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Abstract. In engineering studies, most of the existing phenomena are modeled by differential and in-
tegral equations. The analysis of the behavior of these systems can be performed through analytical or
numerical methods, the latter which presents an approximate approach to the results. Due to the com-
plexity of the real-life structure models, the use of approximate solutions is increasing.Among these
solutions, the Meshless methods are the most recent and have as advantage over those without of mesh,
making easy the refinement where existing more complexity of the behaviors variables. However, be-
cause they are relatively recent methods, the use of these solutions is not still enough to research and
to apply in real structures. Viscoelastic materials are defined as presenting a combination of elastic and
viscous elements. A viscoelastic structure is represented by physical models that increase the number of
elements as the complexity of the problem grows. Therefore, for more complex models,it is necessary to
use numerical solutions. In this context, the purpose of this paper is the application of the Meshless Local
Petrov-Galerkin 01 (MLPG-01) and MLPG-02 or Local Collocation Method to study two-dimensional
viscoelastic structures, subjected to in-plane state, in order to perform an analysis of the effectiveness
and convergence of each method evaluated, thus verifying its efficiency for these structures.
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1 Introduction

The recent development of structural project, in general, is directly related to improvement of the
physical theories represented by means of mathematical models. Hence, partial differential equations
for mathematical formulation of problems involving one or more independent variables, can be deeply
studied to employed in several engineering fields [1].

The use of problem domain with more complex geometries and materials has been discovered in en-
gineering, more challenges arise in the area of computational mechanics [2]. In the past, the behavior of
some materials has been simplified. Nowadays it is modeled in detail, as in the case of viscoelastic mate-
rials. These materials are defined by models made from the combination of elastic and viscous elements
[3], and present, in general, high complexity, restricting the obtaining of their analytical solution.

Technological advancement has enabled more complex problems with more accurate results through
the use of appropriate numerical solutions. Among these, the meshless methods have been presented as
a viable alternative due to their flexibility and reduction of the human labor for mesh discretization. [4]

Meshless methods are defined as numerical methods for boundary value problem (BVP) solving,
which establish a system of algebraic equations for solving these problems, independent of a mesh def-
inition [5]. The main features of these methods are the construction of a function of their own, and the
absence of nodal connectivity that facilitates domain discretization.

Among the meshless methods developed so far are the Local Collocation method or Meshless Lo-
cal Petrov-Galerkin 02 (MLPG-02) and Meshless Local Petrov-Galerkin 01. Both methods use a local
approach to the problem. The collocation method, however, makes use of the strong formulation in
its development, that is the differential equation itself, while the local Petrov-Galerkin method uses the
weak formulation of the problem.

The local Petrov-Galerkin method has six best-known variations that are distinguished by the type
of weak formulation employed and the test function applied. The work of Atluri and Shen [6] shows
the main differences of each variation. In this paper we used variation 01 is employed, in which the test
function for each local subdomain used was the weight function derived from the moving least squares
method, and variation 02 of the method, in which the test function for each local subdomain used was
the Dirac‘s Delta function. Thus, the collocation method can be treated as special case of the MLPG
approach. [4]

Thus, the goal of this work is the analysis of the collocation method and local method of Petrov-
Galerkin applied to quasi-static linear viscoelastic problems submitted to the plane stress state, with the
verification of the relative and comparative errors between the methods.

2 Basic Viscoelasticity Equations

It is considered a quasi-static linear viscoelastic homogeneous solid body with domain Ω under a
Γ boundary. This body can be described through equilibrium equations, which relate acting forces to
internal stresses, strain-displacement relations, and the constitutive equation, which relates stresses to
acting deformations.

The boundary conditions in the body are described as:

ui (x, t) = ui (x, t) , in Γu, (1)

ti (x, t) = σij (x, t)nj (x) = ti (x, t) , in Γt. (2)

The equilibrium relations are represented in the index form as:

σij,j (x, t) + bi (x, t) = 0. (3)
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The deformation-displacement relations:

εij =
1

2
(ui,j + uj,i) . (4)

And the constitutive law are obtained, in this study, through the three-parameter solid model. In the
creep phase, for a constant stress σ = σ0H(t), where H(t) represents the Heaviside function, the strain
is calculated as:

ε(t) = σ0J(t). (5)

where J(t) is the creep function.
The creep function for the three-parameter solid model is represented according to Flügge [3] by:

p1

q1
e−λt +

1

q0

(
1− e−λt

)
(6)

where:

λ =
q0

q1
, p1 =

F

E1 + E2
, q0 =

E1E2

E1 + E2
, q1 =

E1F

E1 + E2
. (7)

with E1, E2 being the modulus of elasticity of the material, and F being the viscosity constant of the
model.

