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Abstract. In this paper, the Method of Fundamental SolutigiES) and the Meshless Local Petrov-
Galerkin (MLPG) method are applied to the numerisahulation of Cathodic Protection (CP)
systems.The problem ofCP systemds governed by the Laplace equation. In this probl¢he
boundary conditions are characterized by a nonlirretationship between the electrochemical
potential and the current density, called cathgdilarization curve. Thus, theevenberg-Marquardt
algorithm is here used to solve the nonlinear @wbllhe performance of both methods is evaluated
by comparing its resultwith these provided by the Boundary Element Met{®8M). Furthermore,
the BEM coupled with the Genetic Algorithms (GAs)xipplied for the simulation of inverse problems
in CP systems. Thean Genuchten-Mualem model is here used to predictpdmameters of the
nonlinear polarization curve. A numerical simulaticc presented in order to illustrate the good
performance of the coupled BEM-GAs approach.

Keywords: Boundary Element Method, Method of FundamentalBmis, Meshless Local Petrov-
Galerkin Method, Cathodic protection systems, Geradgjorithms
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1 Introduction

Corrosion is a spontaneous phenomenon that muptdsented or controlled, due to the high
costs involved. To this end, cathodic protectiarthieques have been widely applied, including cases
of buried pipelines, underground storage tanksadfsthore structures. The technique aims to convert
the metallic structure into a cathode of an elettemical cell, delivering electrons for cathodic
reactions [1]. Two alternatives are identifiablepimduce the current density required to keep the
electrochemical potential within the immunity toramsion: galvanic and/or impressed current
cathodic protection. In both cases, numerical satiorhs have been used to calculate the potentihl an
current density distributions over the metal swfdac be protected. The first numerical methods
applied to corrosion problems, governed by well#nd_aplace equation, were the finite difference
method (FDM) [2, 3] and the finite element meth&dEM) [4, 5]. However, the boundary element
method (BEM) has been successfully used for madysdtnial applications [6, 7] and, nowadays, is
the most popular solution technique for the stuidgoorosion engineering problems [8, 9, 10, 11].

In addition to BEM, there is also one more altargatechnique with the same characteristics, in
which no mesh or numerical integration processeseguired: the method of fundamental solutions
(MFS) [12]. With this in mind, Santos, Santiago afelles [13] proposed the MFS to simulate
cathodic protection systems with non-linear boupdanditions. In the cited paper, the intensitied a
positions of the virtual sources were successhiiygined with the usage of genetic algorithms (GAS)
On top of that, other meshless techniques haveaappesuch as a variant of the meshless local
Petrov-Galerkin (MLPG) method, denoted as MLPGZ.[Irtthe last decade, the MLPG methods are
successfully used in a large number of applicat{@bs 16, 17], and the present authors believe that
these truly meshless methods can also be appliiietsimulation of cathodic protection problems.
Hence, in this paper, the MLPG2 method is usedmssaibility for CP numerical analysis.

The main purpose of this paper is to study numktazs for the solution of direct and inverse
corrosion problems. For direct problems, the MF8 BiL.PG2 methods are applied to simulate the
potential distribution over the metal surface topbetected. In the inverse analysis, the BEM ard th
GAs are coupled in order to deal with the strontaqmation of CP systems. The parameters of the
polarization curve are provided by then Genuchten-Mualem model and its parameters are aqahpa
with the values estimated by the coupled BEM-GApraach, showing its good performance for
inverse analysis of CP systems.

2 Governing equation

Consider the problem of cathodic protection govermgthe Laplace equation given by:
kV2u=0 inQ, 1)

wherek is the conductivity of the electrolyte,is the electrochemical potential afdds the domain.
The described problem is subjected to the follovingndary conditions:

u=1u on I, (2a)
q=k3:=7 onl, (2b)
q=f(u) onl;, (2c)

wherel’ = I U I, U I is the boundary ofl, g is the current density) is the outward normal vector
to the boundary’ andf (u) is a nonlinear function af.
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3 BEM and MFES formulations

Based on the direct formulation of the BEM, a wéakn to the Laplace equation can be written
as [18]:

c(®u@ = [Lu"(§0)q@)dl (x) — [ q" ¢ ©ux)dl (%), 3)

whereu*(§,x) andq”*(§, x) define the fundamental solution for the poteraiadl the current density,
respectively.

The boundary must be discretized into elementsyevtiee values ofi andg can be constant on
each element and a set of equations is obtairedu. = Gp. This system is solved by imposing the
boundary conditions. For the non-linear boundamdaion, the Newton-Raphson method has been
successfully used to solve the resulting non-lisyatem [19]

For the indirect BEM formulation, the contributioo6G andH are uncoupled and the harmonic
functionu and its derivative in the direction of the outwamal to the boundary are given, after the
discretization, by [18]:

u; = YY1 0;Gyj, 4)
q; = XY, 0jH;j, %)

where oj's are the unknown values of the source intensititere, the diagonal terms iH are
subtracted from-1 of the termgH;; of the direct formulation. The Egs. (4) and (5h &g applied at
the boundary conditions to determine the sour@nsities.

