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Abstract. This work seeks to analyse a buckling and limit point problems of concrete structures based
on a geometrically nonlinear formulation with the consideration of thermal effects and material damage.
The thermal expansion effects due to heating processes in confined structures have an important role in
the stress-strain evolution. Damage is treated in a simple way through the Mazar’s continuum damage
model. The resulting equations are approached by means of a finite element discretization, the solution
of which is pursued through an incremental, iterative standard Newton-Raphson numerical scheme
implemented by the authors in an in-house nonlinear FEM code. We then present two examples of
numerical simulations to validate our formulation and illustrate its applicability to the nonlinear stability
analysis of slender concrete structures under thermal loads.
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Geometrically nonlinear limit point analysis of concrete structures with damage and temperature effects

1 Introduction

The evolution of design methods and construction techniques over the last decades allowed several
advances in concrete structures that resulted in cost reduction and the design of more efficient structures.
The quest for lighter solutions and new constructive methods have promoted the increase of slenderer
constructions, invariably including (but not restricted to) composite steel-concrete beams and columns,
prestressed concrete elements, thinner slabs, shallow arches and concrete shells. From the structural
point of view, the design of slender structures typically requires careful verification of global/local
instabilities, second order effects and vibration analysis under service loads. This brings into
consideration the determination of the structure’s critical loads, in order to evaluate buckling phenomena
and limit point ultimate strength such to allow for their comparison to the external solicitations. Due to
both geometric and material effects, reliable computation of critical loads usually requires a nonlinear
analysis, even if post-critical behavior is not of interest. Compressive stresses originated from the
external loadings and imposed deformations (e.g. due to temperature changes and moisture increase in
structures subjected to axial confinement) are the primary sources of critical behavior for slender parts.
Figure 1-a shows a reinforced concrete shear wall (from Elwood [1]) after failure due to vertical
compressive stresses as triggered by an earthquake.

A number of studies take into consideration nonlinear global instabilities in slender beams and
shallow arches due to thermal loadings [2-3], in reinforced concrete columns under fire conditions [4]
and in encased composite (steel-concrete) columns [5], to name and cite just a few. One interesting
example of global instability in slender concrete elements can be observed in road slabs and bridge decks
directly exposed to environmental loads, wherein thermally-induced expansion may trigger buckling
and limit point instability (see Fig. 1-b). This phenomenon is commonly known as “blow-up buckling”
and one of its causes is the restriction to horizontal movement of the concrete slab with insufficient (or
even the complete absence of) expansion joints. Kerr et al. [6] and Yang et al. [7] studied with an
analytical formulation the buckling response of such elements to several temperatures, geometrical and
mechanical situations, trying to obtain a safe-temperature zone to avoid the instability failure.

Figure 1. a— Rupture and spalling of VV-shaped RC shear wall (extracted from [1]). b- Road pavement
“blow-up buckling” due to thermal expansion effect.

From the micromechanics point of view, the concrete matrix is well known for its stochastic
behavior and dependence of various (both material and mechanical) properties. As a heterogeneous
brittle material, one also expects the possibility of failure due to the initiation of micro-cracks followed
by their progressive spreading along the critically stressed regions, often well before the appearance of
such deformations that characterizes global buckling and post-buckling states. Accounting for the

CILAMCE 2019

Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC,

Natal/RN, Brazil, November 11-14, 2019




H. C. F. Curci, E. M. B. Campello, H. C. Gomes

evolution of damage through those areas is thereby critically important. Therefrom, the material
response becomes nonlinear and the instability turns to be dependent on the effective area that resists
those stresses, such that the phenomenon is transformed into a limit point problem, in the vicinity of
which any increment in external loads cannot be appropriately balanced by the structural element’s
deformation, eventually leading to a global-local failure (and constituting an ultimate limit state for
design).

