applications like these ones can be seen as a smart solution in different areas, such as civil 

engineering, automotive, naval and aeronautics, as mentioned by Armentani and Citarella [1] and 

Citarella [2]. In the context of mechanical analysis of these complex materials and structures, the 

analytical approaches available are highly restricted and limited, especially concerning geometries and 

boundary conditions. As a result, the robust mechanical modelling of complex problems requires the 

application of numerical approaches. Among the numerical methods available for the mechanical 

analysis, the Boundary Element Method (BEM) is established and widely utilized. Its advantages, as 

the mesh dimensionality reduction and the accuracy in representing stress concentration, make the 

BEM recommended for some mechanical applications, as fracture mechanics problem, infinite 

domains and viscoelasticity (Oliveira and Leonel [3]). 

The viscoelastic materials present both elastic and viscous properties, which cause a time 

dependent mechanical behavior. Chern [4] and Shaw et al. [5] present a good background about 

classic approaches to represent the viscoelastic behaviour, which are usually based on relaxation 

functions and incremental schemes. Classical BEM mathematical formulations were also developed to 

solve viscoelastic problems, with the use of the principle of correspondence and transformations 

(Rizzo and Shippy [6]; Liu and Antes [7]; Lee and Westmann [8]). This study applies and alternative 

BEM formulation for viscoelasticity, proposed by Mesquita and Coda [9, 10, 11]. Based on 

differential constitutive relations of rheological models, such as Kelvin-Voigt, and the weighted 

residual technique, this formulation provides a representation for viscoelastic domains by integral 

equations written exclusively with time-differential boundary equations. This aspect of this approach 

contributes as an advantage for the using of the BEM, maintaining the mesh dimensionality reduction 

for the viscoelastic problem. The time derivative terms are approximately evaluated by the finite 

differences technique, which leads to a time marching process. As mentioned in the literature, this 

approach shows a good convergence behavior regarding the step size of the time discretization. 

 On the other hand, modelling reinforced materials and structures usually deals with two different 

structural elements, which can be modelled differently, such as plane stress or plane strain plates, 

trusses or beams, for instance. Therefore, a numerical model based on the coupling of different 

numerical methods, such as the BEM and the Finite Element Method (FEM), seems to be an 

interesting approach for addressing consistently this problem. Thus, each numerical method can be 

applied in the modelling of the sub-structure in which it presents best performance. The FEM/BEM 

coupling was proposed initially by Zienkiewicz, Kelly e Bettes [12]. Since then, several authors have 

developed new researches based on this coupling technique, making it a consolidated approach. A 

state of art on this subject is presented by Ganguly, Layton and Balakrishna [13] and Elleithy, Tanaka 

and Guzik [14]. Furthermore, Bia et al. [15] mentions limitations and advantages of such type of 

coupling. This approach have been also used coupled with the BEM formulation based on viscoelastic 

rheological models by Mesquita and Coda [16]. 

In this context, this study presents a numerical formulation for the mechanical modelling of 

reinforced viscoelastic domains. The coupling technique for matrix/reinforcement representation is 

based on the established FEM/BEM coupling. However, a one-dimensional BEM approach is utilized 

into the reinforcements (1DBEM), which characterizes an alternative BEM/BEM coupling technique, 

called 1DBEM/BEM. The use of this approach can also be found in Buffon [17], for linear-elastic 

problems. The linear viscoelastic behavior of the matrix is represented in the two-dimensional BEM 

formulation by imposing properly the constitutive relations of the rheological model of Kelvin-Voigt. 
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This approach enables introducing the viscoelastic behavior into the material matrix, whereas the 

reinforcements still have an elastic constitutive relation. Thus, finite differences technique is applied in 

the time differential equation, which leads to a time marching process that determines the unknown 

variables at the boundary, at the reinforcements and its variation along time. The entire problem can be 

described only by boundary elements, without the need for cells or domain mesh, which provides a 

stable and robust numerical model to represent reinforced viscoelastic materials. The following items 

describe the formulation of the proposed model. One application is utilized to demonstrate the 

accuracy and robustness of the proposed formulation. 