A simpler procedure has been used to avoid thgratiens ofu*(§, x) andq*(§, x) over the
boundary for the indirect BEM formulation. Since tbuperposition of fundamental solutions satisfies
the Laplace equation when the source and fieldtpaane located at different positions and the
boundary conditions can be imposed on a finiteofgtoints on the boundary. This methodology is
known as MFS. Usually, the source points (or virg@urces) are located outside the domain on a
circular pseudo-boundary or on a line geometricsiiyilar to the boundary. The number of virtual
sources can be less than or equal to the numideswfdary nodes. Thus, the source intensitigs) (
need to be determined from a least square problemaccommodate possible nonlinear boundary
conditions, a modified version of the Levenberg-§leardt algorithm [20] is used.

The anodes have been inserted as prescribed pbt@ngiource terms. In the last case, a function
b arises in Laplace equation and the direct BEMIteéu the following equation:

c(®u® = (v 0)q@dlr (x) - [ q" Du)dl (x) + [, b(u" (¢ 0d2(x),  (6)

The domain integral in Eq. (6) represents a pdeicsolution for the non-homogenous partial
differential equation, which involves a product lafown functions. For general cases, it has been
assumed that the sourkean be approximated by Radial Basis functions (§}BF

b(x) ~ b(x) = XN ¥a;, (7)

with N being the number of boundary nodeshe number of internal nodes and th& are solved
using the Eq. (7). Thus, an approximated particstéution can be written af{ ~ u,):

0, (%) = X2 ¥, (8)

where¥; is obtained by analytical integration considerihg radial part of Laplacian operator. Here,

2
the Wendland RBF of compact suppqxqt(é) = (1 - %) is chosen and, after integratio¥; has the

following definition:

r* 2r3  r?
vy [l 5 e TS ®
o 13ﬁ2+ﬁ—zln(1) r>f
144 12 B/’
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wherep is the size of the support.

Numerical simulations are proposed consideringctiBE=M solution procedure (6) and the MFS
combined with the method of particular solutionsP@®) [21], where the general solutiar) ©f the
Poisson equation is divided into two parts, givgn b

u(x) = [, b(u* (€, 0)d2 + up (%), (10)

whereu,, (x) satisfies the Laplace equation and the correspgriathtundary conditions.
4 MLPG2 formulation

The collocation method can be treated on the heak form, where the test function over a sub-
domain is Dirac’s delta. This methodology is knoasWMLPG2 [14], and, using indicial notation, the
global stiffness matriX and the global load vectgrare defined as:

u‘]ii(XI); X €N

Ky={ W), x €L, (11)
u,]n(x,), x €I
b(x;), x; €N

fi =1 ulx;), x €L, (12)

q(xp), x; €1y,

withl,J =1,..,N + L.
The trial functionu!(x) in a domain of definitiom2, can be written by:

ut (x) = 37%, ¢ ()1 (x), (13)

where ¢;(x) is the shape function of the Moving Least SquadéSg) approximation;(x) is the
fictitious nodal value and¥,. is the number of the nodes/iy.

Consideringp” (x) = [p;(X), p2(X), ..., pm(X)] as complete monomial basis with terms, the
MLS shape function can be expressed as:

¢;(0) = EZ1pl WA (0)BM)],, (14)
where
A(x) = 3%, w0 p;(x)p] (1)), (15)
and
B(x) = [w1(x0)p(x1), w2 (0)p(x2), ..., Wy, (X)P(xXp,)]- (16)

In Egs. (15) and (16) the 4th-order spline weigfrtction (w;) was considered, and the size of
the support for the node; should be sufficiently large to ensure thét >m. The modified
Levenberg-Marquardt method is also used to obtam fictitious nodal values of the MLS
approximation. Thus, these nodal values can bedftaboth the linear and nonlinear cases.

Two methodologies can be considered to deal withtmurces. The first, the non-homogenous
partial equation is solved using the MPS, as doitle the MFS. The second, the normalized circular
Gaussian function multiplied by intensi®(x,) is proposed to replace the point source:

' r2
b(x) = 2o 7207, (17)

whereo is the standard deviation angis the 2D Euclidean distance betwegnandx. Using the

Gaussian function as source term, no particulartisol needs to be known in the MLPG2 method.
Analogous to the MFS, the solution of the MLPG2 moelt does not require numerical integration and
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it is sensible to position of the collocation psinHowever, no second derivative is needed for the
MFS.

