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Abstract. A formulation of the Boundary Element Method (BEM) to perform analysis of ductile 
heterogeneous microstructures considering phase debonding is presented in the context of multi-scale 
analysis. The microstructure is modelled by a zoned plate, where different mechanical behaviour can 
be adopted for each sub-region. To solve the domain integrals written in terms of in-plane 
displacements or plastic forces, the matrix and inclusions domains have to be discretized into cells 
where the displacements and forces are approximated. In multi-scale analysis, a point of the 
macrocontinuum is represented by a Representative Volume Element (RVE) which in this work, to 
model metal matrix composites, is assumed to contain a ductile matrix, rigid inclusions and interface 
zone. The rigid inclusions are considered as elastic medium whereas the matrix behaviour is governed 
by the Von Mises elastoplastic model with linear strain hardening. The phase debonding is modelled 
by a cohesive fracture model using embedded cohesive contact finite elements in the boundary 
element mesh. The homogenized results are compared with the ones obtained from a model based on 
Finite Element Method (FEM). The accuracy of the results show the capability of the new formulation 
based on BEM to deal with complex microstructures. 
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1  Introduction 

The boundary element method (BEM) has already proved to be a suitable numerical tool to deal 
with plate problems. The method is particularly recommended to evaluate internal force 
concentrations due to loads distributed over small regions that very often appear in practical problems. 
Several works have already considered BEM formulations to treat different kinds of problems as can 
be seen in the works Aliabadi [1], Beskos [2], Brebbia, Telles and Wrobel [3], Fernandes and de 
Souza Neto [4], Fernandes and Rosa Neto [5]. 

In general, the materials, even the metallic, are heterogeneous at the micro and grain scales. 
Besides, the material microstructure can be also appropriately manipulated by adding certain 
constituents to a matrix phase, in order to change the material properties to attend specific 
applications, as the MMCs (metal matrix composites). As any heterogeneity of the material as well as 
the microcracking initiation and propagation in the micro-scale affect directly the macro-continuum 
response, therefore modeling heterogeneous material in different scales is very important to better 
represent the behavior of such complex materials as discussed in Gal and Kryvoruk [6]; Nguyen, 
Lloberas, Stroeven and Sluys [7]; Pituba, Fernandes and de Souza Neto [8]. 
In multi-scale analysis, the RVE (representative volume element) represents the microstructure, at 
grain level, of the macro-continuum at the infinitesimal material neighborhood of a point as can be 
seen in the works de Souza Neto and Feijóo [9]; Fernandes, Pituba and de Souza Neto ([10], [11]). 

In this paper a BEM formulation to perform analysis of ductile heterogeneous microstructures 
considering phase debonding, in the context of multi-scale analysis, is presented. The RVE is 
considered as a zoned plate, whose sub-regions define its different materials. Besides, at interfaces 
cohesive contact finite elements have been defined, whose behaviour are governed by a cohesive 
fracture model, in order to represent the phase debonding that occur during the fracture process. The 
presented formulation is developed in details in Fernandes and Pituba [12]. 

2  Basic Equations  

The domain Ω of a heterogeneous microstructure is assumed to consist in general of a solid part, 
s and a void part 

v , being 
sv  , where the solid part can be made of distinct materials 

(or phases), each one defined by a sub-domain, whose material can have different elastics properties. 
Without loss of generality, let us consider the microstructure depicted in Fig. 1 represented by a zoned 
plate, where sub-region Ω1 represents the matrix whose external boundary is Γ1, sub-region Ω2 is an 
inclusion and Ω3 a void. Besides, in Fig. 1 Γjk represents the interface between the adjacent sub-
regions Ωj and Ωk and the Cartesian system of co-ordinates (axes x1 and x2) is defined on the plate 
surface.  

