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Abstract. In this paper, the Method of Fundamental Solutions (MFS) and the Meshless Local Petrov-
Galerkin (MLPG) method are applied to the numerical simulation of Cathodic Protection (CP) 
systems. The problem of CP systems is governed by the Laplace equation. In this problem, the 
boundary conditions are characterized by a nonlinear relationship between the electrochemical 
potential and the current density, called cathodic polarization curve. Thus, the Levenberg-Marquardt 
algorithm is here used to solve the nonlinear problem. The performance of both methods is evaluated 
by comparing its results with these provided by the Boundary Element Method (BEM). Furthermore, 
the BEM coupled with the Genetic Algorithms (GAs) is applied for the simulation of inverse problems 
in CP systems. The van Genuchten-Mualem model is here used to predict the parameters of the 
nonlinear polarization curve. A numerical simulation is presented in order to illustrate the good 
performance of the coupled BEM-GAs approach. 

Keywords: Boundary Element Method, Method of Fundamental Solutions, Meshless Local Petrov-
Galerkin Method, Cathodic protection systems, Genetic algorithms 
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1  Introduction 

Corrosion is a spontaneous phenomenon that must be prevented or controlled, due to the high 
costs involved. To this end, cathodic protection techniques have been widely applied, including cases 
of buried pipelines, underground storage tanks and offshore structures. The technique aims to convert 
the metallic structure into a cathode of an electrochemical cell, delivering electrons for cathodic 
reactions [1]. Two alternatives are identifiable to produce the current density required to keep the 
electrochemical potential within the immunity to corrosion: galvanic and/or impressed current 
cathodic protection. In both cases, numerical simulations have been used to calculate the potential and 
current density distributions over the metal surface to be protected. The first numerical methods 
applied to corrosion problems, governed by well-known Laplace equation, were the finite difference 
method (FDM) [2, 3] and the finite element method (FEM) [4, 5]. However, the boundary element 
method (BEM) has been successfully used for many industrial applications [6, 7] and, nowadays, is 
the most popular solution technique for the study of corrosion engineering problems [8, 9, 10, 11]. 

In addition to BEM, there is also one more alternative technique with the same characteristics, in 
which no mesh or numerical integration processes are required: the method of fundamental solutions 
(MFS) [12]. With this in mind, Santos, Santiago and Telles [13] proposed the MFS to simulate 
cathodic protection systems with non-linear boundary conditions. In the cited paper, the intensities and 
positions of the virtual sources were successfully obtained with the usage of genetic algorithms (GAs). 
On top of that, other meshless techniques have appeared, such as a variant of the meshless local 
Petrov-Galerkin (MLPG) method, denoted as MLPG2 [14]. In the last decade, the MLPG methods are 
successfully used in a large number of applications [15, 16, 17], and the present authors believe that 
these truly meshless methods can also be applied to the simulation of cathodic protection problems. 
Hence, in this paper, the MLPG2 method is used as a possibility for CP numerical analysis. 

The main purpose of this paper is to study numerical tools for the solution of direct and inverse 
corrosion problems. For direct problems, the MFS and MLPG2 methods are applied to simulate the 
potential distribution over the metal surface to be protected. In the inverse analysis, the BEM and the 
GAs are coupled in order to deal with the strong polarization of CP systems. The parameters of the 
polarization curve are provided by the van Genuchten-Mualem model and its parameters are compared 
with the values estimated by the coupled BEM-GAs approach, showing its good performance for 
inverse analysis of CP systems. 

2  Governing equation 

Consider the problem of cathodic protection governed by the Laplace equation given by:  ���� � 0    �	 
, (1) 
where � is the conductivity of the electrolyte, � is the electrochemical potential and 
 is the domain. 

The described problem is subjected to the following boundary conditions:  � � ��    �	  
�,  (2a)  � � � ���� � ��   �	 
�,  (2b)  � � ����   �	 
�, (2c) 
where 
 � 
� � 
� � 
� is the boundary of 
, � is the current density, n is the outward normal vector 
to the boundary 
 and ���� is a nonlinear function of �. 
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3  BEM and MFS formulations 

Based on the direct formulation of the BEM, a weak form to the Laplace equation can be written 
as [18]:  �������� � � ����, �������
��� �  � ����, �������
���  , (3) 
where ����, �� and ����, �� define the fundamental solution for the potential and the current density, 
respectively. 

The boundary must be discretized into elements, where the values of � and � can be constant on 
each element and a set of equations is obtained, i.e. !" � #$. This system is solved by imposing the 
boundary conditions. For the non-linear boundary condition, the Newton-Raphson method has been 
successfully used to solve the resulting non-linear system [19]. 