2  Review of rheological models: Kelvin-Voigt viscoelastic model 

Rheological models defined in the uniaxial space is an approach adopted to describe the 

mechanical behavior of viscoelastic materials. This technique is based on an analogy with electrical 

circuit’s theory, using idealized simple elements (dashpots and springs) to represent specific 

mechanical characteristics (Tschoegl [18]). The spring element represents the elastic response and the 

dashpots represent the viscous response. By the convenient composition of these elements, one can 

represent different viscoelastic behaviors. A parallel association of one dashpot and one spring 

represents the Kelvin-Voigt model, as illustrated in Fig. 1. 

 

Figure 1: Association schemes of Kevin-Voigt rheological model. 

For this model, equilibrium and compatibility equations can be stated as: 

 

( ) ( )

( ) ( )
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In which σij and εij are the stress and strain tensors. Subscripts ‘(el)’ and ‘(v)’ represent its elastic 

and viscous parts, respectively.   

Elastic and viscous stress can be written in terms of strain components as follows:  
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Where the dot symbol represents the temporal derivative, Cijkl and ηijkl are the elastic and viscous 

constitutive tensors, respectively. Mesquita and Coda [9, 10, 11] presented a proportionality condition 

between these tensors, given by a single viscoelastic parameter γ and written as follows: 

 ijkl ijklC   . (3) 

Applying Eq. (2) and Eq. (3) into the equilibrium relation given by Eq. (1), one can express the 

general constitutive relation for Kelvin-Voigt viscoelastic model: 
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 ij ijkl kl ijkl klC C      . (4)  

3   BEM integral equations 

The integral equation required by the BEM in elastostatics is obtained following the weighting 

residual technique, as presented in Brebbia, Telles and Wrobel [19]. In this technique, the differential 

equilibrium equation is weighted by a proper function, assumed to be the fundamental problem 

solution. So, for 2D elasticity problems, one can write: 

   *
, 0ij j i kib u d


    . (5) 

Where *
kiu  is the Kelvin fundamental solution for displacements, which can be found in Brebbia 

and Dominguez [20], and bi are the body forces.   

Applying the divergence theorem and the elasticity relations of the fundamental problem, Eq. (5) 

turns into: 

 * * * 0ki i kij ij ki iu p d d u b d 
  

       . (6) 

In which ui and pi are the displacements and tractions at the body’s boundary, respectively, and 
*
kij  is the fundamental solution for strain. Equation (6) is the starting point to obtain the 2D BEM 

integral representation for viscoelastic analysis, which will be represent in the next item.  

To write the 1DBEM integral equation, a one-dimensional homogeneous elastic domain is 

considered. For this case, one writes the weighting residual expression as follows: 

   *

,
0

0
L

iiEAu xp u d   . (7) 

Where E is the Young modulus, A is the cross-sectional area, p is the distributed load applied 

along the axial direction and i indicates the axial direction.  

Equation (7) exhibits the equilibrium equation weighted by the fundamental problem solution for 

displacements u*. One must consider a Dirac function applied at a source point (s) as the applied force 

p in a one-dimensional domain to obtain the fundamental problem of this case. Thus, the fundamental 

solutions for axial displacement u* and internal force N* at a given field point (f) can be written as 

follows: 
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In which xf and xs are the axial coordinates of the field point and source point, respectively, and 

sign( ) is the sign function, i.e., equal to –1 if the argument is negative or 1 otherwise. 

Therefore, applying twice the divergence theorem and the equilibrium equation of the 

fundamental problem in Eq. (7), one writes: 

 * * * * *

1 1 1 1
0

L

i i iL L i iL L k ik ku N u N u u N u N u p dx       . (9) 

In which subscripts 1 and L represent the element endpoints and i indicates a given point 

positioned into the domain. The domain integration represent the distributed load p through the 

multiplication of its nodal values pk by the shape functions ϕk of one-dimensional elements (similar as 
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in FEM techniques). 

