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Abstract. Prestressed concrete with unbonded tendons is an excellent structural solution for beams and
slabs, allowing the design of slender elements with long spans. However, the consideration of the un-
bonded tendon in the structural analysis is complex, requiring the development and implementation of
adequate methods. This work presents a finite element model formulation for material and geometric
nonlinear analysis of unbonded prestressed beams. The Euler-Bernoulli nonlinear plane frame element
formulation for large displacements and moderate rotations is used to model the reinforced concrete
beam. The tendon is modeled as a single polygonal element with a variable number of straight segments.
The tendon element allows the consideration of material and geometric nonlinearities. The formula-
tion was successfully implemented and the obtained results were in good agreement with experimental
data for beams with external and internal unbonded tendons. The presented formulation was applied
to assess the influence of the geometric nonlinearity on the structural behavior of presstressed beams
with unbonded tendons. The results showed that the geometric linear analysis overestimates the beam
capacity.
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Nonlinear finite element analysis of unbonded prestressed concrete beams subjected to short-term loading

1 Introduction

Due to the low tensile resistance of concrete, crack formation is one of the main limiting factors
in concrete element design. The presence of cracks in structures is responsible for exposing the rein-
forcement to corrosion compromising the durability and the element resistance. The use of prestressed
tendons in concrete structures consists of an alternative to the use of traditional reinforced concrete since
the stress applied tends to compress and bend before loading [1] preventing or limiting the crack forma-
tion under loading.

Several works were developed with the aim to simulate prestressed structures in its different systems.
Among these approaches, there are studies with external prestressed concrete beams whose prestressing
force is considered as an external loading [2–4] and as a resistance element[5–7].

Considering the cable as a resistance element allows adding the contribution of the tendon to the
internal force vector and the stiffness matrix, as well as being a more realistic model, once the variation
of tendon geometry throughout the analysis is also evaluated. Zona et al. [6] presented a study showing
the effect of considering the geometric nonlinearity of the tendon. The incorporation of geometric non-
linearity in the model presented results closer to the experimental results. The disregard of these effects
overestimates the strength of the structure. Also, Harajli et al. [4] presented a study where second-order
effects are evaluated for externally prestressed concrete beams.

For beams with internal prestressing tendon, the prestressing may be bonded or unbonded. Un-
bonded prestressing concrete beams is the most used in the case of building structures, as it allows the
use of slender elements, presenting simplicity and a higher rate of speed execution. Some works have
been published to simulate this condition for short term loads [8]. While other studies considered, in
addition to short-term loading, the behavior over time of unbonded prestressed concrete beams [9, 10].

In addition to computer simulations, some experimental tests were performed to study the behavior
of partially prestressed beams [11]. Experimental studies have also been performed on beams for normal
strength concrete and high strength concrete [12]. These studies are essential for the validation of models
whose objective is to simulate prestressed concrete structures.

This work focus on exploring the model already presented by [8] for finite element analysis for
material and geometric nonlinear analysis of prestressed concrete beams with unbonded internal tendons
submitted to short-term loading. The reinforced concrete beam is modeled as a nonlinear Euler-Bernoulli
frame element for large displacements and moderate rotations in a total Lagrangian approach. The tendon
is modeled as a single polygonal element with a variable number of straight segments. In this work,
the effect of the nonlinear strain-displacement relation is assessed as well as its effects on internal and
external unbonded tendon prestressed concrete beams. Also, a physical interpretation of the tendon force
over the frame element is presented.

The results presented a very good agreement with experimental data and shown that the nonlinear
strain-displacements approach is significant of externally unbonded prestressed concrete elements since
overestimates their capacities.