For the development of constitutive law of a three-dimensional viscoelasticity model , it is useful to
decompose the stress tensor τ , which describes the tensional state of a body, in two parts, the hydrostatic
τ s and the deviatoric τ d [7], represented by:

τ = τ s + τ d. (8)

The hydrostatic tensor in an isotropic infinitesimal element is related to the volume variation with
the constant form [7], and has the following configuration:

τ s =


σ0 0 0

0 σ0 0

0 0 σ0

 , (9)

where σ0 is calculated as:

σ0 =
1

3

(
σx + σy + σz

)
. (10)

For small deformations, the stress deviator, in the same element, is associated with the shape change
without volume variation, that is, the distortion of the element. This tensor is represented by:

τ d =


σx − σ0 τxy τxz

τyx σy − σ0 τyz

τzx τzy σz − σ0

 . (11)
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Each stress portion is associated with a strain. The deformation regarding the hydrostatic tensor is
presented as:

εs =


εv 0 0

0 εv 0

0 0 εv

 , (12)

where εv is calculated as:

εv =
1

3

(
εx + εy + εz

)
. (13)

The deviatoric strain portion is represented by:

εd =


εx − εv

1
2γxy

1
2γxz

1
2γyx εy − εv

1
2γyz

1
2γzx

1
2γzy εz − εv

 . (14)

Thus, the constitutive equations can be represented as a function of hydrostatic and deviatoric
stresses as:

εd = J1(t)τ d, (15)

εs = J2(t)τ s, (16)

where J1(t) is the creep function of equation (6) and

J2(t) =
1

3K
, (17)

with K being the volumetric expansion module, represented by:

K =
E

3 (1− 2ν)
. (18)

3 Meshless Method

When constructing the approximate solution of a meshless method, generally, a linear combination
of allowable or approximation functions is adopted. In this case, the approximate function, according to
Nguyen et al. [8], is represented by

uh (x) =

n∑
i=1

φi (x) ûi = ΦT (x) u. (19)

One of the most general techniques for solving boundary value problems is the use of the weighted
residuals method. The idea of this method is the construction of an approximate solution that satisfies
the presented differential equation and the boundary conditions imposed according to a certain approxi-
mation error criterion.

This approximate function generally does not initially satisfy the value of the actual function, gen-
erating a residue represented by

R (x) = Luh (x)− f (x) . (20)

Where L is the differential operator applied to the problem under analysis and f (x) is the value of the
analytic function.

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
Natal/RN, Brazil, November 11-14, 2019



Pinheiro. Catarina, Santiago. José Antônio, Telles. José Claudio

In order for the approximate solution to be the same as the analytical one, the residue value should
be minimized. In the weighted residual method, this minimization is done by requiring that the internal
product of the residue with a set of test fuctions Ψ equals zero, as shown below.∫

Ω
Ψ
(
Luh (x)− f (x)

)
dΩ = 0. (21)

The approximate function uh can be replaced by the equation Eq. (19) resulting in:∫
Ω

Ψ
(
LΦT (x) u− f (x)

)
dΩ = 0. (22)

The test function varies according to the meshless method adopted. The approximation functions
for meshless methods, in turn, are constructed from three items: A compact support weight function, a
set of position-dependent coefficients, and a polynomial base. In this study, the function used was the
moving least squares approximation.

4 Moving Least Square

A function u (x) named as uh (x), in the domain Ω, is made up of a sum of linearly independent
functions in the same domain, in such way that:

uh (x) = pT (x) a (x) , ∀ x ∈ Ωx, (23)

where:
pT (x)is the transposed vector containing a complete polynomial basis of m terms, given by:

pT (x) =
[
1 x x2 . . . xm

]
. (24)

a (x) is the vector of coefficients to be determined, which depends on the position of x, given by:

aT (x) =
[
a0(x) a1(x) a2(x) . . . am(x)

]
. (25)

For the quadratic basis in two-dimensional problems (m = 6), the value of pT (x) =
[
1 x y x2 y2 xy

]
.