This work presents a geometrically nonlinear formulation for the analysis of buckling and limit
point problems of concrete structures with consideration of thermal effects and material damage.
Damage is treated in a simple way through the Mazar’s continuum damage model. The resulting
equations are approached by means of a finite element discretization, the solution of which is pursued
through an incremental, iterative Newton-Raphson numerical scheme implemented by the authors in an
in-house nonlinear FEM code. We then present examples of numerical simulations to validate our
formulation and illustrate its applicability to the nonlinear stability analysis of slender concrete
structures under thermal loads. The paper is organized as follows. In section 2 we present our
formulation and its corresponding numerical solution scheme. In section 3 we present our numerical
examples, including a brief discussion on the results. In section 4 we close the paper with our
conclusions and final considerations. Throughout the text, plain italic letters (a,b,K ,a,b,K ,A,B,K
) denote scalar quantities; boldface lowercase italic letters (a,b,K ,a, b,K ) denote vectors; and boldface
capital italic letters (A, B, ...) denote second-order tensors in a three-dimensional Euclidean space. The
inner product of two vectors is denoted by U xv , and the norm of a vector by |u| = ~u xu .

2 Formulation and numerical solution scheme

We restrict ourselves to two-dimensional problems here (plane-strain or plane-stress). We follow a
total Lagrangian kinematical description for arbitrarily large deformations, into which we subsequently
introduce our constitutive representation. For this latter, we assume a special type of (hyperelastic) neo-
Hookean material for the elastic domain, the so-called Simo-Ciarlet material (see Campello [8]-[9] and
Gomes [8]), and then we introduce temperature-induced deformations and damage (via a Marzar’s
model) in a simple yet fully consistent way.

2.1 Kinematics and equilibrium

The kinematic formulation presented in this section is geometrically exact and considers the solid"s
deformation in a two-dimensional setting (plane-strain or plane-stress conditions). Let a body be
described by its inner region £2, contour I', position vectors x” (in the reference configuration) and x (in
the current configuration), and be subjected to a displacement field u, as shown in Fig. 2. Notation with
a superscripted “r” (as in m") is adopted throughout to designate quantities in the reference
configuration, whereas notation with an upper bar (&) indicates prescribed values (e.g. for tractions &
and displacements u at the solid”s boundaries).

The total deformation gradient F is given by the derivative of the current material points” positions
(i.e., at the deformed configuration) with respect to the corresponding positions at the reference
configuration. This can be written as

0x
FT:V-x:W:fTi®ei:[fT1fT2 es], M

where e; is the global (orthonormal) reference base and f;; are the column-vectors of F. Likewise, the
total displacement gradient L can be expressed in terms of its column-vectors y; as follows

d
Ly =Tu= a:r =Yri®e; =[yYr1¥r2 0] ()
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Reference Configuration
Configuration Ftr atstepn

Figure 2. Deformable solid under arbitrary (nonlinear) transformation.

Note that F and L are already written with the plane-strain particulatization, in which both f; = e
and yr3; = 0 are considered. In order to account for thermal and damage effects in a fully consistent
way for arbitrarily large deformations, we use the concept of intermediate (fictitious) natural
configurations, similarly as done for finite-strain elastoplasticity (see, e.g., Campello [8] and Campello
et al. [11]). Accordingly, the total deformation gradient is written through a multiplicative
decomposition as a function of the intermediate deformation gradients Fq (relative to the thermal
deformation) and F, (relative to the elastic deformation) (see also Fig. 3):

FT = Fe. Fe, with Fe = fei ® €. (3)

Figure 3. Transformation with the representation of the reference space, the fictitious intermediate
configuration for thermal deformations and the current configuration.

Note that Fy and F, link the transformations to a fictitious configuration 29 representing an
intermediate mapping through the reference Q" and the current 2 configurations. As discussed by
Vujosevi¢ and Lubarda [12], F, and F are in general local deformation gradients (two-point functions)
and only F is a true deformation gradient for inhomogeneous deformations. The thermal deformation
gradient for a given temperature variation 46 = 8, — 6,5 (in which the solid experiences a temperature
6, above or below a stress-free reference temperature 6,..5) is

Fo = (1 + ad0)], 4)

where « is the coefficient of thermal expansion of the material. We assume the material is isotropic, and
that its elastic behavior (due to its mechanical parameters) is independent from the thermal state and its
evolution, resulting in an uncoupled thermoelastic formulation (the heat conduction problem is not
considered here, such that the temperature field must be known a priori, i.e., given). The simplicity of
this tensor due to the material’s isotropy allows us to describe the elastic part F, explicitly as