2 Frame element

For the reinforced concrete beam, the proposed model uses the Euler-Bernoulli frame element for
large displacements and moderate rotations in a total Lagrangian approach. The hypothesis for Classical
Beam Theory are adopted and displacements field is given by:

u(X,Y ) = u0(X)− Y v0′

v(X,Y ) = v0(X)
(1)

where u0 e v0 are the axial and transverse membrane displacements.
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Considering moderate rotations, the strain field can be expressed in terms of its membrane strain ε0
and curvature κ:

ε = u0
′ +

1

2
v0
′2 − Y v′′ = ε0 − Y κ (2)

The membrane strain and the curvature are called generalized strains. In vector form:

ε =

ε0
κ

 (3)

The generalized strain vector presents a linear εL and a geometric nonlinear εNL portion:

ε = εL + εNL =

u0′
v0
′′

+

1

2
v0
′2

0

 (4)

The internal virtual work can be evaluated from strains and stresses in a volumetric body by the
expression:

δUe =

∫
V

δεTσ dV (5)

where the strain increment can be written as:

δε = δε0 − Y δκ (6)

Then, since the plane frame element considers strains and stresses over the beam axis, the internal
virtual work is given by:

δUe =

∫
V

(δε0 − Y δκ)σx dV =

∫
V

δεTσ dX (7)

Once the membrane and the curvature strain varies only over the segment length, it is possible to write
the internal virtual work in function of the normal force N and bending moment M evaluated vy the
integration of the stresses over the element cross-section:

δUe =

∫
L

(
δε0N + δκM

)
dX (8)

where
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N =

∫
A

σxdA and M = −
∫
A

Y σxdA (9)

The generalized stresses can be written in vector form as:

σ =

N
M

 (10)

Figure 1. Frame element and degrees of freedom

For the interpolation of the axial and transverse displacements over the beam element, depicted in
Figure 1, the minimum continuity required to be used is a C0 linear and a C1 cubic Hermitian interpo-
lation functions, respectively. The introduction of the interpolation functions allows the representation
of the strains over the element in terms of the displacements. The generalized strains can be written by
using the strain-displacement matrices.

ε = Bue =

(
BL +

1

2
BNL

)
ue (11)

where BL and BNL are the linear and nonlinear strain-displacement matrices, respectively, and ue is the
nodal element displacement vector. The term v0

′ can be written as:

v0
′ =

[
0 H1

′ H2
′ 0 H3

′ H4
′
]
ue = Gue (12)

Therefore, the nonlinear part of the membrane strain can be written as:

εNL =
1

2
v0
′ =

1

2
ue

TGTGue (13)

Observe that this expression contains quartic terms since the linear portion of the strain is constant.
There is an unbalance of the strain field, this can lead to membrane locking. In order to avoid the problem,
Eq. (8) is substituted by the average nonlinear membrane strain [13]:

εNL =
1

2

1

L

∫ L

0
v0
′2dX =

1

2
ue

THue (14)

where H is a symmetric constant matrix:
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H =
1

L

∫ L

0
GTG dX (15)

Thus, the nonlinear strain vector can be written:

εNL =
1

2

ue
THue

0

ue = BNLue (16)

The strain increment δε can be calculated as:

δε =

(
BL + BNL

)
δue = B̄ δue (17)

where B̄ is the virtual strain-displacement matrix. Thus, it is possible to calculate the element internal
force vector ge:

δUe =

∫ L

0
δεTσ dX = δue

T

∫ L

0
B̄Tσ dX = δue

Tge (18)

accordingly:

ge =

∫ L

0
B̄Tσ dX (19)

The tangent stiffness matrix KT e can be obtained by the differentiation of the internal force vector:

KT e =
∂ge

∂ue
= KEe + KGe (20)

where KEe and KGe are the material stiffness matrix and the geometric stiffness matrix, respectively.
The element material stiffness matrix is given by:

KEe =

∫ L

0
B̄TCT B̄ dX (21)

where CT corresponds to the tangent section constitutive matrix obtained from the generalized stresses
vector:

CT =
∂σ

∂ε
=


∂N

∂ε0

∂N

∂κ

∂M

∂ε0

∂M

∂κ

 (22)
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Finally, the element geometric stiffness matrix is given by:

KGe =

∫ L

0
N H dX (23)

Since the material of the concrete and reinforcement present nonlinear behavior, the cross-section
stresses and their constitutive material matrix are evaluated using the fiber method. Also, for the integra-
tion over the element length, Gaussian quadrature with 2 points is performed.