To determine the coefficient vector a (x) the quadratic residual function J (x) is calculated, defined
as:

J =

n∑
i=1

wi (x− xi)
[
uh (xi, x)− ûi

]2
,

J =

n∑
i=1

wi (x− xi)
[
pT (xi) a (x)− ûi

]2
, (26)

where wi(x) is the weight function that assumes nonzero values only within its support, and depends on
the position x.

This equation can be written in matrix form as

J = [Pa (x)− u]T W (x) [Pa (x)− u] . (27)

where:
uT =

[
u1 u2 . . . un

]
, (28)
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P =


p1 (x1) p2 (x1) . . . pm (x1)

p1 (x2) p2 (x2) . . . pm (x2)
...

...
. . .

...

p1 (xn) p2 (xn) . . . pm (xn)

 , (29)

W (x) =


w (x− x1) 0 . . . 0

0 w (x− x2) . . . 0
...

...
. . .

...

0 0 . . . w (x− xn)

 . (30)

In order to obtain the best approximation, the functional J is minimized through its derivative in
relation to the vector a

∂J

∂a
=

∂

∂a

[
[Pa (x)− u]T W (x) [Pa (x)− u]

]
= 0. (31)

Resulting the set of m equations, described in vector notation as:

PTW (x) Pa (x) = PTW (x) Pu. (32)

Written in simplified form as:
A (x) a (x) = B (x) u, (33)

where A and B are arrays defined as:
B (x) = PTW (x) , (34)

A (x) = B (x) P = PTW (x) P. (35)

Isolating the vector a(x) , it is obtained:

a (x) = A−1 (x) B (x) u. (36)

Substituting the value of a(x) into the equation Eq. (23), the result is the approximation by moving
least squares, defined by:

uh(x) = pT (x)A−1 (x) B (x) u. (37)

The interpolating function or shape function Φi(x), associated with the ith node of point x, therefore,
is described as:

Φi(x) = pT (x)A−1 (x) B (x) . (38)

The moving least squares approximation is well defined when the matrix A is non-singular [4]. For
this to occur, the number of minimum points within the local domain to be approximated must be greater
than the number of terms in the polynomial basis (n > m).

The smoothness of the shape function Φi is determined by the smoothness of the base and the
weight function [6]. For a smooth polynomial basis, the continuity of the function will be determined by
its weight function. The function used in this study was Gaussian with radius, used by Atluri and Zhu
[9] [10] with high accuracy results, defined as:

wi(x) =


e
−
(
di
c

)2

− e
−
(ri
c

)2

1− e
−
(ri
c

)2 , if 0 ≤ di ≤ ri

0, if di ≥ ri

(39)

where di is the distance from the point xi to the point x and c is a constant representing the shape of the
function defined as recommended by Belytschko [11].
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5 Meshless Local Petrov-Galerkin 02 (MLPG-02) - Local Collocation Method

The meshless local Petrov-Galerkin 02 method uses the Dirac Delta function as its test function. In
this case, applying the filtering property of the Dirac Delta function will result in the strong formulation
in each node, that is, the equilibrium formulation itself. For nodes located in the problem domain this
equation is represented by:

σij,j (x, t) = −bi (x, t) . (40)

For nodes located on the problem boundary, the formulation must meet the boundary conditions
imposed in the equations Eq. (1) e Eq. (2).

In plane stress, the constitutive equation can be represented as a function of deviatoric and hydro-
static strain, in stress and strain vector form, as:

σ (x, t) = D1


εv

εv

0

+ D2


εx − εv

εy − εv
1
2εxy

 (41)

where

D1 =


3K 0 0

0 3K 0

0 0 3K

 , (42)

D2 =


1

J1(t) 0 0

0 1
J1(t) 0

0 0 1
J1(t)

 . (43)

Substituting the strain-displacement relationship in the constitutive equation gives:

σ (x, t) = D1

n∑
i=1

B1u + D2

n∑
i=1

B2u. (44)

where, for the plane state of stress, it is obtained:

B1 =
1

3KJ1 (t) + 2


φ,x φ,y

φ,x φ,y

0 0

 , (45)
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B2 =


β1φ,x −β2φ,y

−β2φ,x β1φ,y

1
2φ,y

1
2φ,x

 , (46)

where:

β1 =
3KJ1(t) + 1

3KJ1(t) + 2
, (47)

β2 =
1

3KJ1(t) + 2
. (48)

Substituting into the equilibrium equation, the formulation of the local collocation method in terms
of displacement is obtained in matrix form as:

LTD1

n∑
i=1

B1u + LTD2

n∑
i=1

B2u = −b, (49)

where:

L =


∂
∂x 0

0 ∂
∂y

∂
∂y

∂
∂x

 . (50)

The traction vector t (x, t) is described in terms of displacement as:

t (x, t) = N (x) D1

n∑
i=1

B1u + N (x) D2

n∑
i=1

B2u, (51)

where

N(x) =

nx 0 ny

0 ny nx.