F, = F1.Fg' = (1 + aA®)"'F = BF;. (5)
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This description is important for a static formulation based on its energy-conjugate pair P, which is the
1% Piola-Kirchhoff elastic stress tensor (in terms of its column-vectors, we write P as P = 7,;® e;).
The formulation starts from the equilibrium equations (and corresponding boundary conditions)
described in the reference configuration by

divP+ b"=0 in QF
u=1u in I} (6)
t=t in IY

where b" is the vector of volume forces (per unit volume of the reference configuration) and P relates
the traction vector t” on a generic surface point (per unit area of the reference configuration) to its
normal vector at the reference configuration n", through Pn™ = t". The integral (weak) form of Eq. (6)
is

jdiv P - dudQ' + jbr -6udQF =0, VOuevp, (7)
ar ar

and, after invoking the divergence theorem and considering Véu = SF (satisfying Eq. (2)), one has

fP:VSuer = fbr-Suer + ftr-Suer, Véu ey, (8)

Qr Qr rr

where du and SF are respectively the virtual displacement field and the virtual deformation gradient
belonging to the subspace of weight functions V. The left side of the Eq. (8) is known as the internal
virtual work §W;,,, and can be represented in terms of the column-vectors of the integrands as

8Wint = f P: 6FdQf = f‘[ei ' SYeier = f B-Tei ' SYTierl (9)
Qr Qr ar

wherein we recall that 8 = (1 + a46)~! as defined in Eq. (5). This allows us to describe §W;,,, in terms
of total virtual displacement gradient.

Considering that the objective is to obtain the displacement field ur(x) € § (subspace of
approximation functions) that satisfies Eq. (8) V du € P, and u(x) is the displacement associated by
total transformations, the use of displacement gradient y; in the virtual term §y; = (1 + a48).8y.;
(with the relation presented by the Eq. (5) and according to Eq. (2) expressions) allows us to represent
the internal virtual work in the elastic part of the transformation based on the total displacement field
ur. Within this approach, the virtual work principle (Eg. (8)) becomes

jB-Tei -8y dQF = fbr.éiudﬂr + ftr.Suer, Véu€ew. (10)
Qr

Qr rr

2.2 Hyperelastic constitutive equation

The so-called Simo-Ciarlet hyperelastic material law is used due to its simplicity to compute the
elastic tangent stiffness matrix and also due to its good convergence behavior, compared with the
classical (hyperelastic) Kirchhoff Saint-Venant law. This is justified by the poli-convexity of the strain
energy function vy, which guarantees the material stability and the existence of a strain state which
minimizes the energy — condition for the existence of a solution (see Ciarlet [13] and Lahuerta [14]).
The proposed strain energy density function is given by (Pimenta [15])

YO, D =2[202-1) - ) | + 13 -2m0)) (11)

with the invariants of F,, ] = det(F,) and I = f,; - f.; related to the elastic strains; A and u are the
Lamé coefficients. The column vector t,; from 1% Piola-Kirchhoff stress tensor is given by the partial

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC,
Natal/RN, Brazil, November 11-14, 2019



Geometrically nonlinear limit point analysis of concrete structures with damage and temperature effects

derivative of i with respect to y,; or f,; as

_O% _ 0y _oy 9] oy al

" Gve Ofq 0] Ofa ' Ol 0fy (12
Developing the expression above (see Gomes [10]) the vectors t,; and ;; obtained are
T = (202 - 1) = W) 'gei + iy and Ty = B2 ((207 - 1) — W) lgm + ufy),  (13)

with g, = —skew(e3)f, and g, = skew(e3)f,. The terms for the fourth-order tensor of elastic
tangent moduli for the pair {P, F} can be found through the second-order components C;;.This tensor
will provide the global tangent stiffness K+, to be numerically solved to obtain the displacement field
that satisfies Eq. (8) at each time-step. As the Eq. (10) is related to the total displacement uy, the
guarantee of quadratic convergence is dependent of the correct derivation based on Eq. (13) with respect
to the total deformation gradient fr; to obtain a consistent Cr;;. This one is calculated as

oty Oty 0%0
= [()]gi®sgi + B2. [8;. (I + d(Dskew(ez)) — d(J)skew(es)]
in which §;; is de Kronecker’s delta and the functions ¢ (J) and ¢()) are (see Gomes [10])

