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Abstract. Classical Green’s functions for transversely isotropic media are typically expressed in terms
of improper integrals containing a number of singularities and a decaying tail that oscillates indefinitely.
Currently, there are no known numerical methods capable of dealing precisely with both characteristics
of these integrands simultaneously. In this work, Green’s functions for layered media are presented in
terms of an exact stiffness matrix scheme, in which a stiffness matrix for the medium is assembled from
the stiffness matrices of each layer. The integrand in such cases is characterized by an infinite number
of singularities, corresponding to the propagation and reflection waves in the medium. The oscillatory-
decaying tail presents more than one frequency of oscillation, which makes them difficult to integrate
by classical extrapolation methods. This work presents strategies with which to evaluate such integrals
numerically. We have shown that the singularities can be located within the integration interval at points
that correspond to physical wavenumbers of each layer, which are then integrated through a appropriate
contour deformation paths. For the oscillatory-decaying part, we use a combination of strategies. The
first is to use Fast Fourier Transforms to break down the oscillation into its component frequencies.
The fundamental frequency is used to yield a sequence of partial sums, from which the integral can be
obtained by extrapolation though the ε-algorithm. As a case study, the scheme is used to evaluate the
displacement of layered, transversely isotropic soil medium under time-harmonic external excitations.
The results are compared with classical adaptive quadrature integration schemes.
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1 Introduction

Dynamic soil-foundation interaction models often require the derivation of Green functions corre-
sponding to surface or buried loads and the characteristics of the material medium that represent the
problem. Classical Green’s functions for transversely isotropic media are typically expressed in terms
of improper integrals with respect to the upper limit of integration containing a number of singularities
and a decaying tail that oscillates indefinitely. The numerical evaluation of such integrals is remarkably
difficult to obtain; there are currently no numerical methods that is able to handle both characteristics of
these integrands accurately.

The Green’s functions for a case of the time-harmonic response of an elastic transversely isotropic
layered media subjected to an axisymmetric load on its surface are consider in this work. The layered
media is described by the exact stiffness matrix scheme [1], in which a stiffness matrix for the medium is
assembled from the stiffness matrices of each layer. The solution, displacements of the layered system,
can be approached through the Hankel transform [1, 2], which must be numerically integrated to obtain
the corresponding response in the physical domain. The normalization of the integration variable pro-
posed by Rajapakse and Wang [2], causes the singularities to fall within a predictable region allowing
the integrand to be divided into two distinct regions, each requiring a specialized integration technique.
However, the evaluation of these integrals is difficult and has a high computational cost [3, 4] because
its integrands in such cases are characterized by an infinite number of singularities, induced by different
wave modes corresponding to body, propagation, reflection and interface waves in the medium. In lay-
ered media, the oscillatory-decaying tail presents more than one frequency of oscillation, which makes
them difficult to integrate by classical extrapolation methods.

This work presents strategies with which to evaluate such integrals numerically. We have shown
that the singularities can be located within the integration interval at points that correspond to physical
wavenumbers of each layer and these have a direct connection with mathematical brach cuts in the
integration path [5]. This technique is used to locate the singularities in an example case of layered
medium, which are then integrated through a complex-plane contour approach around the integration
variable. This approach enables bypassing the treatment of singularities by simply deforming the contour
of integration through a complex half-plane [6–11].

For the oscillatory-decaying part, we use a combination of strategies. The first is to use fast Fourier
transforms (FFT) to break down the oscillation into its component frequencies [12]. This step enables
the extraction of the fundamental frequency that characterizes the periodicity of the signal. From that
frequency, one can create a sequence of partial sums so that the integral can be obtained by extrapolation
though the ε-algorithm [13] according to a numerical scheme initially proposed by Cavalcante and Labaki
[14]. This technique is shown to work even when the integrand is given by transcendental functions [14],
such as the case when Green’s functions are obtained with the aid of Hankel transforms.

As a case study, the scheme is used to evaluate the displacement of a layered, transversely isotropic
soil medium under time-harmonic external excitations. The results are compared with classical adaptive
quadrature integration schemes with smoothing out the singular region by introducing a small damping
factor to the constitutive parameters of the medium.