 .
Thus, the boundary conditions in terms of displacement are described as

u (x, t) = u (x, t) , em Γu, (52)

N (x) D1

n∑
i=1

B1u + N (x) D2

n∑
i=1

B2u = t (x, t) , em Γt. (53)

6 Meshless Local Petrov-Galerkin 01 Method (MLPG-01)

The local Petrov-Galerkin method makes use of weak formulation in a local subdomain belonging
to the global domain. The local weak form of the equation Eq. (3) is described as∫

Ωs

[σij,j (x, t) + bi (x, t)] vi (x) dΩs = 0, (54)
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where vi (x) is the test function.
Using the property:

σij,jvi = (σijvi),j − σijvi,j . (55)

And applying the divergence theorem in the equation Eq. (54) it is obtained:∫
∂Ωs

σij (x, t)nj (x) vi (x) dΓ−
∫

Ωs

σij (x, t) vi,j (x) dΩ +

∫
Ωs

bi (x, t) vi (x) dΩ = 0, (56)

where ∂Ωs is the boundary of the subdomain Ωs. This boundary consists of three parts, ∂Ωs = Ls ∪
Γsu ∪ Γst. the first component, Ls, corresponds to the boundary fully inserted in the global domain,
Γsu represents the boundary part ∂Ωs pertaining to the prescribed global displacement boundary (Γsu =
∂Ωs ∩ Γu), and Γsu is the portion referring to the intersection with the global boundary with prescribed
forces (Γst = ∂Ωs ∩ Γt).

The test function vi to be used depends on the subtype of the local Petrov-Galerkin method. In
this case, it was the Gaussian with radius function, given in the equation Eq. (39), seen as a weighting
function in the moving least squares method, characteristic of the local Petrov-Galerkin 01 method.

Considering ti (x) = σij (x)nj (x) and ∂Ωs = Ls∪Γsu∪Γst, the equation Eq. (56) can be rewritten
as: ∫

Ls

ti (x, t) vi (x) dΓ +

∫
Γsu

ti (x, t) vi (x) dΓ +

∫
Γst

ti (x, t) vi (x) dΓ

−
∫

Ωs

σij (x, t) vi,j (x) dΩ +

∫
Ωs

bi (x, t) vi (x) dΩ = 0. (57)

Due to the characteristic of the weighting function to zero when the value of the distance between the
points is the radius itself, that is, at the end of the function, the boundaryLs is removed from the equation.
Also, in the boundary Γst the value of ti (x) can be replaced by the equation Eq. (2). Substituting the
values gives the general equation of the local method of Petrov-Galerkin 01 for viscoelasticity.∫

Γsu

ti (x, t) vi (x) dΓ−
∫

Ωs

σij (x, t) vi,j (x) dΩ =∫
Ωs

bi (x, t) vi (x) dΩ +

∫
Γst

ti (x, t) vi (x) dΓ. (58)

This equation is valid for points located in the domain and boundary Γst. In the boundary Γsu,
boundary conditions may be imposed separately through the direct integration method, similar to the
Collocation method, or may be imposed within the equation. Eq. (58) with a penalty factor as shown in
equation Eq. (59)

∫
Γsu

ti (x, t) vi (x) dΓ−
∫

Ωs

σij (x, t) vi,j (x) dΩ− α
∫

Γsu

ui (x, t) vi (x) dΓ =

−
∫

Ωs

bi (x, t) vi (x) dΩ +

∫
Γst

ti (x, t) vi (x) dΓ− α
∫

Γsu

ui (x, t) vi (x) dΓ. (59)

As in the Collocation method, the stress is replaced as a function of the displacement for the method
implementation.