Crij =

M =3+ +wW2 and ¢() =[302-D—u| (15)
Similarly to Eq. (12), the Cauchy stress tensor T is obtained as
P
—1-1_ " RgT —_1-1 T
T=] aFe.Fe_] PF]. (16)

2.3 Consideration of damage effects

Applying the concepts of equilibrium and compatibility through the presented framework, it is
important to impose the verification of the strain state in 2 region in order to evaluate the sufficiency of
the material to support the applied traction. Within a simplified approach, Rabotnov (1968, apud
Lemaitre [16]) presented this concept for one-dimensional monotonic load tests through the
consideration of an effective stress & acting in an intact representative volume element (RVE) which
represents an already damaged volume subjected to a true stress o, ¢ < . This one is obtained by
adopting a scalar parameter of damage density, d, obtained from the relation between the damaged and
total areas of the real volume. Thus, it is obtained

G=0.(1-d,)7% (17)

in which d € [0,1] is null for a undamaged region and 1 for a full damaged one. This relation can be
extended to the loss of material stiffness through the reduction of the initial elasticity modulus Ej,
considering an isotropic material within a two-dimensional problem, as

B, =E, (1—dp). (18)

This is a very simple approach for a damage modelling, since more robust models also consider
damage anisotropy with the evolution of a damage tensor (as presented by Murakami [17]), where the
damage is relative to a reference base. Other approaches includes the damage evaluation under cyclic
loads and unilateral conditions, in which the stiffness can be recovered due to crack closure (see Mazars
[18] and Pijaudier-Cabot [19]) and coupled with plastic strains, as presented by Simo and Ju [20]. The
scalar damage model proposed by Mazars [18, 21] seeks to represent the concrete brittle behavior,
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presented in this paper, starting from the consideration of the Helmholtz free energy W state potential
through a formulation in the light of thermodynamics. With ¥ are evaluated the stresses and the variation
of the internal elastic energy by the evolution of a damage strain energy release rate (Y) due to micro-
cracks nucleation and voids growth. Considering the presented isotropic hyperelastic material
characterized by ¥ (J, I) and its specific mass py,

W =P(Fe,d) = - §0,Ld) = - [(1 - )y(, D] (19)
and the components of 1% Piola-Kirchhoff column vectors are written simply as
oy oy
T =(1-d =(1-d . 20

The energy release rate is obtained as the partial derivation of y with respect to damage evolution and

—~

_o_
Y=—1= y(,D. (21)

The Clausius-Duhem inequality condition for the second thermodynamics law is verified if
Yd>0 and Y>0-d>0, (22)

which implies that the scalar damage evolution must be crescent throughout the thermoelastic process.

Mazars’ classical damage model considers the initiation and growth of microcracks into concrete
matrix being governed by a yield surface function f (& ;) from strain space which delimits a limit
region for a purely elastic behavior. This function is presented as

f(8,Kq) =E— K4 <0, (23)

where K, is a damage-dependent parameter defined as the largest equivalent strain value in the whole
time history, compared to an initial strain threshold value %, from which the damage process starts. So,

Kq = J?d(d) = max {Ko,maxtz[orn] (é)}, (24)

and the equivalent strain & is obtained from the positive part of the symmetric strain tensor as a projection
of the strains associated to the positive eigenvalues (as defined by Simo and Ju [20]). In other words,

&= (el with (&) = (& + &i])/2 (25)

in which the Green-Lagrange tensor E is used to calculate the eigenvalues ¢; as the following

& = eig(E); = eig (1(F."F. - 1)) (26)

i

Inside Mazars’ model the damage evolution imposed to each element is related to two exponential
laws which englobes tension (T') and compression (C) damages as a function of the equivalent strain &
and the material parameters A., Ar, B; and By (whose general ranges are indicated by Mazars and
Pijaudier-Cabot, e.g. in [22]). Both functions for tension and compression presents the form

di = Fr(® =1 - [(1 - AQKo/E] — [Ar/exp(BiE — Ko))] 27)

with k = (T, C) and compose a total scalar damage value d thorough a composition dependent of scalar
coefficients a and a, (respecting ar + ac = 1). S0 d = ar.dr + ac.dg and (see Alvares [23])

+
ak=€ki/s\+/ with €;i=(€ki+|€ki|)/2 and & = (eh +&f). (28)

The components of strains .; and e; are stated from the partition of main stresses a; = eig(P);
as positive and negative parts, in which o;" = g; + |0;|/2 and o;” = 0; — ;. The positive stretching
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strains &7; related to these main stresses were approached by the initial linear relation.