2 Formulation

Consider a case of the time-harmonic displacement response of an elastic transversely isotropic lay-
ered medium subjected to an axisymmetric load, the motion equation of which is described in cylindrical
coordinates by the displacements ui(r, z) in the r and z directions respectively. The cylindrical coordi-
nates system is placed so that the z axis is orthogonal to the material’s plane of isotropy, and the load
is applied on the x − y plane and centered at the origin. Rajapakse and Wang [2] derived a solution for
these displacement fields through Hankel transforms, which are given by:

ui = δ2
∫ ∞
0

u∗i ζdζ, i = r, z, (1)
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where ζ = λ′/δ, in which λ′ is the wave number (Hankel space variable) and δ is a normalized frequency
of excitation. The displacements kernels (u∗i ) are given by:

u∗r = a1Ae
−δξ1z + a1Be

δξ1z + a2Ce
−δξ2z + a2De

δξ2z , (2)

u∗z = −(a7Ae
−δξ1z − a7Beδξ1z + a8Ce

−δξ2z − a8Deδξ2z). (3)

The coefficients A, B, C and D are arbitrary functions that can be determined from the boundary
and continuity conditions of a given problem. The other parameters in Eqs. (1) to (3) are described in
the Appendix.

Displacement and stress fields for the case of an N-layered half-space (Fig. 1) have been derived by
Labaki et al. [4] from a general expression presented earlier by Rajapakse and Wang [2]. The radial and
vertical displacements u∗i (zn), i = r, z, n = 1, N + 1 of the layer interfaces due to radial and vertical
loads at arbitrary layers is given in the Hankel transformed domain by

r
z = z1

z = z2

z = z3

z = zN+1

z

z = zn

z = zn+1

z = zN

o
1

Figure 1. Geometry of layered half-space.

℘∗ = Ku∗, (4)

in which

℘∗ =
〈
℘∗1r ℘∗1z . . . ℘

∗(N+1)
r ℘

∗(N+1)
z

〉T
, (5)

u∗ =
〈
u∗r (r, z1) u∗z (r, z1) . . . u∗r (r, zN+1) u∗z (r, zN+1)

〉T
. (6)

where ℘∗ is the vector of external loads applied at the layer interfaces. A vertical disc load p0 distributed
on an annular area with outer and inner radii s2 and s1 can be represented in the Hankel transformed
domain by ℘∗nzn = 1/ζ[s2J1(ζs2) − s1J1(ζs1)]p0, n = 1, N + 1. The global stiffness matrix of the
medium is assembled with the stiffness matrices of each layer.

K

K
(1)

K
(2)

K
(N)

K
(N+1)

...

Figure 2. Global stiffness matrix assembly scheme.
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The sections K(n) in Fig. 2 are the stiffness matrices of layer i, given by K(n) = F (n)(G(n))−1,
where

G(n) =


a1e
−1
1,n a1e

+1
1,n a2e

−1
2,n a2e

+1
2,n

−a7e−11,n a7e
+1
1,n −a8e−12,n −a8e+1

2,n

a1e
−1
1,n+1 a1e

+1
1,n+1 a2e

−1
2,n+1 a2e

+1
2,n+1

−a7e−11,n+1 a7e
+1
1,n+1 −a8e−12,n+1 a8e

+1
2,n+1

 (7)

and

F (n)

c
(n)
44

=


b51e

−1
1,n −b51e+1

1,n b52e
−1
2,n −b52e+1

2,n

−b21e−11,n −b21e+1
1,n −b22e−12,n −b22e+1

2,n

−b51e−11,n+1 b51e
+1
1,n+1 −b52e−12,n+1 b52e

+1
2,n+1

b21e
−1
1,n+1 b21e

+1
1,n+1 b22e

−1
2,n+1 b22e

+1
2,n+1

 (8)

for n = 1, N , and

G(N+1) =

 a1e
−1
1,N+1 a2e

−1
2,N+1

−a7e−11,N+1 −a8e−12,N+1

 (9)

and

F (N+1)

c
(n)
44

=

 b51e
−1
1,N+1 b52e

−1
2,N+1

−b21e−11,N+1 −b22e−12,N+1

 (10)

for n = N + 1 (half-space). In Eqs. (7) to (10), e±1i,j = e±δ
(n)ξ

(n)
i zj , i = 1, 2, j = 1, N + 1. All other

variables in Eqs. (4) to (10) are presented in the Appendix.

3 Integration method

The previous section presented the exact stiffness method to obtain the Green’s function for the
layered medium for axisymmetric loads. The normalization of the integration variable proposed by Ra-
japakse and Wang [2], ζ = λ/δ, causes all singularities to fall within a predictable region, which allows
the integrand to be divided into two distinct regions, each one to be solved by an appropriate method of
integration. The integration regions are defined as: Region I (0 ≤ ζ ≤ ζ

′
), which is characterized by

the presence of singularities, and Region II (ζ
′ ≤ ζ ≤ ∞), where the integrand oscillates and decays in

amplitude indefinitely. The value of ζ
′

is selected in this work to ensure that Region II of the integrand
is free of singularities.