For the indirect BEM formulation, the contributions of # and ! are uncoupled and the harmonic 
function � and its derivative in the direction of the outward normal to the boundary are given, after the 
discretization, by [18]:  �% � ∑ '()%(*(+� , (4)  �% � ∑ '(,%(*(+� , (5) 
where '( 's are the unknown values of the source intensities. Here, the diagonal terms in ! are 
subtracted from �1 of the terms ,%% of the direct formulation. The Eqs. (4) and (5) can be applied at 
the boundary conditions to determine the source intensities. 

A simpler procedure has been used to avoid the integrations of ����, �� and ����, �� over the 
boundary for the indirect BEM formulation. Since the superposition of fundamental solutions satisfies 
the Laplace equation when the source and field points are located at different positions and the 
boundary conditions can be imposed on a finite set of points on the boundary. This methodology is 
known as MFS. Usually, the source points (or virtual sources) are located outside the domain on a 
circular pseudo-boundary or on a line geometrically similar to the boundary. The number of virtual 
sources can be less than or equal to the number of boundary nodes. Thus, the source intensities ('( 's) 
need to be determined from a least square problem. To accommodate possible nonlinear boundary 
conditions, a modified version of the Levenberg-Marquardt algorithm [20] is used. 

The anodes have been inserted as prescribed potential or source terms. In the last case, a function 
b arises in Laplace equation and the direct BEM results in the following equation:  �������� � � ����, �������
��� �  � ����, �������
��� . � /�������, ���
��� 0 1 , (6) 

The domain integral in Eq. (6) represents a particular solution for the non-homogenous partial 
differential equation, which involves a product of known functions. For general cases, it has been 
assumed that the source / can be approximated by Radial Basis functions (RBFs):  /��� 2 /3��� � ∑ 4(5(*67(+� , (7) 

with N being the number of boundary nodes, L the number of internal nodes and the 58's are solved 
using the Eq. (7). Thus, an approximated particular solution can be written as (�9: 2 �:):  �9:��� � ∑ 4(5(*67(+� , (8) 

where 4( is obtained by analytical integration considering the radial part of Laplacian operator. Here, 

the Wendland RBF of compact support ψ8 <=>? � <1 � =>?�
is chosen and, after integration, 4( has the 

following definition: 

 4 <@A? � B @C�DAE � �@FGA . @EH , I J K
��AE�HH . AE�� L	 <@A? , I M KN (9) 
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where K is the size of the support. 
Numerical simulations are proposed considering direct BEM solution procedure (6) and the MFS 

combined with the method of particular solutions (MPS) [21], where the general solution (�) of the 
Poisson equation is divided into two parts, given by:  ���� � � /�������, ���
 0 . �O���, (10) 

where �O�P� satisfies the Laplace equation and the corresponding boundary conditions. 

4  MLPG2 formulation 

The collocation method can be treated on the local weak form, where the test function over a sub-
domain is Dirac’s delta. This methodology is known as MLPG2 [14], and, using indicial notation, the 
global stiffness matrix Q and the global load vector R are defined as: 

 STU � V �,%%U ��T�,    �T W 
 � U��T�,    �T W 
� �,XU ��T�,  �T W 
Y
N (11) 

 �T � B /��T�,   �T W 
����T�,    �T W 
�����T�,     �T W 
Y ,N (12) 

with Z, [ � 1, … , ] .  ^. 
The trial function �_��� in a domain of definition 
` can be written by:  �_  ��� � ∑ a(����9(���*b(+� , (13) 

where a(�P� is the shape function of the Moving Least Square (MLS) approximation, �9(��� is the 
fictitious nodal value and ]c is the number of the nodes in 
`.  

Considering de�P� � fg��P�, g��P�, … , gh�P�i as complete monomial basis with j terms, the 
MLS shape function can be expressed as:  a(��� � ∑ g%e���fkl����m���ih%+� %(, (14) 

where  k��� � ∑ n(���*b(+� d(o�(pd(eo�(p, (15) 

and  m��� � fn����d����, n����d����, … , n*b���d��*b�i. (16) 

In Eqs. (15) and (16) the 4th-order spline weight function �n(� was considered, and the size of 
the support for the node r( should be sufficiently large to ensure that ]c M j. The modified 
Levenberg-Marquardt method is also used to obtain the fictitious nodal values of the MLS 
approximation. Thus, these nodal values can be found to both the linear and nonlinear cases. 

Two methodologies can be considered to deal with point sources. The first, the non-homogenous 
partial equation is solved using the MPS, as done with the MFS. The second, the normalized circular 
Gaussian function multiplied by intensity s��tu � is proposed to replace the point source: 

 /��� � vo�w′ p�xyE zl {wEE|E, (17) 

where ' is the standard deviation and It is the 2D Euclidean distance between �tu  and �. Using the 
Gaussian function as source term, no particular solution needs to be known in the MLPG2 method. 
Analogous to the MFS, the solution of the MLPG2 method does not require numerical integration and 
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it is sensible to position of the collocation points. However, no second derivative is needed for the 
MFS. 