2.1 Small displacements analysis

To evaluate the consideration of the geometric nonlinearity in the analysis of unbonded prestressed
concrete beams, a small displacements formulation for the frame element is presented. This formulation
adopts a linear strain-displacement relation and considers that the beam presents small displacements.

The displacements field is given by Eq. (1) and the linear strain field is given by:

ε = εL =

u0′
v0
′′

 (24)

The internal virtual work is given by the Eq.(??) where the internal forces are evaluated by the Eq.
(9). Interpolation of the displacements field is carried out by the linear and hermitian interpolation func-
tions for the axial (u) and vertical (v) displacements, respectively. Thus, the linear strain-displacement
relation can be evaluated:

εL = Bue (25)

where B = BL. Therefore, the strain increment can be written:

δε = B δue (26)

Thus, the element internal force vector ge for the geometrically linear analysis:

δUe =

∫ L

0
δεTσ dX = δue

T

∫ L

0
BTσ dX ⇒ ge =

∫ L

0
BTσ dX (27)

From the differentiation of the internal force vector in relation with the nodal displacements, it is
possible to calculate the tangent stiffness matrix which corresponds to the material stiffness matrix:

KT e = KEe =

∫ L

0
BTCTB dX (28)
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3 Unbonded tendon element

The prestressing tendon is modeled as a single polygonal element with a variable number of straight
segments, as shown in Figure 2. It is important to note that unbonded tendons are coated in an anti-
corrosion grease and protected by a plastic sheath. Due to the grease coating the friction between the
cable and the sheathing can be neglected. Therefore, it is assumed that there is displacement compat-
ibility between the sheating and the beam, but not between the cable and the sheating. This unbonded
tendon element can be applied to the analysis of post-tensioned beams with internal (Figure 2a) and
external tendons (Figure 2b).

(a) Internal unbonded tendon (b) External unbonded tendon

Figure 2. Unbonded tendon element

Due to lack of strain compatibility, the tendon strain cannot be evaluated from beam cross-section
displacements, but need to be evaluated considering the displacements of the whole cable. The cable dis-
placements are evaluated from the displacements of the plastic sheathing, which is considered perfectly
bonded to the concrete along the beam length for internal tendons and to the anchorage and deviator
points for external tendons. Neglecting the friction between the plastic sheathing and the tendon, the
strain along the tendon is uniform and, consequently, the tendon stress is constant.

Figure 3. Frame element and unbonded tendon segment before and after the deformation

The displacement of the endpoints of each cable segment are related to the displacements of the
corresponding beam nodes, as shown in Figure 3. Using Eq. (1), the displacement of these points can be
written as

up(Xp, Yp) = u0(Xp)− Yp θ(Xp)

vp(Xp) = v0(Xp)
(29)

where (θ = v′0) is the rotation of the beam element node and index p refers to the prestressing tendon.
The current coordinates of the endpoints (xp, yp) can be evaluated adding these displacements to the
initial coordinates (Xp, Xp).

The tendon segment displacements can be related to the frame element displacement as:
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up1 = u1 − Yp1 θ1
vp1 = v1

up2 = u1 − Yp1 θ1
vp2 = v2

(30)

In matrix form:


up1

vp1

up2

vp2

 =


1 0 −Y1

0 1 0

1 0 −Y2

0 1 0





u1

v1

θ1

u2

v2

θ2


⇒ upe = Teue (31)

where upe represents the nodal displacements vector of the tendon segment, Te the transformation ma-
trix, which depends on the ends coordinates of the undeformed segment, and ue the nodal displacements
vector of the frame element. Also, it is possible to relate the nodal displacements of the tendon segment
to the global displacements vector of the frame element by applying the Boolean localization matrix Le

which relates the degrees of freedom of a tendon segment with the global degrees of freedom of the
structure:

ue = Leu (32)

For a single tendon element whose initial length is Lp, and its deformed length is lp, the element
strain can be evaluated by using the engineering strain measure:

εp =
lp − Lp

Lp
(33)

For a polygonal tendon composed by n straight segments:

Lp =

np∑
e=1

Lpe and lp =

np∑
e=1

lpe (34)

The initial Lpe and final lpe length of each tendon segment can be evaluated from the initial (undeformed)
and current (deformed) coordinates of the segment endpoints:

Lpe =
√

(Xp2 −Xp1)2 + (Yp2 − Yp1)2 (35)

and
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lpe =
√

(xp2 − xp1)2 + (yp2 − yp1)2 (36)

The internal virtual work δUp of the prestressing tendon element associated with its constant strain
is given by:

δUp =

∫ Lp

0

∫ Ap

0
δεp σp dAdL = δεp Fp Lp (37)

where δεp is the tendon element virtual strain and Fp corresponds to the tendon force, given by:

Fp = σpAp (38)

The tendon strain is formed by the sum of the initial strain ε0, which is constant, and the incremental
displacement-dependent strain ∆ε:

εp = εp0 + ∆εp (39)

The incremental displacement-dependent strain is given by the sum of the individual strains of its np
tendon segments. So, the Eq. (39) can be written as:

εp = εp0 +

∑np

e=1(lpe − Lpe)∑np

e=1 Lpe
(40)

To evaluate the virtual internal work, the strain variation δε is determined from the Eq. (40):

δεp =
δlp
Lp

(41)

Note that δlp represents the variation of the deformed tendon element length formed by the sum of the
deformed tendon segments length:

δlp =

np∑
e=1

δlpe (42)

The variation of the final length of a tendon segment can be obtained from the expression of the
final length of the tendon segment given by the Eq. (36):

lpe
2 = (xp2 − xp1)2 + (yp2 − yp1)2 (43)

After some manipulation:
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δlpe = cosβ(δxp2 − δxp1) + sinβ(δyp2 − δyp1) (44)

where β corresponds to the inclination angle with the horizontal axis of the deformed segment. The
variation of a segment length also can be written in matrix form:

δlpe =
[
− cosβ − sinβ cosβ sinβ

]

δup1

δvp1

δup2

δvp2

⇒ δlpe = rTe δupe (45)

where δupe corresponds to the virtual displacements of the tendon segment.
The variation of the element length δlp corresponds to the sum of the segments length:

δlp =

np∑
e=1

δlpe =

np∑
e=1

re
TTeδue (46)

Finally, the internal virtual work of the unbonded tendon can be written:

δUp = δεpFpLp =

np∑
e=1

re
TTeδueFp (47)

This expression can be written as:

δUp =

np∑
e=1

gpe
Tδue (48)

where the internal force vector of each tendon segment can be calculated:

gpe = Te
TreFp ⇒ gpe = weFp (49)

Internal force vector can also be written as:

gpe =



− cosβ

− sinβ

Ypi cosβ

cosβ

sinβ

Ypj cosβ


FP (50)
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The tendon global internal force gp can be evaluated as the sum of the contribution of its segments and
from the Eq. (32):

gp =

np∑
e=1

Le
Tgpe (51)

Figure 4a illustrates the representation of the decomposition of the tendon forces over the Cartesian
axis, mathematically corresponding to reFp. In addition, Figure 4b represents the tendon forces over
the beam element nodes, mathematically corresponding to gpe. These nodal forces includes a moment
due to tendon eccentricity. Therefore, the internal force vector (gpe) consistently obtained by the virtual
work approach can be interpreted as the effects of the tendon force Fp on the beam degrees of freedom.

(a) Forces at segment ends (reFp) (b) Equivalent tendon force (weFp)

Figure 4. Tendon equivalent forces over the frame element axis

From the differentiation of the global internal force vector with respect to the global nodal displace-
ments, the tendon global tangent stiffness matrix KTp can be obtained:

KTp =
∂gp

∂u
=

np∑
e=1

Le
T∂gpe

∂u
(52)

The differentiation of the internal force vector of the segment is given by:

∂gpe

∂u
=

np∑
e=1

Le
T

(
Te

T∂re
∂u

Fp + Te
Tre

∂Fp

∂u

)
(53)

where the first term of the Eq. (53) corresponds to the geometric stiffness matrix and the second term
corresponds to the material stiffness matrix.