 
Figure 1- Heterogeneous microstructure represented by a zoned plate with superposed cohesive 

contact elements on the interfaces 
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Along the interface Γjk the phase debonding phenomenon will be modelled by contact and 
cohesive fracture models which will govern the mechanical behaviour in the additional cohesive 
contact finite elements defined on the interfaces (see Fig. 1). For a point placed at any of those sub-
regions, the in-plane equilibrium equation can be defined: 

, 0ij j iN b                    i, j=1, 2                                                            (1) 

where i ib b t  , bi are body forces distributed over the plate middle surface and Nij is the membrane 

internal force. As this work only deals with small strain problems the total strain will be split into its 

elastic and plastic parts,
e
ij  and 

p
ij  respectively, as follows: 

e p
ij ij ij                  i, j= 1, 2                                                                    (2) 

Note that when the phase debonding is taken into account, the total strain 
ij  is divided into two 

parts: the continuum strain 
ij  and the strain due to the phase debonding cf

ij  i.e.: cf
ij ij ij     . By 

applying the Hooke’s law the stress tensor rate ij (computed according to the constitutive model), as 

well as the force ijN , can be related to the elastic part e
ij  of the strain tensor rate and the membrane 

force predictor t
ijN  (often defined as elastic trial used in non-linear algorithms) related to the total 

strain ij . Thus, the forces 
t
ijN , for plane stress conditions, can be written in terms of the in-plane 

deformations ij  as follows: 

     ijijkk
t
ij

E
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
 
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                                                                     (3a) 
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ij kk ij ij kk ij ij ij ij
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 
              

            (3b) 

where ijN  are the forces related to the continuous strains while 
cf
ijN  is related to the phase 

debonding phenomenon, EtE  , E is the Young’s modulus,   the Poisson’s ratio, t the plate 

thickness and ij  the Kronecker delta. Therefore, the membrane force rate ijN  can be written as: 

0P cf
ij ij ij ij ij ijN N N N N N                                                                               (4) 

Observe that when an elastoplastic model is considered to govern the material behavior and 
cohesive contact finite elements are considered at interfaces, the inelastic forces 0

ijN can have 

contributions of these two different dissipative phenomena, i.e.: 0 p cf
ij ij ijN N N    . On the other hand, 

the plastic forces are given by: 
p t

ij ij ijN N N    , where the trial membrane forces 
t
ijN  are computed 

considering the total strain (see equation 3). The inelastic forces related to the contact fracture model, 
adopted to govern the material behavior in the finite elements defined on the interfaces, is given by: 

cf t
ij ij ijN N N    . The forces ijN  related to the continuous strains (see Eq. 3b), in the present paper, 

corresponds to the membrane forces computed before solving the RVE iterative procedure necessary 
to achieve its equilibrium (see more details further), which is solved in terms of displacement 
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fluctuations (or strain fluctuations). Note that after solving the RVE equilibrium problem, if the phase 
debonding takes place the displacement field will no longer be continuous on the interfaces and the 

total strains will have the part cf
ij  related to this discontinuity. The problem definition is then 

completed by assuming the following boundary conditions over Γ: ii UU   on Γu (in-plane 

displacements) and ii PP   on Γp (in-plane tractions), where   pu . 

3  Integral Representation For Displacement 

Writing the fundamental strains *m
kij  of sub-region m  in terms of the values *

kij   and the 

fundamental membrane force *m
kijN  in terms of   and *

kijN , being  *
kij , E ,   and *

kijN referred to the 

sub-region where the load point s is placed, from Betti’s Theorem, considering eq.(4), the following 
equation can be obtained for any sub-region m  (see more details in Fernandes and Pituba [12]):  

* * *

1

1
S

m m

N
m m m

mkij ij ij kij ij kij m
m

E
N d N d E d

E

    
   

        
   

    


dN
m

m
ijkij
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where Ns is the sub-regions number;  2
m

m
m

1

E
E


 . 

Integrating eq. (5) by parts we obtain the following representation of in-plane displacements: 
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)(0*      k, i, j=1,2    (6) 

where k is the fundamental load direction, Nint is the interfaces number; Nvoids is the voids number; 1
represents the matrix domain and 1  its external boundary; 1m  represents an interface between the 

matrix and inclusion m and m1  the interface between the matrix and a void m; the free terms values 

Ck1 and Ck2 depend on the position of the collocation point s. 