5  Inverse problem 

In this work, a mathematical function is presented as polarization curve model, where its 
parameters are explicitly related with the shape of the curve. Thus, the search range for the parameters 
can be appropriately chosen, and the convergence rate of the search algorithm increases. The smooth 
logistic sigmoid function is adapted by the van Genuchten-Mualem model [22] as:  ���� � �}~@ . ��l���{��6��Y�������, (18) 

where �}~@, ��, � and 	 are parameters to be determined. The corrosion potential ��}~@� represents 
the open circuit potential at which the sum of the anodic and cathodic currents on the electrode surface 
is zero. The empirical parameter �� represents the corresponding potential applied to the cathodic 
reaction. The constants � and 	 are the shape parameters of the polarization curve. 

A genetic algorithm [23] is employed to minimize the objective function given by: 

 ���(� � � �� ∑ ���c: � �X�h% o�(p���%+� , (19) 

where M is the number of nodes that represent the boundary of the anode in the original problem, ��c: 

is the experimental value measured on the metal, �X�h��(� is the numerical value calculated on the 
metal for each �( and �( represents the parameters of the polarization curve with j being the number of 
generations to be provided by the GA. 

6  Numerical results 

The first example has the purpose of evaluating the MFS and MLPG2 methods for the problem of 
concentric circles of radius 10 cm and 5 cm. Two point sources were designed to protect the inner 
circle, where the following curve was prescribed as: 

 ���� � 0.06 . 0.001 <10
����.C

�.E � 10
���.�

�.� ?, �20� 
where � and � have units � and j�/�j�. 

 
a) 

 
b) 

 
c) 

Figure 1. Potential at the electrolyte using the numerical models: a) BEM, b) MFS and c) MLPG2. 

In the outer circle, � � 0 j�/�j� is prescribed. In this example, the conductivity of electrolyte 
is equal to 0. 04 Ωl��jl�. The problem geometry was defined using 170 �112 . 58� boundary 
nodes, 721 internal points and 168 �112 . 56� virtual sources with optimum radius 12.22 �j and 
2.94 �j. Each point source has intensity of �4.5 j�, whose locations can be seen in Fig. 1. The 
solution provided by the MFS is presented in Fig. 2, whereas the MLPG2 solution can be observed in 
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Fig. 3. Analysis of these results shows that the three numerical methods present very similar results, 
thus revealing the good accuracy of the meshless methods. 

 
a) 

 
b) 

Figure 3. Comparison of the BEM and MFS models: a) Potential distribution on the metal and b) 
Current density on the metal. 

 
a) 

 
b) 

Figure 3. Comparison of the BEM and MLPG2 models: a) Potential distribution on the metal and b) 
Current density on the metal. 

In the next application, an inverse analysis to identify the polarization curve of a tank bottom is 
carried out. The conductivity of electrolyte is equal to 1. 0 Ωl��jl�. The tank has 20 j of radius (�) 
and seven anodes (line sources) were inserted between the tank bottom and the liner, as shown in Fig. 
4. The total impressed current is equal to �0.35 �/j�. 

 
Figure 4. The axisymmetric problem. 
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Figure 5. Polarization curves. 

The direct problem is solved by using BEM with 290 boundary nodes. In this model, the 
axisymmetric fundamental solution for Laplace’s equation is applied. The polarization curve (Eq. 
(18)) is, firstly, used to calculate the potential values over the tank bottom, at the positions � � 1.0, 
3.0, 5.0, 10.0 and 18.0 j. The potential values obtained by BEM model were �1.225 �, �0.978 �, 
�0.839 �, �0.738 � and �0.699 �. Thus, the GA was used to minimize the objective function (Eq. 
(19)) in order to obtain the design variables �}~@, ��, � and 	. The range of these parameters is 
assumed to be f�0.7, �0.1i, f�1.5, �0.7i, f0.5,10.0i and f�2.0, �0.1i. In the 99_O generation, the 
GA provided �}~@ � �0.680 �, �� � �1.209 �, � � 1.434j�/� and 	 � �1.922 (���GG� � 10lH). 
Fig. 5 shows the real polarization curve and the estimated values using the optimum parameters 
provided by the proposed approach. Analysis of these results clearly confirms that there is a good 
agreement among the two curves. 

7  Concluding Remarks 

In this paper, truly meshless methods (MFS and MLPG2) and the direct BEM solution procedure 
have been applied to classical two-dimensional corrosion engineering problems. The proposed 
methods were successfully introduced and its results were validated using BEM results. In the main 
example, a sigmoid function was typically adopted for the modeling of the polarization curve, 
considering a practical axisymmetric problem. The parameters of the proposed model were obtained 
through the potential values experimentally measured on the metal surface and the GA coupled with 
the BEM. 

Variants of the MLPG method will be the subject of future publications. The authors believe that 
the MLPG4 (also known as local boundary integral equation) and the MLPG5 (where the test function 
is the Heaviside step function) are great promises to compete with the BEM as a method of choice in 
numerical simulations of CP systems. 
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