In fact, the boundary is composed of only the endpoints i=1 and i=L in Eq. (9). Any other value 

for i leads to the internal point equation. However, internal points are considered in the system in order 

to improve the distributed load (p) representation. Therefore, high-order one-dimensional BEM 

elements are available in this formulation. 

Equation (9) can be generically written in its algebraic form as follows: 

  
E E E E E E

H u G n G f  . (10) 

Where the vectors uE, nE and fE contain, respectively, the nodal displacements, concentrated 

applied forces and distributed axial load nodal values. The matrixes HE, GE and G̅E represent, 

respectively, the integral results of the fundamental solutions N*, u* and the integral of the 

fundamental solution u* multiplied by the shape functions. 

Multiplying Eq. (10) by the inverse of GE and considering null concentrated applied forces, one 

can writes the final algebraic form of the 1DBEM, which will be utilized by the coupling formulation, 

as follows: 

    
-1 -1

E E E E E E
G H u G G f  . (11) 

4  Integral formulations for viscoelastic materials based on the BEM 

To write the BEM viscoelastic formulation based on the Kelvin-Voigt model, Eq. (4) is applied in 

Eq. (6), which leads to: 

 * * * * 0ki i kij ijlm lm kij ijlm lm ki iu p d D d D d u b d    
   

        . (12) 

By applying the divergence theorem and replacing the stress-strain, the strain-displacement and 

the Cauchy formula, one can write the Eq. (13) as the BEM singular form for the viscoelastic 

formulation. More details of this passage can be found in Mesquita and Coda [11].  

 * * * *
ki i i ki i ki i ki i ki ic u u p u d p u d u p d u b d 

   

       
       . (13) 

Where u̇i is the temporal derivative of displacements and the free term cki is equal to the 

Kronecker operator (δki) multiplied by 0.5, for points at smooth contours, and equal to δki, for internal 

points. 

When introducing the numerical approximation, shape functions approximate displacement and 

tractions. High order polynomial functions may be adopted, by using high order boundary elements. 

Thus, Eq. (13) can be written for boundary nodes, in its algebraic form, as follows: 

        t t t t  Hu Hu Gp Bb  . (14) 

In which matrix H contains the integration kernels *
ijp , matrix G contains the integration kernels 

*
iju and matrix B̅ contains the integration of *

iju  over the domain Ω. Vectors  tu  and  tp  contain the 

displacements and tractions values, as a function of time, and the dot symbol represents its temporal 

derivative.  

In the process of evaluating the boundary nodes, the integration kernels in the matrixes H and G 

of Eq. (14) become singular when the source point coincides with the field point. So, a mathematical 

technique must be used to evaluate this expression, as shown in Aliabadi, Hall and Phemister [21]. 

The singular kernels are subtracted by a Taylor expansion function and then evaluated as a Cauchy 

principal value. 
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The time-differential equation showed in Eq. (14) can be solved by the forward finite differences 

technique. Such technique considers a linear approximation for evaluating the first time derivative 

terms, as follows: 

  
1t t

t
t

 




u u
u  . (15) 

Where t+1 represents the present time instant and Δt is the adopted time step.  Thus, the analysis 

is divided into finite time steps and Eq. (14) turns into a time marching process: 

 1 1 11 t t tt

t t

    
   
 




Hu Hu Gp Bb  . (16) 

In which the vectors u and p represent displacements and traction values at a given time step. 

5  The coupling technique 

Consider a two-dimensional domain Ω with contour Γ, represented by boundary elements of any 

order. The reinforcements are immersed in Ω and positioned over the line  , which is also represented 

by boundary elements. The coupling technique is based on analyzing the structural elements 

disconnectedly, wherein one’s effect in each other is an adherence force (contact force), as shown in 

Fig. 2.  