The tendon force derivative is given by:

∂Fp

∂u
= Ap

∂σp
∂εp

∂εp
∂u

=
ApEpt

Lp

np∑
a=1

ra
TTaLa (54)

where a indicates that the tendon force depends on the displacements of the whole prestressed tendon
and Ept is the tendon initial elastic modulus. Therefore, it is possible to evaluate the material stiffness
matrix KEp :
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KEp =
ApEpt

Lp
wwT (55)

where:

w =

np∑
e=1

Le
Twe (56)

From the Eq. (66), the derivative of its first term:

∂re
∂u

=
∂re
∂ue

∂ue

∂u
=
∂re
∂ue

Le (57)

with

∂re
∂ue

=
∂re
∂β

∂β

∂upe

∂upe

∂ue
= ze

∂β

∂upe
Te (58)

where:

ze
T =

[
sinβ − cosβ − sinβ cosβ

]
(59)

and

∂β

∂upe
=

ze
T

lpe
(60)

Therefore, the geometric stiffness matrix of the tendon segment KGpe is calculated:

KGpe =
Fp

lpe
Te

Tzeze
TTe (61)

Finally, the global geometric stiffness matrix KGp is given by:

KGp =

np∑
e=1

Le
TKGpeLe (62)

The global tangent stiffness matrix of the tendon element can be expressed as the sum of the terms
of the global material stiffness matrix given by Eq. (68) and for the global geometric stiffness matrix
given by Eq. (62):

KTP
= KEp + KGp (63)

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
Natal/RN, Brazil, November 11-14, 2019



J.C. Alves, E. Parente Jr., J. B. M. Sousa Jr.

3.1 Small displacements analysis

Assuming the hypothesis of small displacements, this section presents the formulation of a tendon
element for linear geometric analysis. From the Eq. (45), it can be noticed that for a geometrically linear
analysis, the tendon inclination angle β0 is constant:

δlpe = rTe0δupe (64)

where re0 is the initial inclination tendon vector. Then, the internal force vector can be evaluated from
the Eq. (47):

δUp =

np∑
e=1

re0
TTeδueFp ⇒ gpe = Te

Tre0Fp = we0Fp (65)

This expression shows that for geometrically linear analysis the tendon internal forces vary only due to
the variation of the tendon force (Fp) since vector we0 does not depend on the cable displacements.

From the expression of the internal force vector is possible to evaluate the tangent stiffness matrix
for the geometrically linear tendon element:

KTP
=
∂gpe

∂u
=

np∑
e=1

Le
T

(
Te

Tre0
∂Fp

∂u

)
(66)

The differentiation of the tendon force with respect to the nodal displacements is given by:

∂Fp

∂u
= Ap

∂σp
∂εp

∂εp
∂u

=
ApEpt

Lp

np∑
a=1

ra0
TTaLa (67)

Then, the tangent stiffness matrix, here equivalent to the material stiffness matrix, can be evaluated:

KTP
= KEp =

ApEpt

Lp
w0w0

T (68)

where:

w0 =

np∑
e=1

Le
Twe0 (69)

Note that the subscribed 0 indicates that the inclination angle of the tendon segments are the unde-
formed inclinations angles (β = β0). Its values are not actualized with the beam deformation, character-
izing the linear geometric analysis.

4 Material Models

Several stress-strain relations have been proposed for simulating the nonlinear behavior of the steel
and the concrete, although there is no agreement to which model performs the best fit to the experimental
data available. The present work uses nonlinear uniaxial stress-strain relations for the concrete, the
reinforcement steel, and the prestressing steel.
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4.1 Concrete

Zupan and Saje [14] proposed a model for uniaxial relation for the concrete in compression and
tension. The first range is from the ultimate compressive strain εcu to the strain corresponding to the
tension resistance of the concrete εctr. The second range corresponds to a straight line to the tensile
resistance strain to the maximum tensile strain εctu. The expression of the curve model is given by:

σc =


fc

2|εc0|εc
εc02 + εc2

εcu ≤ εc ≤ εctr

fc
εc − εctu
εctr − εctu

εctr ≤ εc ≤ εctu

(70)

Scott et al. [15] proposed curve for uniaxial relationship for the concrete was also considered. This
model is formed of a parabolic ascending range and a linear descending range. The stress-strain relation-
ship is given by:

σc =


fc

(
2εc

0.002
−
( εc

0.002

)2)
εcu ≤ 0.002

fc
(
1− Z(εc − 0.002)

)
εc ≥ 0.002

(71)

where

Z =
0.5

3 + 0.29fc
145fc

− 0.002

(72)

4.2 Reinforcement and prestressing steel

For the reinforcement steel, a bilinear model is adopted for tension and compression, expressed by:

σs =


−fy − Esh(εs + εsy) −εsu ≤ εs ≤ −εsy

Esεs −εsy ≤ εs ≤ εsy

−fy − Esh(εs + εsy) εsy ≤ εs ≤ εsu

(73)

where Esh is the steel hardening modulus, εsy is the yield strain, Es the initial elastic modulus of the
reinforcing steel.

For the prestressing steel, the constitutive relation proposed by Menegoto and Pinto [16] is adopted,
where is valid only in tension, and given by:

σp = εpEp

[
Q+ (1−Q)

(
1 +

(
Esεp
Kσpy

)R)1/R
]
≤ σpu (74)

where Ep corresponds to the initial elastic modulus of the prestressing steel, Q, K and R corresponds
to nondimentional coefficients that best fit to the material experimental data and σpy is the prestressing
steel yield stress.
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5 Applications

This section presents the validation of the proposed formulation by comparison with available ex-
perimental results. Nonlinear analysis of three unbonded prestressed beams presenting different tendon
profiles is performed. The results are evaluated in terms of the load-displacement curve obtained and the
convergence of the Newton-Raphson iterations.

5.1 Unbonded prestressed beam with polygonal tendon profile

Hussien et al. [12] tested a set of unbonded prestressed beams. The beam named B7 is used to
validate this model. B7 corresponds to a simply supported beam presenting a rectangular cross-section.
The tendon profile, as shown in Figure 5, is anchored at the centroid of the ends cross-section and
the lowest segment lies at 4.3 cm from the bottom of the beam. The tendon area is 0.99 cm2 with a
prestressing stress of 1000 MPa after the initial loses. The reinforcement steel is positioned at 4 cm from
the top and bottom faces of the beam presenting 1.57 cm2 each.

Figure 5. Unbonded prestressed beam tested by [12] (units in cm)

A set of parameters are presented in [12], namely: concrete compressive resistance 43 MPa, steel
reinforcement yield 470 MPa, ultimate stress 610 MPa, yield stress for the prestressing tendon 1674 MPa
and the ultimate prestressing stress 1860 MPa.

Figure 6. Load-displacement curve for beam B7
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For the use of the nonlinear material models, a set of parameters are estimated. The peak com-
pressive strain and the ultimate compressive strain was estimated, according to Eurocode guidelines, as

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.

Natal/RN, Brazil, November 11-14, 2019



Nonlinear finite element analysis of unbonded prestressed concrete beams subjected to short-term loading

2.246 × 10−3 and 3.1 × 10−3, respectively. For the use of the Zupan and Saje [14] uniaxial concrete
model, the peak and ultimate tensile strains are estimated as 1× 10−5 and 4× 10−4.

The reinforcement elastic modulus adopted is 210 GPa. The steel reinforcement ultimate strain
estimated is 0.12 and hardening modulus 1.2GPa. The elastic modulus of the prestressing tendon adopted
is 195GPa and the ultimate strain 0.06. The estimated parameters K, Q, and R for the prestressing steel
model 1.04, 0.012 and 8.127, respectively.

The load-displacement curves are depicted in Figure 6. A 6 elements mesh was employed for the
numerical analysis and the cross-section integration was performed using 50 layer. The displacement
control method was used for nonlinear analysis, where the vertical displacement v of the central node of
the beam was increased in 20 increments of 5 mm each. A tolerance for the Newton-Raphson iterations
convergence of 10−5 was adopted.

