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Abstract. This work aims at the nonlinear static analysis of reinforced concrete structures using con-
stitutive models based on the Plasticity Theory and the Continuum Damage Mechanics. The elastic
damage model proposed by Mazars and the elastic-plastic damage model proposed by Lee and Fenves
are studied and one-dimensional versions of these models are implemented in a finite element program.
The plane frame elements used in this work are formulated with a co-rotacional Lagrangean kinematic
description. The integration of stress resultants and tangent constitutive matrix is carried out by the Fiber
Method. The formulation and computational implementation at the material and element level are vali-
dated using numerical and experimental results available in the literature. A reinforced concrete column
under the action of a monotonic load is analyzed and the results show that the use of the implemented
one-dimensional models for concrete structures is an effective methodology to capture some important
effects.
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1 Introduction

Reinforced concrete structures has a highly complex mechanical behavior. This is easily observed
in experimental tests. For numerical simulations, it is common the use plane and solid elements with two
or three-dimensional constitutive models (Parente Jr et al. [1]). Therefore, for engineering purposes, the
nonlinear analysis of concrete structures using two or three-dimensional constitutive models is impracti-
cable. This is due to the high computational cost.

For nonlinear structural problems, it is interesting to work with structural elements and one-dimensional
models. This can be carried out, for example, by the use of frame elements and the integration of stress
resultants in the cross section element (Spacone et al. [2]). In this work, the geometric nonlinearity is
considered by using a co-rotational formulation (Parente Jr et al. [1]]). The material nonlinearity is con-
sidered using nonlinear constitutive models based on the Plasticity Theory and the Continuum Damage
Mecanichs.

The Continuum Damage Mechanics is a branch of Continuum Mechanics that describes the be-
havior of degradation of materials at a macroscopic level. The first works developed using Continuum
Damage Mechanics were those of Kachanov [3]. The author introduced the concept of continuity, that
is a complementary variable for the after called damage variable D. According to Mazars et al. [4], the
damage variable D describes the micro-cracking state of the material. The definition of this variable
leads to the definition of another variable, the effective stress σ, which is related to real tension as

σ = (1−D)σ (1)

From Eq. (effective-stress), several constitutive models are developed in order to include the effects
of stiffness degradation. Here, two of these models will be studied and one-dimensional versions of each
one will be developed.

2 Constitutive models for concrete

The constitutive models studied here are the elastic damage µ-Model proposed by Mazars et al. [4]
and elastic-plastic damage model proposed by Lee and Fenves [5].

2.1 µ-Model

The 3D formulation proposed by Mazars et al. [4] is based on the elastic behavior of concrete. The
3D stress σ–strain ε relationship is given by

σ = (1−D)C0 : ε (2)

where C0 is the initial elastic-stiffness tensor, representing the undamaged elastic moduli. The damage
evolution is driven by the associated loading surface

fℵ(εeq,ℵ, Dℵ) = εeq,ℵ − Yℵ ≤ 0 (3)

where ℵ ∈ {t, c} represent the tensile (for ℵ = t) and compressive (for ℵ = c) behavior; εeq,t and
εeq,c are the equivalent strain for cracking and crushing of concrete, respectively. The equivalent strain
concept is introduced by Mazars et al. [4] as a representative value for the strain state. They are defined
as

εeq,t =
Iε

2(1− 2ν)
+

√
Jε

2(1 + ν)
and εeq,c =

Iε
5(1− 2ν)

+
6
√
Jε

5(1 + ν)
(4)

where Iε is the first invariant of strain tensor, Jε = 1/2
[
(ε1 − ε2)2 + (ε2 − ε3)2 + (ε3 − ε1)2

]
and ν is

the Poisson ratio. The internal variables Yt and Yc are the maximum values reached on the loading path
are difined as Yℵ = Sup[ε0ℵ,max (εeq,ℵ)].

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
Natal/RN, Brazil, November 11-14, 2019



B. S. Matias, E. Parente Jr, T. D. Araújo

The evolution of each variable Yℵ is initiated from a respective damage threshold, ε0t for tension
and ε0c for compression. In order to obtain the equivalent stress, we determine an equivalent damage
variable D correlated with the variable Y by the damage evolution law

D = 1− Y0(1−A)
Y

− A

exp [B(Y − Y0)]
(5)

where Y0 = rε0t + (1− r)ε0c, Y = rYt + (1− r)Yc and A and B are variables that determine the shape
of the effective damage evolution laws. The parameter r is defined by Lee and Fenves [1] as a triaxiality
factor that is equal to 1 for pure tension and 0 for pure compression.