7 Linear viscoelasticity Time integration

The above methods have all been solved for problems with constant stress over time. For quasi-
static problems of linear viscoelastic materials with time varying stress, an alternative solution is to use
the integral formulation of the time domain problem. Based on the formulation given by Flügge [3],
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the incremental method for three-dimensional linear viscoelasticity uses the concepts of deviatoric and
hydrostatic tensor and hereditary integrals for its formulation.

In this case, the constitutive equation of the problem is represented as:

ε = C1

(
t− t′

)
σs + C2

(
t− t′

)
σd, (60)

where C1 (t− t′) e C2 (t− t′) are the creep functions referring to the hydrostatic and deviatoric portion.
The hereditary integral equations, seen in Flügge [3], can be described as a function of these two

parts, considering the relaxation and creep functions applied only to the devitoric part. Thus this formu-
lation can be broadly represented by:

εs =

∫ t

∞
C1

(
t− t′

) dσs (t′)

dt′
dt′, (61)

εd =

∫ t

∞
C2

(
t− t′

) dσd (t′)

dt′
dt′. (62)

It is worth noting the elastic influence on the hydrostatic and viscoelastic portion in the deviatoric .

8 Numerical Examples

In this section two examples of two-dimensional viscoelastic solids subjected to the plane stress
state with two distinct loads are solved.

8.1 Load History

For the development of the examples listed below, two loading histories were used, named C1 and
C2 in this paper for historical didactic purposes.

Load history C1 represents a zero load to instant t = 0− and constant loading from the instant
t = 0+. This history is represented by a unit step function, as shown in figure Fig. 1 and mathematically
expressed by:

PC1 (t) = Ph (t) , (63)

where:
P is the load applied to the structure;
h (t) is the unit step function.

Figure 1. Load history C1

The load history C2 is represented by a zero charge up to the moment t = 0−, constant loading
from t = 0+ to t = t1 and a zero charge from that moment as shown in the figure 2.

For load history C2 the mathematical formulation is presented as:

PC2 (t) = Ph (t)− Ph (t− t1) . (64)
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Figure 2. Load history C2

8.2 Example 01 - Traction Plate

The first example is a plate pulled in its longitudinal direction and prevented from moving in the
transverse direction. (Figure 3)

Figure 3. Traction Plate

This solid is subject to the plane stress state and is pulled by a constant load over time (p = 2MPa).
The analytical solution for the creep phenomenon for x direction, displacement x (ux) is indicated in the
equation Eq. (65)

uC1
x (x, t) = pxh (t)

 3K + 2q0

q0 (6K + q0)
+

(p1q0 − q1)

2

e− q0
q1
t

q0q1
+

3e
− (6K−q0)

6Kp1+q1
t

(6K + q0) (6Kp1 + q1)

 , (65)

σC1
y (t) = ph (t)

{
1

6K + q0

[
(3K − q0) +

9K (p1q0 − q1)

6Kp1 + q1
e
− (6K+q0)

6Kp1+q1
t
]}

. (66)

The constants used in this problem are represented in the table. 1.

Table 1. Constants used for the example of a pull plate

K q0 q1 p1

4.17 2.50 4.00 0.80

Due to the simplicity of the problem, 09 points were used, 08 located in the boundary and 01 in
domain. (Figure 4)

The total time adopted was 50s divided into parts ∆t = 1s. For the historical C2, the value of t1
equal to 25s was adopted.
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Figure 4. Domain discretization

Due to the simplicity of the problem, the results obtained by the local collocation method and local
petrov galerkin method 01 were close, as an advantage of the first method due to the absence of numerical
integration, reducing the computational cost of the problem. The figures 5 and 6 show the displacement
u at the point with coordinates x = 2m and y = 1m, using the collocation method and the MLPG-01,
respectively, for load C1.

Figure 5. Collocation Method for Traction Plate Using C1 Loading

Using load history C2, the time-displacement plot for the local Petrov-Galerkin method 01 and local
collocation methods were shown in the figures. 7 e 8, respectively.

Despite the greater error compared to that obtained by load C1, due to the greater complexity of
load C2, the results for the two methods under study were close.

8.3 Cantilever Beam

The second example analyzed is an Cantilever Beam (see figure 9). A unitary cross-sectional thick-
ness is considered which, allied with zero stresses in this direction, allows the simplification of the
problem as a plane stress state.

The beam has constant concentrated load (P = 2N) over time. The constants used in this problem
are represented in the table. 2.