The proposed formulation presented a very good agreement with the experimental results. Also, it
is remarkable that the consideration of the nonlinear geometric behavior of prestressed concrete beams
with unbonded internal tendon presents a small effect in the load-displacement curve. This behavior is
already expected once the displacements of the tendon are linked with the concrete beam displacements,
which presents small displacements.

Table 1 presents incremental results for the 20th step, corresponding to v = 0.1 mm. The results
presented a fast convergence rate due to the correct implementation of the Newton-Raphson iterations
for small and large displacements formulations, supporting the accuracy and consistency of the model.
Also, it can be noticed that the small displacements formulation presents a higher force, overestimating
the beam capacity in 1.5 %.

Table 1. Convergence 20th step for beam B7

Nonlinear Geometric Linear Geometric

Iter P (kN) Error P (kN) Error

1 1.3726E+02 2.7275E+01 1.3904E+02 3.1722E-01

2 1.3722E+02 1.2051E-01 1.3906E+02 2.1106E-04

3 1.3722E+02 1.2622E-05 1.3906E+02 1.8895E-08

4 1.3722E+02 1.4773E-08 - -

5.2 Unbonded prestressed beam with straight tendon profile

A set of prestressed beams with straight tendon profile was tested by Tao and Du [11]. The named
A1 unbonded prestressed beam is simply supported with 4.20 spam and subjected to a four-point load
as depicted in Figure 7. Cross-section rectangular with 16 cm wide and 28 cm deep. The concrete
compression resistance is 30.6 MPa [11]. The peak compressive strain adopted is 2.021× 10−3 and the
ultimate compressive strain is 4.0× 10−3.

The lower reinforcement of 1.57 cm2 is positioned at 25 cm from the superior face of the beam. The
steel reinforcement parameters adopted for the yield stress is 267 MPa, the elastic modulus 210 MPa, the
hardening modulus 1.2 GPa and the ultimate strain 0.16× 10−4.

The prestressing tendon of 0.588 cm2 is positioned at 22 cm from the superior face of the beam.
The prestressing parameters presented in [11] consists on the tendon stress of 960 MPa after initial loses,
the elastic modulus 205 GPa, yield stress 1465 MPa, and ultimate stress 1790 MPa. The ultimate strain
adopted for the prestressing steel is 0.06. The estimated coefficients K, Q and R for the tendon material
model are 1.04, 0.02472, and 4.6019, respectively.
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Figure 7. Unbonded prestressed beam tested by [11] (units in cm)

For the numerical analysis, the finite element mesh presents 12 frame elements and the transversal
cross-section discretization presents 50 layers. The displacement method was applied for the central
node whose displacement increment 1 mm for 20 increments was employed. The convergence tolerance
adopted is 10−4.

Figure 8. Load-displacement curve for the beam A1
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The Figure 8 shows the load-displacement curve at the mid-span obtained for the nonlinear and
linear geometric analysis. It can be noted that the proposed formulation presents a very good agreement
with the experimental results [11]. Over again, the geometric nonlinear behavior presents a small impact
in the load-displacement curve.

Table 2. Convergence of 10th step for beam A1

Nonlinear Geometric Linear Geometric

Iter P (kN) Error P (kN) Error

1 4.0118E+01 4.2478E+01 4.0777E+01 8.6423E-01

2 4.0072E+01 3.5758E+00 4.0842E+01 9.0076E-03

3 4.0072E+01 2.2147E-01 4.0842E+01 5.2828E-07

4 4.0072E+01 2.3680E-05 - -

Table 2 presents the numerical results of the convergence of the 10th step (v = 0.1 m) for the dis-
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placement control method. Again, the fast convergence of the Newton-Raphson iterations is observed
for nonlinear and linear geometric analysis, showing the robustness of the proposed model. Also, the
small displacements analysis overestimates the beam capacity in 2%. It can be noticed that for inter-
nal unbonded prestressed concrete beams, the small displacements analysis corresponds to a very good
approximation, once the nonlinear geometric behavior presents a small effect in the beam capacity.