One considers a perfect bounding contact between matrix (domain) and reinforcements. The 

adherence force is modelled as a one-dimensional distributed load along the reinforcement’s line, 

named as load line. Then, the displacement compatibility and force equilibrium expressions are 

defined as follows: 

 
 



 

E D

E D

u u

f f
 . (17) 

Where uE and uD are vectors containing nodal displacements for reinforcement and matrix, 

respectively, fE and fD are nodal values of the distributed contact force at the reinforcement elements 

and at the force line in the 2D domain, respectively. 

 

 

Figure 2: Matrix/reinforcement coupling technique. 

The contact force at the load line in the 2D domain is considered as a body force in the BEM 

formulation. Thus, the domain integral term, given by the expression B̅bt+1 in Eq. (16), is degenerated 

and evaluated along a line integral. Hence, all integrals of the singular form can be evaluated as line 

integrals, without the need for domain mesh or cells. Equation (16) can be rewritten for the boundary 
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points as:  

  1     CC c CC c CF D CC cH u G p G f H u  . (18) 

Where subscripts C and F of the matrixes H and G indicate, respectively, the integral results of 

the fundamental solutions over the boundary elements and over the reinforcement elements. Vectors uc 

and pc contain displacement and traction values at the boundary points; α parameter is equal to the 

relation γ/Δt and the bar symbol above the displacement vector (u̅c) represents its value in the previous 

time step. 

Then, the BEM singular form is evaluated for the reinforcement’s nodes, as internal points into 

the domain. Equation (13) must be applied for internal points, making the free term cki = δki, multiplied 

by the displacements and its temporal derivative (ui and u̇i) of the internal point. Hence, considering 

the load line as a body force, applying numerical approximation and replacing Eq. (15), one can 

rewrite Eq. (13) for internal points, in its algebraic form, as follows: 

    1 1         E FC c FC c FF D FC c Du H u G p G f H u u  . (19) 

The reinforcements are assumed as linear elastic time independent. Thus, Eq. (11) is utilized to 

describe the relation between uE and fE through the mechanical behavior of the reinforcements. This 

equation can be rewritten as follows: 

 E EF FK u G f  . (20) 

 Since the matrixes KF and GF are given by: 

 
 

 





-1

F E E

-1

F E E

K G H

G G G

. (21) 

One can notice that Eq. (20) could also represent the one-dimensional FEM, by making KF the 

stiffness matrix and GF the lumping matrix, which transforms the distributed applied force into 

equivalent concentrated nodal forces. Therefore, the present formulation describes both couplings 

1DBEM/BEM and FEM/BEM. 

Finally, the relations from Eq. (17) are applied in Eq. (18), Eq. (19) and Eq. (20), resulting in the 

system of equations: 
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0 K G f 0 0 0

- u

u

 . (22) 

Where I is the identity matrix. After enforcing the boundary conditions, this system of algebraic 

equations leads to the problem solution in terms of boundary and reinforcement’s displacements and 

tractions.  

6  Numerical results 

The proposed formulation is applied in the mechanical analysis of the structure illustrated in Fig. 

3. The two-dimensional domain is isotropic, plane stress condition is assumed and it is reinforced by 

one long horizontal fiber. The figure also exhibits dimensions, loads and the following physical 

properties: reinforcements’ area (A), Young’s modulus (E) and Poisson’s ratio (ν) of the 2D domain. 

The loads illustrated in Fig. 3 are constant in time and all initial conditions are null.  