The analytical solution for the creep phenomenon for direction displacement x (vx) is indicated in
the equation Eq. (67)
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Figure 6. Local Petrov-Galerkin Method for Traction Plate Using C1 Loading

Figure 7. Collocation Method for Traction Plate Using C2 Loading

Table 2. Constants used in Cantilever Beam

L h K q0 q1 p1

48.00 12.00 11.67 2.50 4.00 0.80

v =
P

6I

{[
3y2 (L− x) +

5h2x

4

] [
3K − q0

9Kq0
+

(p1q0 − q1)

3q0q1
e
− q0

q1
t
]}

+
P

6I

{[
h2x+ x2 (3L− x)

] [6K + q0

9Kq0
+

2 (p1q0 − q1)

3q0q1
e
− q0

q1
t
]}

. (67)
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Figure 8. Local Petrov-Galerkin Method for Traction Plate Using C2 Loading

Figure 9. Cantilever Beam

Numerical solutions for the Collocation method and local Petrov-Galerkin method 01 for load C1
and node with the coordinates x = 36m and y = -3m are demonstrated by the v time-displacement graphs
illustrated in the figures 10 and 11. In this case, it is possible to observe the convergence of both methods
by using a sufficient number of points.

For C2 loading, it is worth noting the increase in the initial size of the radius of support by approxi-
mately 22% and the application of a regularizer method in the global matrix, due to the instabilities gen-
erated by the singularity point existing in the load, which ill-condition the matrix from the moving least
squares method, and the global matrix itself. The figures 12 e 13 show the numerical results compared
with the analytical solution for the collocation and MLPG-01 methods for the node with coordinates x =
-3m and y = 3m.

The smallest instability from the local Petrov-Galerkin method 01, represented by the figures 12 and
13, occurs due to the reduction of the derivative order in its approximation function, resulting in smaller
errors resulting from the moving least squares method.

8.4 Methods Comparison

The following are the results for the example of a Cantilever beam. In this study, for the analysis of
accuracy between the methods, a discretization of 1 × 1 m for the two methods in order to compare the
response of each method to the analytical one. The results show the advantage of the MLPG-01 over the
other in terms of accuracy (Figure 14).
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Figure 10. Collocation Method for Cantilever Beam Using C1 Loading

Figure 11. Local Petrov-Galerkin Method for Cantilever Beam Using C1 Loading

However, in terms of processing time, the MLPG-01 showed the worst results, having a processing
time 4, 5 greater than the local collocation method.

Regarding the convergence and stability between the methods, the relative mean error for the point
[36,−3] with discretizations ranging from 12 × 3 m to 0, 75 × 0, 75 m. In the table 3 It is possible to
verify the convergence of all the analyzed methods, as shown above, and also the greater stability of the
local Petrov-Galerkin method 01, which did not present sudden error variations.
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Figure 12. Collocation Method for Cantilever Beam Using C2 Loading

Figure 13. Local Petrov-Galerkin Method for Cantilever Beam Using C2 Loading

Table 3. Mean relative error: Cantilever Beam - v Displacement

Number of points Collocation Method Local Petrov-Galerkin Method

25 0.7501 1.3225

85 0.6855 0.1048

637 0.0763 0.0121

1105 0.0086 0.0008
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Figure 14. Comparison of methods for a Cantilever Beam Example Using C1 load (637 nodes)

8.5 Conclusion

In the present paper a methodology for numerical solution of quasi-static viscoelastic problems
subjected to the plane state was developed using the local collocation method or MLPG-02 and the local
Petrov-Galerkin method, alternative 01.

The choice of the support radius and the constant c of the Gaussian with radius function have
significant relevance for the development of the meshless methods addressed. Inadequate values of these
parameters produce poor numerical results.

The application of meshless methods, in general, obtained good results, using the Boltzmann Super-
position Principle. The meshless local Petrov-Galerkin 01 method presented the best results regarding
the accuracy against the others. In addition, the method demonstrated good stability, and in no case
showed sudden variations of error, as depicted in the other methods. This result confirms the greater
stability of weak formulation methods, as already indicated in the literature.

The local collocation method, in turn, despite the more unstable solution, regarding the processing
time had great advantage to the others because it does not contain the integration phase in its formulation.

All approached methods presented adequate convergence rates, which in addition to the high accu-
racy rates allowed the validation of the methods for the proposed numerical problems.
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