5.3 Externally prestressed concrete beam

Harajli et al. [4] performed an analytical nonlinear analysis for 12 externally prestressed concrete
beams and presented a good agreement with the experimental results. The specimen named T1D is
a simply supported T-beam with external prestressing tendon presenting one deviator at mid-span as
depicted in Figure 9. The concrete strength is 40.8 MPa, and Scott et al. [15] stress-strain relation is used
for simulating the concrete in compression.

Figure 9. Externally prestressed concrete beam T1D studied by [4] (units in mm)

The reinforcement area corresponds to 2.26 cm2 positioned at 205 mm from the top fiber. A bilinear
stress-strain relation was used for modeling the compressive and tensile behavior of the reinforcing bars.
The steel elastic modulus is 200 GPa and it was adopted a strain-hardening modulus equivalent a 1.5%
of the elastic modulus [4]. The ultimate strain adopted is 0.15.

The prestressing steel is positioned at 280mm from the top fiber of the beam. The prestressing steel
parameters presented in [4] consists on stress-strain model parameters for the curve proposed by Mene-
goto and Pinto [16], which the parameters K, Q, and R are 1.0618, 0.01174, and 7.344, respectively.
Also, the prestressing steel yield stress 1.585 GPa, elastic modulus 193 GPa, and the ultimate stress 1427
MPa.

Figure 10. Load-displacement curve for beam T1D
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The finite element analysis was performed using 8 frame elements for the concrete beam and 1
tendon element with 2 segments to simulate the external prestressing. Section discretization consists of
25 layers. Displacement control method was applied using a displacement increment of 1mm for 40
increments. The convergence tolerance adopted was 10−4.

Figure 10 depicts the load-displacement curve obtained for linear and nonlinear geometric numerical
analysis. Note that the results obtained present a very good agreement with the experimental data. Also,
perform a superior behavior compared to the analytical results evaluated by Harajil, capable of obtaining
the complete load-displacement curve.

The load-displacement curves show that the nonlinear geometric behavior presented itself as a more
expressive influence compared to the internal prestressed beams presented in the Section 5.2 and 5.3.
This behavior is expected once the tendon lies externally from the beam and its is allowed to present a
higher eccentricity, in contrast to the case of the internal tendon, where the plastic sheathing is considered
perfectly bonded to the concrete.

The Table 3 presents the convergence of the 12th step for the displacement control method applica-
tion. It can be noticed that for the externally prestressed concrete beam, the small displacements analysis
leads to a significant increase of the beam capacity, around 12.3%.

Table 3. Convergence of the 12th step for the beam T1D

Nonlinear Geometric Linear Geometric

Iter P (kN) Error P (kN) Error

1 1.4633E+02 1.2124E-04 1.6459E+02 1.2712E-03

2 1.4633E+02 1.8623E-06 1.6438E+02 2.9259E-04

3 - - 1.6435E+02 6.6586E-06

6 Conclusions

A finite element model for geometric and material nonlinear analysis of unbonded prestressed con-
crete beams subjected to short term loading was presente. The reinforced concrete beam is simulated
using nonlinear Euler-Bernoulli frame element for large displacements and moderate rotations. The
prestressing tendon modeled as a single element composed of np segments. Material nonlinearity is
also considered for concrete and steel by its stress-strain relations. Then, linear geometric analysis was
performed by disregarded the nonlinear strain-displacement terms.

The global internal force vector and the tangent stiffness matrix are calculated in a consistent way.
The proposed model was tested against experimental data presenting a very good agreement for the
load-displacement curves obtained. In addition, the fast convergence of the Newton-Raphson iterations
supports the reliability of the implementation.

The influence of the nonlinear geometric behavior of unbonded prestressed concrete beams was
assessed for internall and external prestressed concrete elements presented in literature. The results pre-
sented excellent agreement with the experimental data. Also, the nonlinear geometric strain-displacements
terms presented more effect on the beam capacity for externally prestressed members, overestimating
their capacities.
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