Remark 1: Concrete matrix, as other brittle materials, presents a rheological behavior in which
damage tends to be significant after a tensile strain threshold (related to mode I in-plane crack
opening). Due to this, the description of damage criterion through a parameter related to the total strain
state of the solid proposed by Mazars is an interesting approach (especially considering the plane
strain simplifications), besides the simplicity to compute this damage model. Another advantage is
descripted in Simo and Ju [20] by the fact that damage mechanics is usually linked to the history of
strains and not stresses (unlike habitual fracture mechanics criteria). For example, considering an
unrestrained bar submitted to a heating process, is possible to observe crescent strains without any
stress evolution (which is valid if a concrete matrix homogeneity simplification is adopted). This is
expected as the bar is free to rearrange itself due to material dilatation. Based in the proposed
thermoelastic formulation, in which is possible to observe total elastic and thermal tensile strains
without necessarily tensile stresses, a stress driven damage model could leads to an incorrect response,
at least without any stress result treatment before a damage evaluation (demanding additional
calculation).

Remark 2: This damage model can only evaluate properly monotonic quasi-static load simulations
without loading reversion. The damaged concrete response (represented by the stress-strain relation
represented in Fig. 5) is inconsistent for cyclic or dynamic loads due to the existence of a single
damage parameter that must respect entropy criteria. The stiffness lost by a specimen damaged under
tensile strains is not recovered with the load inversion, e.g.. The representation of these behavior
demands more robust formulation, as presented by la Borderie et al. [24] and other authors [19,25].
Owing to this modelling limitation, the proposed examples must regard only monotonic loading.

Stress (MPa)
Damage Parameter

-0,002
Strain (m/m)

Figure 5. Mazar’s model response for stress-strain and damage-strain curves of compression and
tensile tests with usual damage parameters (as presented in Table 1).

2.4 FEM discretization

The framework method used to numerically solve the proposed structural problem is a standard
Finite Element Method, in which the region £2 is discretized in Ne finite elements and the displacements
field u(x) are approximated by polynomial shape functions, so

u(x) = Uyﬁl Nu. and du(x) = ug'§1 Néu,, (29)

where N (the interpolation matrix) and u, (the nodal displacements vector related to an element) are
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given by
N = [N;I N,I .. NI and wu =[u; v; uy vy.. u, vy]T (30)

for a problem wherein the element have n nodes and u and v are the displacement components
(according to the orthonormal reference system base). The spatial derivation of N terms allows the
approaching of the virtual displacement gradient §y; as

8yi = N;8ue = [Ny;I No;I ... Np;iI]Su,, with i=1,2. (31)

The application of Eq. (29) and Eq.(31) into the virtual internal work stated in Eq. (10) gives the
internal and external force vectors R%,, and R¢,; of an element as

SWE, = f B.T; * Sy;dQL = Sul f B.NiT; dQf = SulRS$,, (322)
ax ax
SWE = dul f NTbTdQf + f NTt'dr? | = SulR¢,,. (32b)
Qe e

As the objective is to obtain the global displacement field 7 that balances the internal and external
virtual works, the problem reduces to a nonlinear relation dependent of r that must satisfies Eq.(32).
With an assembly operator A, the unbalanced force vector R related to global dof components is

R(r) = YN ATRS, — TN ATRE, = Rip¢(r) — Reye = 0 VI, 3

with 8r = YNel AT su,.

A standard Newton-Raphson solver is adopted in order to solve the nonlinear relation described by
Eqg. (33). This numerical method needs the calculation of the tangent stiffness matrix K, (calculated
through de derivation of R¢,, by means of element total displacement u,) which is

Kre = f B.N]Cr;;N; dQf . (34)
Qe

3 Numerical examples

The authors implemented the proposed plane strain formulation in an in-house nonlinear FEM code
and using GiD, a pre- and post-processor. The examples to be explored in this section provide a general
understanding of the hyperelastic nonlinear problem and the damage evolution:

Example 1 — Slender simply supported-guided-in-x column subjected to thermal expansion;
Example 2 — Slender fixed-simply supported slab on an elastic foundation subjected to thermal
expansion.