The boundary element mesh is composed of 34 quadratic elements at the boundary of the 2D 
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domain and 50 quadratic reinforcement’s elements at the long fiber’s line. Therefore, the entire model 

consists of 346 degrees of freedom. A prior analysis has certified the mesh convergence for this 

model, i.e., the refinement of the contour elements mesh is adequate for this problem. The 

convergence of the time marching process will be exhibited in this example by using three different 

time steps: 

 Δt1 = 16.67 hours (approximately 0.7 days); 

 Δt2 = 66.67 hours (approximately 2.8 days); 

 Δt1 = 666.67 hours (approximately 28 days); 

 

Loads 

P=0.5 kN/cm 

q=0.3 kN/cm 

 

Domain 

E=100 kN/cm2 

ν=0.3 

γ=45.4545 days 

 

Reinforcement 

E=200 kN/cm2 

A=10 cm2 

Figure 3: Geometry and physical properties (dimensions in cm). 

To validate the results obtained by the proposed formulation, a model is constructed in the 

software ANSYS, since analytical solutions are not easily found for reinforced domains. The model is 

composed by 1800 solid two-dimensional elements (PLANE182) and 50 truss one-dimensional 

elements (LINK180). ANSYS approach is based on a pure FEM formulation, wherein the 

reinforcements must have coincident nodes with the domain mesh. The viscoelastic behavior of the 

matrix is modelled by using a transient solution, in which the 2D domain material model has a 

damping behavior linearly proportional to the stiffness by a coefficient γ. The mechanical behavior of 

this damped model over time is the same as the viscoelastic model, since the damping matrix 

coincides with the Kelvin-Voigt constitutive matrix. The time transient analysis was set to finish at 

270 days with time steps of 0.7 days (approximately 16 hours). The FE model, of 3772 degrees of 

freedom, has shown convergence and it can be used for results reference. 

Figure 4 illustrates the horizontal (ux) and vertical (uy) displacements at the point p1 along time 

obtained when the different time steps Δt1, Δt2 and Δt3 are considered. The graphics also compare the 

results with the reference values (ANSYS). The results obtained by Δt1 and Δt2 are equally precise, 

whereas Δt3 led to worst results, taking into account the reference values. This analysis demonstrates 

the convergence of the time marching process, in terms of time step. In addition, one observes the 

asymptotic behavior of the viscoelastic analysis along time. As well as the damping response, the 

viscous response is maximum in the beginning of the analysis and decreases along time, leaving the 

elastic response to govern the mechanical behavior after a certain time, which can explain the 

asymptotic behavior. The figures also shows the perfect agreement between the results obtained with 

both time steps Δt1 and Δt2 and the reference’s results. 

Figure 5 shows the fiber’s results through the time variation of the horizontal (ux) and vertical (uy) 

displacement at the right endpoint. This points is also the maximum displacement point. These 

graphics illustrate the reference results and the values obtained with Δt1, Δt2 and Δt3. Similarly as the 

previous figure, one can observe the convergence regarding the time step size. Furthermore, the 

displacements exhibit an asymptotic behavior along time and one can observe the perfect concordance 

of the proposed model with the reference. Considering Fig. 5 and Fig. 6, one can verify that both time 
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steps Δt1 and Δt2 are adequate to provide correct results about this numerical example. Therefore, Δt3 

will be disregarded in the next results. 

 

Figure 4: Horizontal (ux) and vertical (uy) displacements at point p1. 

 

 

Figure 5: Horizontal (ux) and vertical (uy) displacements at the reinforcement right endpoint. 

Figure 6 illustrates the horizontal (ux) and vertical (uy) displacements at the boundary obtained at 

the last time step of the analysis (270 days), using Δt2. These graphics also exhibit the reference results 

(ANSYS). Variable S represents the geometry perimeter, which starts at the bottom left point and 

grows counter clockwise. This figure shows a perfect agreement in the proposed model results and the 

reference, for all the domain boundary points. 

 

Figure 6: Horizontal (ux) and vertical (uy) displacements at the boundary nodes after 270 days. 