3.1 Region I: Contour deformation path

For an arbitrary layered system, it is impracticable to determine all singularities in the integration
path, since these points vary in position and quantity according to almost all system parameters. The in-
tegration path may be properly deformed at the top of the ζ-complex half-plane to avoid the singularities.

The requirement for the successful application of the deformed path of integration in a particular
multilayer problem is the careful sketch of the integrand with singularities in the relevant region of the
complex plane. Cavalcante and Labaki [5] showed that the singularities arising in the stiffness matrix of
each layer correspond to the pressure and shear waves expected in the Green’s functions that describe a
homogeneous half-space. These wavenumbers are, respectively,

kP = ±
√

1/β, (11)

kS = ±1. (12)
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For a multilayered media it is observed an additional singularity given by

kI = ±
√
−1 + α+ κ√

−1 + αβ + 2κ− κ2
. (13)

In addition, it is expected the existence of simple poles corresponding to Rayleigh, Stoneley and
Love wave numbers. These singularities occur due to zeros of the denominators in the inversion of the
global stiffness matrix (Fig. 2). Unlike the Rayleigh wave, which will always exists in media possessing
a free surface, the Stoneley and Love waves may or may not exist depending on the material parameters
and system configuration. The complete discussion on the conditions for the existence of poles associated
with the Stoneley and Love waves can be found in Barnett et al. [15], Barnett [16], and Kuznetsov [17].

The singularity associated with the Rayleigh waves for layered media is very close to the Rayleigh
waves for a homogeneous half-space case. These wavenumber are kR = k, such that

[2(1− κ)k2 − γk2 + α](1− k2)− αξ1ξ2 = 0. (14)

The parameters involved in Eqs. (11) to (14) are a function of the normalized elastic constants of
the material and are shown in the Appendix.

The contour deformation path approach has been explored for this class of problems by Guzina
and Pak [6], Golubovic et al. [7], Chatterjee et al. [8], Chatterjee et al. [9], Michalski and Mosig [10]
and Durbhakula et al. [11] and enables the integrals corresponding to an elastic solution to be evaluated,
that is, the case in which the layers and the half-space have no damping characteristics. Although the
form of the modified contour of integration is not critical, its height in the imaginary axis is limited by
the exponential growth of the Bessel function in the real axis [10, 11]. In this work, the semi-elliptical
contour (SE) is chosen as modified integration path (Fig. 3).

Re(ζ)

Im(ζ)

k0

kP

kS

kmax kM = 1.5kmax

R

2a
bθ

GEA

Branch cuts

Poles

Figure 3. Semi-elliptical modified integration path.

The semi-major axis of the ellipse is a = 1/2kM . The choice of the semi-minor axes of the ellipse
is given as follows:

b =


k0 ×min

(
1,

k−1
0

2πfρ

)
, para 2πfρ > |zn|

k0, para 2πfρ ≤ |zn|,
(15)

where kmax is adopted as the Rayleigh wavenumber, k0 is the smaller singularity between kP , kS and
kI , and fρ is the fundamental frequency determined in the approach of the next section.

3.2 Region II: Partition-extrapolation method

This region is characterized by the presence of an irregular oscillatory behavior because integrands
of the Green’s functions involve multiplications of Bessel functions (arbitrary number of oscillatory
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frequencies) arising from the solution of the linear system (Eq. (4)). This linear system contains Bessel
functions in the variables defined in the Appendix and in the load described in the transformed Hankel
domain in Eq. (5), as well as exponential terms expressed in Eqs. (7) to (10).

The integral in Region II will be evaluated using the fast Fourier transforms (FFT) to decompose the
oscillation periods and extract the fundamental frequency (fρ) that characterizes the periodicity of the
signal. That frequency is used to create a sequence of partial sums based on the partition of Sidi [18] to
be extrapolated with the aid of the ε-algorithm [13]. This numerical scheme has been initially proposed
by Cavalcante and Labaki [14].

The integration interval is divided into a number of subintervals, each of which is a partial sum in
the ε-algorithm’s extrapolation scheme. The subintervals are defined by

ζn = b1 +
πn

fρ
, n ≥ 0. (16)

Figure 3 illustrates the region where the generalization of the ε-algorithm based on the FFT (GEA)
will be applied. In this works, b1 is defined as the first zero of the integrand greater than kM .