Table 1 presents a resume of geometrical and mechanical properties for each example, in which the
damage parameters were defined considering Pijaudier-Cabot [22] limits recommendation. The models
were discretized with 6 node triangular elements with a mesh refinement that limited the element to a
maximum size of 20 mm for the most significant areas (areas in which the damage formation is
significant). Figure 4 presents the mesh used for the examples and the boundary conditions adopted for
each one. Considering the classic theory of plates and shells, both examples 1 and 2 present the linear
Euler’s buckling load P, dependent of effective flexural stiffness E1/(1 — v?2) and the effective height
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[, as
(34)

P m2El
Toa-wit
From Eq. (34), the equivalent linear Euler’s buckling temperature variation A6, for an exclusively

thermal problem can be evaluated as

AB. = i (35)
T aA(l - )12
Example 1 Example 2
;14 support 1
+/0 ,"/ weight
aist | . RN EEEEEE RN
' Concrete slab
‘ ;%:;:;:;:;:g:;:;:;:;g:;:;:;:;%;:;:;:;:;:g;:;:;:;:g:;:;:;:;' - Base
§ A6
Te)
I
- L=5,00 m
m
h=0,10m
+—— == support?2 \
, tu, ;
_________ e PR S + .
WA AN |> ISt | x:
AN A0 |
il support 1 support 2
h=0,20 m

Figure 4. Boundary conditions and mesh used for each example
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Table 1. General mechanical and geometrical properties.

Example 1 Example 2
- Mechanical Properties - Concrete Concrete
Self weight W (N /m?) 24,0e+3 24,0e+3
Young’s Modulus E (N /m?) 3,00e+10 3,00e+10
Poisson’s ratio v 0,20 0,20
Thermal expansion coefficient. a (°C™1) 1,00e-5 1,00e-5
- Geometrical Properties- Column Pavement
Model Lenght L (m) 5,00 6,00
Model height h (m) 0,20 0,15
Effective Lenght [, (m) 10,00 4,20
Model thickness t (m) 1,00 1,00
- Damage Properties - Ar By Ac B¢ X,

0,90 1,00e+4 1,20 1,50e+3 | 3,00e-4

Example 1 neglects the column self-weight as load input. Instead of it, example 2 considers a
vertical distributed load of 2400 N /m equivalent to the pavement concrete slab self-weight. The elastic
foundation reacts only in cases where uy is negative, that is, in cases of soil/base compression. Otherwise,
the elastic foundation stiffness contribution should be null, resulting in a discontinuous response. The
distributed stiffness applied to this case was evaluated through a comparison with concrete’s elastic
modulus and the value adopted is in order of 10> N/m.

3.1 Example 1 - Column subjected to thermal expansion

Figure 5 presents the support 2 horizontal displacement u, for the example 1. For this case the
displacement evolution is related to the increment of temperature 46 and the vertical axis indicates these
values normalized by the critical load P., or temperature 46, as presented in Eq. (35). Each curve was
subjected to a different initial disturbance temperature gradient 46 4;5; Which remains constant along the
increase of A46. The application of a linear temperature gradient along the section width (0.20 m) allows
to observe an initial constant curvature in the column. The increase of this initial gradient 46 moves
away the column behaviour from the bifurcation point and turns the flexural behaviour more significant
than compression. The dashed black line represent reference undamaged paths with the minimum initial
temperature variation to avoid disturbing the pre- and post-buckling response.
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2
1,8
16
e B I B
1,2
AG 1
Aber o8 (-~ Undamaged A6, = 0,2°C
06 —Damaged A, = 0,2°C
04 ——Damaged Af,, = 2°C
Damaged A@,,, = 10°C
02 ——eDamaged A8y, = 202C
0
0,0E+0 2,0E-2 4,0E-2 6,0E-2 8,0E-2 1,0E-1 1,2E-1

U, (M)

Figure 5. Variation of horizontal displacement with the increase of temperature 486.