For the one-dimensional version, the variables previously defined can be rewritten as Y0 = ε0t,
Y = εeq,t, A = At and B = Bt for tension and Y0 = ε0c, Y = εeq,c, A = Ac and B = Bc for
compression. Thus, the evolution of the damage variable D can be disassociated into two independent
parts:

Dℵ = 1− ε0ℵ(1−Aℵ)
Yℵ

− Aℵ
exp [Bℵ(Yℵ − ε0ℵ)]

(6)

where Yℵ = Sup[ε0ℵ,max|ε|]
The stress–strain relationship can be expressed by:

σ = (1−Dℵ)Eε (7)

The computational implementation of the one-dimensional µ-Model is performed using an explicit
incremental procedure. This is possible because for each known point of strain, knowing the history of
the previous strains, it is possible to determine a conjugated stress.

2.2 Lee and Fenves Model

The formulation of elastic-plastic damage model proposed by Lee and Fenves [5] is based on the
Plasticity Theory. In this model, the authors add another internal variable set κ (Lubliner et al. [6]) in
addition to classic plastic strain εp. In this formulation, the 3D stress σ–strain ε relationship is given by

σ = (1−D)C0 : (ε− εp) (8)

The evolution of the new internal variable κ is given by

κ̇ = λ̇H (σ, κ) (9)

where H is defined considering plastic dissipation and λ is a plastic consistency parameter. To incor-
porate the distinct behavior of the damage in the tension and the compression, the internal variable κ is
defined as a vector containing two scalar values, κ = {κt, κc}

Loading and unloading conditions are given in terms of the yield function

F (σ, κ) =
1

1− α

[
αI1 +

√
3J2 + β (κ)

〈
σ̂max

〉]
− cc (κ) (10)

where I1 is the first invariant of stress tensor; I2 is the second invariant of deviatoric stress and
〈
σ̂max

〉
is the positive part of the algebraically maximum principal stress; cc represents the cohesion in terms
of the internal variable κ; α and β are dimensionless parameters based on the initial yield tensile and
compressive stress in uniaxial (f0c and f0c) and biaxial (f0b) loads

α =
f0b/f0c − 1

2(f0c/f0c)− 1
and β (κ) =

cc(κc)

ct(κt)
(1− α)− (1 + α) (11)

The yield function F depends on the uniaxial strength functions ft and fc. These functions represent
the strength of the material under uniaxial loads and they are defined in terms of the internal variables κt
and κc as

fℵ = [1−Dℵ (κℵ)] fℵ (κℵ) (12)
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where fℵ represents the uniaxial strength functions in terms of the effective stress. These functions can
be found in Lubliner et al. [6].

For the one-dimensional version, the yield function can be rewritten as

F (σ, κ) =
1

1− α
[ασ + |σ|+ β (κt, κc) 〈σ〉]− cc (κc) (13)

The stress–strain relationship and the damage evolution law can be expressed by, respectively,

σ = (1−D)E (ε− εp) (14)

D = 1− (1−Dc) (1− s (σ)Dt) (15)

where s is a function that tries to model the crack opening/closing behavior of the concrete (Lee and
Fenves [1]).

The computational implementation of the one-dimensional Lee and Fenves model is performed by
an incremental implicit Euler method. Thus, a three-step return mapping algorithm can be defined: (1)
elastic predictor, (2) plastic corrector and (3) damage corrector. This return mapping algorithm is detailed
by Matias [7].

2.3 Strain localization and mesh sensitivity

A common phenomenon in applications involving brittle or softening materials is known as strain
localization. The strain localization also occurs in numerical simulations. In this case, it is possible
to explain mathematically how the phenomenon occurs with the use of finite elements for the mesh
discretization of the structure. Bažant and Planas [8] explain that this behavior is associated to the
discretization of the mesh. Figure 1 shows an example of a bar with length L discretized in N elements.