4  Algebraic Equations  

The integral representation Eq. (6) is transformed into algebraic expression after discretizing the 
external boundary and interfaces into elements and the domain into cells. Geometrically linear 
elements have been adopted, where linear shape functions have been assumed to approximate the 
variables. Moreover, triangular cells have been used to discretize the sub-regions domain, where the 
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displacements u1 and u2 are approximated by continuous linear shape functions, being their cell nodal 
values new independent values. Besides, the inelastic forces are assumed to be constant over the cell 
domain. Writing two displacements equations at boundary, interface and internal nodes, one can get 
the following set of equations where all values are written in terms of their increments (see more 
details in Fernandes and Pituba [12] and Fernandes, Crozariol, Furtado and Santos [13]): 

   
   

 
 

 
      0NEP
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iiiB
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
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
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

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









                        (7) 

In Eq. (7) the subscript B is related to the external boundary while i is referred to interface and 

internal nodes; 0N ,  U and  P  are plastic forces, displacement and traction incremental 
vectors, respectively. 

In a multi-scale analysis, the macro-strain has to be imposed to the RVE, leading to prescribe 
linear displacements over the external boundary as boundary conditions. Thus, in this case the 
unknowns vector {ΔX} computed from Eq. (7) are given by the in-plane tractions along the boundary 
and displacements at internal nodes. Besides, to solve the RVE equilibrium problem we also need to 

write the elastic forces 
t
ijN equations at the center of all cells. 

5  Homogenized values for Stress and Constitutive tensor  

In the RVE the microscopic displacement field u  is split into the following sum: 

     u y u y u y
                                        (8) 

where  u y
  

represents the displacement field obtained from the imposed macroscopic strain )(x , y 

represents an arbitrary point of the RVE; u~  is the displacement fluctuation which
 
represents the 

strain variation in the RVE.  
On the other hand, to compute the constitutive response related to the material represented by the 

RVE, it is assumed sufficiently large in order to be considered as a continuum and the concept of 
stress to be valid at the microscopic scale. Then, it is also assumed that the strain tensor ε and the 
stress tensor σ at a point x of the macro-continuum are the volume average of their respective 
microscopic field ( or ) over the RVE associated with x (see details in de Souza Neto and Feijóo 
[9]; Fernandes, Pituba and de Souza Neto ([10], [11]); Fernandes and Pituba [12] and Fernandes, 
Crozariol, Furtado and Santos [13]). Besides, the homogenized constitutive tangent modulus Cep can 
be also evaluated by applying the homogenization process. 

After discretising the RVE into cells and elements (or finite elements for the FEM formulation 
developed in the works Souza Neto and Feijóo [9]; Fernandes, Pituba and de Souza Neto ([10], [11])), 
the following microscopic equilibrium equation must hold for a discretization h: 

  0~  


dVuBfR
h

yh



                  (9) 

where fy is the constitutive functional defined by the adopted criterion,
h

 denotes the discretised RVE 

domain, Ncel is the number of cells used to discretize the RVE, Ae is the cell area and Ne the normal 
force vector in the cell, which is considered constant over the cell. 

After imposing the macroscopic strain tensor ε to the RVE boundary, the microscopic equilibrium 

problem consists of finding the displacement fluctuation field 
1ii1i u~u~u~     that satisfies Eq. (9), 

being 1iu~ 
  the fluctuations corrections to be imposed in iteration i+1. Thus, by applying the Newton-

Raphson Method, 1~ iu is computed by the following expression: 
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0u~KF 1iii  
                                                                           (10) 

where F is the traction vector and K the rigidity matrix, being defined as: 
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where DN is the microscopic constitutive tangent relating forces and strains, Kef and int
efF are the 

rigidity tangent matrix and internal forces vector of the cohesive contact finite element ef, respectively. 
Also, Nf is the number of the cohesive contact finite element and Be the cell strain-displacement 
matrix. 