The results in Fig. 5 also indicate the endpoint for each case in which the existent damage takes the
concrete section to ruin, considering each initial temperature gradient. As seen in Fig. 5, final
temperature ratio is smaller for higher initial temperature gradients. Fig. 6 presents the horizontal
displacement u,, and the damage at the endpoint (presented in Fig. 4). These “pictures” indicate that the
damage state for all the initial 464;,; (0.2 C, 2 9C, 10 2C and 20 2C) were similar at the endpoints,
despite the final temperature differences.
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Figure 6. Horizontal displacement and damage result at the final step before the ruin. Comparison with
the increase of initial disturbance temperature 40, .

The Fig. 7 and the Fig. 8 present the damage (d) and the Cauchy vertical stress (ay= T,,) evolution
for each curve presented in Fig. 5, respectively. This values were captured in the column’s support 2,
where Fig. 6 indicated the most significant damages and displacements profiles. Figure 8 particularly
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helps to understand the damage initiation based in the stress evolution. The abrupt behavior change from
uniform compression to flexo-compression (eccentric) at support 2 section is due to the post-buckling
effect, mainly for the cases with small disturbance temperature. The cases with 46 4;5; = 102C or 202C
already present from the beginning an initial significant flexed section and the evolution from
compressive to flexural behavior is smoother, while the damage occurs end evolves at more primary
stages. This result demonstrates the initial disturbance role (be it geometric or load-originated) not only
in the column displacement response (fitting or not with the pre- and post-buckling paths) but also in
the structural capacity to withstand the load pattern imposed by that one.
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Figure 7. Support 2 damage contour at some steps of temperature (as indicated).
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Figure 8. Support 2 vertical stress (o, — MPa) contour at some steps of temperature (as indicated).
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3.2 Example 2 - Slab on an elastic foundation

Figure 9 presents the maximum vertical displacement uy for example 2 (where the black curve was
kept from example 1 as a reference.). Green curve considers example 2 boundary conditions without
self-weight and the elastic foundations and captures the buckling effect with the positive variation of
temperature (40). Red curve do consider the elastic foundation and the concrete self-weight. Both
consider the same disturbance initial temperature of 1.5 °C. Figure 10 present the damage for the solution
with elastic foundation. Comparing undamaged solutions with and without weight and elastic foundation
inclusion, the different way the vertical displacement field evolves along the pavement slab heating is
observable and is presented in Fig. 11. The positive vertical displacement is not mobilized by the whole
pavement for small thermal variations (in which the self-weight still relevant and the foundation acts to
balance both thermal and weight loads — see Fig. 12). Observe that support 1 is free to rotate and the
pavement detachment from the rigid base starts there. The vertical displacement uy (X) evolution is
presented in Fig. 12 for the slab’s middle section (y = 0.05 m).
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Figure 9. Maximum vertical displacement for example 2 cases with modifications.
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Figure 10. Damage evolution in load-steps 0.965 and 0.97 (last time-steps converged).
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Figure 12. Dimensionless relative vertical displacement w,, /1y, 1,4, for Example 2 load-steps 0.1,
0.25, 0.5, 0.75 and ultimate 0.97 (last time-step converged).

4  Conclusions

The examples presented a general understanding of the stability problem related to bucking
phenomenon within two different applications. Both problems demanded a consistent nonlinear
thermoelasticity formulation due to the nature of the proposed external solicitations. The damaged zones
growth was observed in the contour regions of the column/pavement, wherein more expressive tensile
or compressive strains showed up. These solutions also presented a smoother evolution of damaged
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related to compressive zones.

As can be seen in Fig. 6, 7 and 12, the ultimate load-step before numerical solution divergence
presented a sudden evolution of tensile damage, which the authors assume to be an indicative of the
cracking advance until the cross-section rupture. The standard Newton-Raphson method used in our
FEM code is a responsible for this limitation. The use of advanced numerical solver methods (with
displacement control or the Arc length’s method) could lead us to results with a more expressive
evolution in the damage field. Despite this, is important to consider that the damage growth phenomena
was well-represented with the proposed solution, presenting a consistent stress-strain evolution for both
examples.
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