Figure 1. Mesh sensitivity of a single bar with N elements

Because of numerical instability, one of the elements of the mesh reaches firstly the maximum
tensile strength. While the other elements remain in the elastic regime, the strain is concentrated, or
localized, only in this brittle element. The dependence of the response of the problem to the finite
element mesh adopted in the analysis is known in the literature as lack of mesh objectivity or mesh
sensitivity (Bažant and Planas [8]).

Some methodologies have been developed to avoid mesh sensitivity once the strain localization can
occur in softening problems. In this work, the crack band theory developed by Bažant and Planas [8]
will be adopted.

3 Numerical applications

Some applications at material and structural level are analyzed with the constitutive models imple-
mented in this work. The constitutive model used for reinforced bars is the classic perfect elastic-plastic
model based on the Plasticity Theory.
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3.1 Cyclic uniaxial behavior

In this application, two cyclic tensile-compressive loading tests are applied in a single element and
the results are compared with numerical results obtained by Fléjou [9] and Lee and Fenves [5]. The first
loading is performed for the µ-Model using the following material properties and parameters: E = 37.3
GPa, ε0c = 2.0e− 4, ε0t = 8.2e− 5, Ac = 1.77, Bc = 2011.64, At = 0.70 and Bt = 12189.24. The
second loading is performed for the Lee and Fenves Model using the following material properties and
parameters: E = 30.1 GPa, f0c = 19 MPa, f0t = 3.3 MPa, ac = 4.07, bc = 1.00, dc = 1.08, at = 0.57,
bt = 1.00, dt = 1.20 and s0 = 0.00.
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Figure 2. Stress-strain response for cyclic load for the µ-Model model.
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Figure 3. Stress-strain response for cyclic load for the Lee and Fenves model.

Figures 2 and 3 show the strain-strain curves obtained by applying this cyclic loading. The main
different aspect is the unloading of both curves. In Lee and Fenves model curve there is accumulation of
permanent strain, which does not occur with the µ-Model curve.

3.2 Column with eccentric loading

This application is a column subjected to an eccentric load until failure. Geometry, material prop-
erties and loading are showed in Figure 4. The material parameters used for the µ-Model are: E = 33.6
GPa, ε0c = 1.5e− 4, ε0t = 7.5e− 5, Ac = 1.20, Bc = 452, At = 0.45 and Bt = 5320. The material

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.

Natal/RN, Brazil, November 11-14, 2019



One-dimensional Constitutive Models for Nonlinear Static Analysis of Reinforced Concrete Structures

parameters used for the Lee and Fenves model are: f0c = 17 MPa, f0t = 2.9 MPa, ac = 6.87, bc = 1.00,
dc = 0.92, at = 0.57, bt = 1.00, dt = 1.20 and s0 = 0.00.

Figure 4. Geometry and properties - Column with eccentric load.
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Figure 5. Load-horizontal displacement curve at the top of the column.

Figure 5 shows the horizontal displacement on the top of the column. The results present good
agreement with experimental data obtained by Espion [10] and the numerical results obtained by Par-
ente Jr et al. [1].

Figure 6 shows the damage distribution along the column at w∗= 0.06 m. From left to right, each
figure denotes the damage variable value. It is possible to note that the damage level for the Lee and
Fenves Model is slightly less than for the µ-Model. This can be explained by the fact that the Lee and
Fenves Model considers a portion of permanent strain in the damage process (as showed in Figure 7).

Conclusions

The main purpose of this work was to provide improvements in the study of concrete reinforced
structures subjected to the extreme loads. The results presented here showed that the constitutive models
were correctly implemented. In addition, the results at structural level presented good agreement with
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Figure 6. Damage distribution at w∗ = 0.06 m: Dc (µ-Model), Dt (µ-Model), Dc (L&F Model) and Dt

(L&F Model).

Figure 7. Permanent Strain distribution at w∗ = 0.06 m for theL&F Model.

experimental and numerical results available in the literature.
Regarding the mesh sensitivity, there was no evidence of the presence of strain localization in the

last example. This aspect has to do with the overall behavior of the structure, which does not show
softening.
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[8] Bažant, P. Z. & Planas, J., 1997. Fracture and Size Effect in Concrete and Other Quasibrittle Mate-
rials. CRC Press.
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