The RVE formulation is completed with the choice of kinematical constraints to be imposed on 
the RVE that leads to different classes of multi-scale models and therefore, to different numerical 
results. Three different boundary conditions can be imposed to the RVE in terms of displacement 
fluctuations: (i) linear boundary displacements, (ii) periodic fluctuations and (iii) uniform tractions 
(see more details in Souza Neto and Feijóo [9]; Fernandes, Pituba and de Souza Neto ([10], [11])). 
According to the formulation developed in [9], after the RVE equilibrium equation (9) is satisfied, the 
RVE constitutive response can be obtained. The homogenized stress tensor is computed considering 
the boundary tractions while the homogenized constitutive tensor is obtained considering the 
constitutive tensors of the cells as well as the rigidity matrix K (see more details in Fernandes and 
Pituba [12]). 

6  Contact Cohesive Finite Element  

In Pituba, Fernandes and de Souza Neto [8], a cohesive fracture law has been proposed in order to 
deal with damage process leading to the complete failure of microstructures in ductile media. 
Moreover, in Santos, Fernandes and Pituba [14] additional applications for the model proposed in [8] 
have been discussed. In general way, this model has been developed to represent the cracking process 
where traction is still possible to be transmitted between fracture lips. It is possible to assume the 
existence of a free energy potential ϕ from where the relationships of the model are derived. Besides, 
the deformation due to sliding opening process is assumed as a scalar value independent of the 
direction of sliding on the cohesive surface, thus s = |s|, therefore the behavior has an isotropic 
characteristic and the cohesive law is written introducing an effective opening displacement expressed 
by: 

222
nS  

                (13) 

where, n is the normal opening displacement due to mode I; s is the sliding opening displacement 
due to mode II. The parameter β assumes different values (from 0 to 1) to the sliding and normal 
opening displacements given a weight ratio between the sliding and normal directions. On the other 
hand, the cohesive law is expressed as: 

)( 2 nδt S n

t 




 

               (14) 

where, n is the unit normal to the cohesive surface; t is the cohesive traction on the crack; t is a scalar 
effective traction. The released cohesive energy in the microstructure of the material is given by: 
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The laws for the scalar effective traction for the loading and unloading cases are given by: 

0max
/ 




  

  andifet c

c            (16) 

0max
max
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

orif
t

t             (17) 

where e is the e-number, σc is the maximum tension cohesive normal traction and c is a characteristic 
opening displacement that indicates a critical opening. 

Before the nucleation process, it is assumed the existence of stiffness between the lips of the 
future fracture. This stiffness is simulated by another parameter of the proposed model called penalty 
factor (λp). In a practical point of view, high values for this parameter are adopted in order to obtain an 
accurate approach. This procedure ensures that the future fracture be kept closed until the separation 
criterion is reached and, at the same time, guarantees the physical admissibility of the entire process. 
The penalty factor is, therefore, a stiffness imposed to the closuring of the crack. 

In general way, that strategy intends to create stiffness between the nodes of the embedded 
cohesive contact finite elements in the matrix zone in order not to allow penetration of the surfaces of 
the fracture. On the other hand, in tension regimes, this penalty factor effectively replaces the initial 
rigid part of the cohesive law for a linear response. In order to detect the cohesive contact 
phenomenon, the concept of the opening displacement gap between the Gauss points of the cohesive 
contact finite element is adopted. 

cPp ift  
  

             (18) 

The finite elements used in this work are perfectly superposed to the interface elements (from the 
BEM model) in the undeformed configuration of the RVE. In order to represent the debonding phase, 
the interface nodes related to the BEM model had to be duplicated, being one collocation point 
adopted at the matrix and the other one inside the inclusion, separated by a very small distance. 
Moreover, the cohesive contact finite element is defined as an element with four nodes and its 
geometry is compatible with the triangle cells used to model the matrix and inclusion zones. For the 
formulation details about the cohesive contact finite element, see Pituba, Fernandes and de Souza Neto 
[8]. 