5 Inverse problem

In this work, a mathematical function is presented polarization curve model, where its
parameters are explicitly related with the shapthefcurve. Thus, the search range for the parasete
can be appropriately chosen, and the convergeneefahe search algorithm increases. The smooth
logistic sigmoid function is adapted by the van Ganien-Mualem model [22] as:

u(q) = Ugor + Lwrl_y (18)
A+(ag)™m
whereu,,,, u., @ andn are parameters to be determined. The corrosicenpat(u.,,-) represents
the open circuit potential at which the sum of @nedic and cathodic currents on the electrode seirfa
is zero. The empirical parameteg represents the corresponding potential applietheéocathodic
reaction. The constanasandn are the shape parameters of the polarization curve
A genetic algorithm [23] is employed to minimizestbbjective function given by:

Z(Cj) = \/%Zlivil[uexp - uilum(cj)]{ (19)

whereM is the number of nodes that represent the bourafdhe anode in the original problem,,,,

is the experimental value measured on the mefgl,,(c;) is the numerical value calculated on the
metal for eachr; andc; represents the parameters of the polarizationecwithj being the number of
generations to be provided by the GA.

6 Numerical results

The first example has the purpose of evaluatingh& and MLPG2 methods for the problem of
concentric circles of radius0 cm and5 cm. Two point sources were designed to protect therin
circle, where the following curve was prescribed as

—-u—0.4 u+0.1

q(u) = 0.06+0.001 (10702 — 10701 ), (20)
whereu andg have unity andmaA/cm?.
Potential (V) 10 Potential (V) 0 Potential (V)
‘-20 5 =20 5 -20
E -40 E ofm - -40 E ofm - -40
i-ao 5 b-s0 -5} | -60
0 10 e 5 o 5 10 0o 5 o 5 10
cm cm cm
a) b) c)

Figure 1. Potential at the electrolyte using thearcal models: a) BEM, b) MFS and c) MLPG2.

In the outer circleq = 0 mA/cm? is prescribed. In this example, the conductivitelectrolyte
is equal to 004 Q *cm™1. The problem geometry was defined usitigp (112 + 58) boundary
nodes,721 internal points and 68 (112 + 56) virtual sources with optimum radiu.22 cm and
2.94 cm. Each point source has intensity -of.5 mA, whose locations can be seen in Fig. 1. The
solution provided by the MFS is presented in FigwBereas the MLPG2 solution can be observed in
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Fig. 3. Analysis of these results shows that tlieemumerical methods present very similar results,
thus revealing the good accuracy of the meshledisaus.

08f = u.s[x
O wrs r f
0.9} j‘x Qﬁ ® ¢ ‘[
5! ~ 0.6 | |
~ A x x g ! + [
s 2 : | ’
s Q‘! E \ f #
§ -1.1 % 0.4} }{ J t .
£ il N R, [
E aal
1.3 3
_;_bE.M.
4 100 200 300 200 % 160 2;)0 360 400
Graus Graus
a) b)

Figure 3. Comparison of the BEM and MFS model$atential distribution on the metal and b)
Current density on the metal.
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Figure 3. Comparison of the BEM and MLPG2 model@tential distribution on the metal and b)
Current density on the metal.

In the next application, an inverse analysis taniide the polarization curve of a tank bottom is
carried out. The conductivity of electrolyte is atjto 10 Q~1cm™1. The tank ha&0 m of radius R)
and seven anodes (line sources) were inserted detilie tank bottom and the liner, as shown in Fig.
4. The total impressed current is equat-®35 A/m?.

Tank bottom

qg={f(u)

Lm ELECTROLYTE

=

—

'

i

P =

q= 0A/m* (liner)

« Line sources

Figure 4. The axisymmetric problem.
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Figure 5. Polarization curves.

The direct problem is solved by using BEM with 2BOundary nodes. In this model, the
axisymmetric fundamental solution for Laplace’s &tipn is applied. The polarization curve (Eq.
(18)) is, firstly, used to calculate the potentialues over the tank bottom, at the positi@ns 1.0,

3.0, 5.0, 10.0 and18.0 m. The potential values obtained by BEM model wede225V, —0.978V,
—0.839V, —0.738V and—0.699 V. Thus, the GA was used to minimize the objectiwecfion (Eq.
(19)) in order to obtain the design variabtes,., u., « andn. The range of these parameters is
assumed to bg-0.7,—-0.1], [-1.5,—0.7], [0.5,10.0] and[—2.0,—0.1]. In the 99" generation, the
GA providedu,,, = —0.680 V, u, = —1.209 V, @ = 1.434m?/A andn = —1.922 (Z(ce9) = 107%).

Fig. 5 shows the real polarization curve and themesed values using the optimum parameters
provided by the proposed approach. Analysis ofdlresults clearly confirms that there is a good
agreement among the two curves.

7 Concluding Remarks

In this paper, truly meshless methods (MFS and M2Paxd the direct BEM solution procedure
have been applied to classical two-dimensional oston engineering problems. The proposed
methods were successfully introduced and its resudtre validated using BEM results. In the main
example, a sigmoid function was typically adopted the modeling of the polarization curve,
considering a practical axisymmetric problem. Tlaeameters of the proposed model were obtained
through the potential values experimentally meabre the metal surface and the GA coupled with
the BEM.

Variants of the MLPG method will be the subjectdiire publications. The authors believe that
the MLPG4 (also known as local boundary integralagipn) and the MLPG5 (where the test function
is the Heaviside step function) are great promisesompete with the BEM as a method of choice in
numerical simulations of CP systems.
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