Figure 7 illustrates the fiber’s results for axial internal force (N), by its variation along time at the 

centerpoint (7-a) and its variation along the fiber’s line at the last time step, 270 days (7-b). The 
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centerpoint is also the maximum axial force point, at all time steps of the analysis. These results were 

obtained considering Δt2, since the previous analysis demonstrated the convergence of the time 

marching process. These graphics show a perfect agreement between the proposed model and the 

reference (ANSYS), as expected. By analyzing the axial force along time in Fig. 7-a, one observes that 

it starts in nil value and grow along time. This behavior is explained by the purely elastic response of 

the reinforcements, since in the beginning of the analysis the mechanical response of the structure is 

primarily viscous, so the reinforcement response follow the elastic response of the domain.  

  

(a) (b) 

Figure 7: Axial force along time at reinforcement centerpoint (a) and axial force along the 

reinforcement line at the last time step (b). 

In addition, Fig. 7-b also shows a smooth variation of the axial force values along the 

reinforcement line, with its maximum value at the centerpoint. Despite the endpoints, the axial force 

agrees with the reference along the reinforcement line, however, one can notice the nil value obtained 

by the proposed model at the reinforcement endpoints, which is not observed in the reference results. 

The proposed model always lead to nil axial force at reinforcements endpoints, since the domain BEM 

formulation does not admit concentrated forces applied into the domain, so a no null axial force at the 

reinforcement endpoint could not be transmitted to the matrix. On the other hand, the pure FEM 

formulation with coincident nodes utilized by ANSYS admits to apply concentrated forces inside the 

domain, which allows the force transmission from the reinforcement endpoint to the matrix. By 

analyzing the two-dimensional physical model, one can verify that the BEM assumption is more 

reliable, justifying the different results obtained at these points when comparing with the ANSYS 

results. 

Figure 8 exhibits horizontal displacements (ux) and internal axial force (N) over the reinforcement 

line (S) for different times. The graphics illustrate the results on five times (t1, t2, t3, t4 and t5), which 

are equally spaced in the total time analysis (1, 25, 50, 75 and 100 time steps), when Δt2 is used. These 

results have already been validated by the previous graphics and analysis, therefore, Fig. 8 only 

exhibits the proposed model results. One observes, for all the reinforcements points, that the results 

start with small values and tend to converge along time, because the difference in values decreases 

along the specific times illustrated. This characteristic endorse the asymptotic behavior of 

displacements and axial force along time at all reinforcements points, as well as Fig. 4, Fig. 5 and Fig. 

6 highlighted for some points. Besides, one can notice the same behavior of Fig. 7-a for all 

reinforcements points, due to its purely elastic response. 
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Figure 8: Horizontal displacements (ux) and axial force (N) of reinforcement over its line for different 

time steps. 

7  Conclusions 

This study presented a coupling formulation for the mechanical analysis of reinforced viscoelastic 

materials. The Kelvin-Voigt model was used to represent the linear viscoelastic behavior of the matrix 

by the singular 2D BEM formulation. Nevertheless, complex rheological approaches, such as Maxwell 

and Boltzmann may be fast implemented. This approach of the BEM is efficient and accurate to 

represent the material time dependent behavior, without the need for cells, domain mesh or residual 

decaying forces based on relaxation functions, which could make the application of the boundary 

method more complex. To represent reinforced media, a coupling technique based on the BEM/BEM 

scheme was utilized, using a one-dimensional singular BEM approach not very common in literature, 

for which the fundamental solution for displacement and axial force was presented. The formulation of 

the coupling method, based on force equilibrium and displacement compatibility is simple and easy to 

implement. This approach allows writing the BEM model formulation considering only boundary 

integrals. By the results achieved in the numerical example, this approach can be considered efficient, 

robust and accurate. The numerical application showed excellent agreement among the responses and 

the reference results. The coupling formulation leads to the stable results, in which oscillating forces at 

the reinforcements end were not observed in any step of the viscoelastic time marching process. The 

results also showed no problems regarding convergence for the present formulation. Therefore, the 

proposed formulation has large potential for solving complex structural problems and for being used in 

future developments. 
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