7  Numerical Application  

In order to evaluate the BEM approach to deal with the phase debonding problem, a RVE 
representing the microstructure of a ductile material reinforced by a rigid inclusion is analyzed. Two 
situations are considered for the inclusion: perfectly bonded and phase debonding. For that, the RVE 
has been discretized by 580 triangular cells and 323 nodes for perfectly bonded case. When the phase 
debonding is considered, the same number of cells has been adopted, but 339 nodes are necessary 
(because the interfaces nodes are duplicated) and 16 contact cohesive finite elements, see Fig. 2. For 
the matrix, the following material properties are adopted: Poisson’s ratio =0,3; Young’s modulus 
E=200GPa, yield stress y=70MPa where a plastic Von Mises model with isotropic hardening 
K=6.17GPa has been assumed. For the elastic inclusions we have adopted: =0,25 and E=1100GPa.   
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Figure 2- Discretization of the RVEs. 

In all analyses, the periodic fluctuations are adopted. Besides, for the contact cohesive finite 
element, the following parameters are adopted (see Santos, Fernandes and Pituba [14]) : λp = 2x1012 
N/mm3, σc = 24 MPa, β = 0.707 and c = 0.02 mm. Also, two different macroscopic strains are 
imposed into 35 increments to the RVEs in order to compare the proposed BEM approach to FEM 
approach proposed in Pituba, Fernandes and de Souza Neto [8]: ε = {εx; εy;γxy} = {0.00455; - 0.00455; 
0} and ε = {εx; εy;γxy} = {0; 0; 0.00455}.  
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Figure 3- Homogenized stress σx versus macroscopic strain εx for the imposed macroscopic strain 
{0.00455; - 0.00455; 0}. 

0

10

20

30

40

50

60

70

80

0,000 0,001 0,002 0,003 0,004 0,005

Ho
m

og
en

ei
ze

d 
St

re
ss

 
y 

(M
Pa

)

Macroscopic Strain y

FEM - phase debonding

FEM - perfectly bonded

BEM - phase debonding

BEM - perfectly bonded

 

Figure 4- Homogenized stress σy versus macroscopic strain εy for the imposed macroscopic strain 
{0.00455; - 0.00455; 0}. 
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Figure 5- Homogenized stress τxy versus macroscopic distortional strain γxy for the imposed 
macroscopic strain {0; 0; 0.00455}. 

In Figs. 3, 4 and 5 are presented the homogenized stress responses for the each case analyzed. For 
the visualization proposes, Fig. 4 presents absolute values. As can be observed, the results are very 
similar when perfectly bonded is considered. It is important to note in Fig. 4 that the consideration of 
the possible fracture process in the interface zone leads to an increasing of the strength in the y-
direction due to the contact phenomena captured by the contact cohesive finite elements between the 
matrix and inclusion. Each Gauss point of this element contributes to the internal force evaluation by 
means of the traction vector computed either by the cohesive law (if a crack is opened at that Gauss 
point) or by the contact law (if a crack is closed at that Gauss point). Therefore, this finite element 
leads to crack surfaces not properly parallel. On the other hand, the BEM approach is capable to deal 
with large yielding process as showed in Fig. 5, where only distortional strain is imposed. In general 
way, considering the phase debonding, the BEM approach leads to smoother numerical responses than 
the FEM approach, mainly when only distortional strain is imposed. 

8  Conclusions 

A BEM formulation to analyze micro-structures of heterogeneous materials considering the phase 
debonding problem has been presented, where the RVE (Representative Volume Element) is modeled 
as a zoned plate. To consider the phase debonding, additional finite elements have been defined along 
the interfaces between the matrix and the inclusions, where a contact and cohesive fracture model have 
been considered. On the other hand, the inclusions have been adopted to have an elastic behavior 
while the material behavior in the triangle cells, defined inside the matrix domain, has been governed 
by the von Mises criterion. A set of examples has been presented the accuracy of the proposed BEM 
approach when compared to the FEM modeling. 
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