3.3 Numerical results and discussion

In this section, the implementation of the layered media model by the global stiffness matrix method
is used to describe a case of time-harmonic response of a multilayered transversely isotropic soil with
an axisymmetric load on its surface. This study considers a soil constituted by a layer in contact with a
half-space (Fig. 4).

x

z

z = 0:0

z = 0:5

p0

(1)

Figure 4. Geometry of the multilayered system.

The material and thickness of the layers are shown in Table 1. The layers and the half-space are
transversely isotropic media with Poisson’s coefficient ν and specific mass ρ.

Table 1. Multilayered media setting used (c
′
ij = cij/c44).

Layer hi Material c
′
11 c

′
12 c

′
13 c

′
33 ρ ν

1 0.5 m1 3.0000 1.0000 1.0000 3.0000 1.0000 0.25

half-space ∞ m2 4.2200 2.0300 1.6200 4.5300 0.9167 0.32

The results from the present integration scheme are compared with those of a classical Gauss adap-
tive quadrature (AGQ). In order for the AGQ algorithm to be able to handle the singularities in the
integrand, a small damping is introduced into the formulation according to the elastic-viscoelastic corre-
spondence principle [19]:

cij = c∗ij(1 + iη). (17)

In Eq. (17) c∗ij are real elastic constants that define the transversely isotropic material and cij are
their complex counterparts. A hysteretic damping model is considered, in which the damping factor η is
a constant [20]. Figure 5 shows the real and imaginary parts of the dynamic vertical displacement uz(ω)
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of this layered medium obtained with the present implementation. The results show real and imaginary
parts of uz(ω) at the surface of the soil (z = 0) and at the layer interface (z = 0.5). The results are
compared with those obtained with the AGQ.
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Figure 5. Real and imaginary parts of the vertical displacement uz(ω) by present scheme (SE+GEA) and
AGQ for different excitation frequency (ω).

The vertical displacement uz(ω) for different thicknesses (h1) of the layer is shown in Fig. 6 with
excitation frequency ω = 1. Uniformly distributed loads are considered with fixed values p0 = 1, s2 = 1
and s1 = 0.
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-0.4

-0.2

0

Im
(u

z(
=1

,h
1
))

SE+GEA ; z=h
1

AGQ       ; z=h
1

Figure 6. Real and imaginary parts of the vertical displacement uz(ω = 1) by present scheme (SE+GEA)
and AGQ for different thicknesses (h1).

Figure 7 shows the influence of the inner radius s1 of the loaded area in uz(ω) considering the fixed
values p0 = 1, s2 = 4, ω = 1, h = 0.5.
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Figure 7. Real and imaginary parts of the vertical displacement uz(ω = 1) by present scheme (SE+GEA)
and AGQ for different inner radii (s1).
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For the evaluation of the singular region by the AGQ, the integration interval is divided into smaller
regions beginning and ending at the points of singularities corresponding to the branch cuts kS , kP , kI
and the poles kR. The second region is evaluated with the direct application of AGQ [21].

4 Conclusion

This work proposed a numerical integration scheme to deal with improper integrals with respect to
the upper limit of integration of functions with an oscillatory decaying behavior, containing an infinite
number of singularities. This scheme was used to evaluate the displacement of a layered, transversely
isotropic soil medium under time-harmonic external excitations. The results obtained by the numerical
scheme formed by the contour deformation path method for the singular interval together to the general-
ization of the ε-algorithm based on the FFT for the oscillatory-decaying part showed that this approach
produces accurate results for different sets of constitutive parameters.

5 Appendix

This appendix lists the parameters appearing in Eqs. (1) to (10), for i = 1, 2,

b2i = [αδ2ξ2i − (κ− 1)δ2ζ2ϑi]J0(δζr). (18)
a7
δξ1

=
a8
δξ2

= J0(δζr). (19)

ai
ϑi

=
b5i

(1 + ϑi)δ2ξi
= −δ2ξiJ1(δζr). (20)

In Eqs. (18) to (20), Jm is the Bessel function of the first kind and mth order and

ϑ1,2 =
αξ21,2 − ζ2 + 1

κζ2
. (21)

ξ1,2 =
1√
2α

(γζ2 − 1− α±
√

Φ)
1
2 . (22)

Φ = (γζ2 − 1− α)2 − 4α(βζ4 − βζ2 − ζ2 + 1). (23)

α =
c33
c44

, β =
c11
c44

, κ =
c13 + c44
c44

, δ2 =
ρω2

c44
and γ = 1 + αβ − κ2. (24)

where δ is a normalized frequency of excitation, ω is the frequency of excitation, and cij are elastic
contants of the transversely isotropic material.
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