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Abstract. In order to consider the multiaxial behavior of concrete, several plastification and rupture 

surfaces have already been proposed, such as the Ottosen surface or the Willam-Warnke surface. 

However, the use of these surfaces in numerical finite element models can often lead to convergence 

difficulties, due to the complexity of their formulations. In this context, the present work simulated 

numerically the behavior of two reinforced concrete beams tested experimentally in a previous work, 

using ANSYS software, version 19.2, with a new elastoplastic model available in the recent versions of 

this software, denominated DP-Concrete. This model uses the composition of two simpler plastification 

surfaces, one for tensile behavior, which can be a Rankine or a Drucker-Prager surface, and another 

Drucker-Prager surface for compressive behavior. This surface composition allows simulating the large 

differences in the concrete behavior under tension and compression, which would not be possible with 

a single Drucker-Prager surface. In addition, because it is a newly available material model, it can be 

applied to the SOLID186 element, which is classified as a current-technology element by this software, 

and therefore is compatible with several current ANSYS features, such as the generation of embedded 

elements by the mesh-independent method, through the MESH200 guide elements, which were also 

used in this work. In order to consider the cracking and crushing phenomena, different softening and 

hardening laws available in the software were used. The obtained results were compared with each other 

and with the results of the experimental tests. In addition, numerical analyses were performed with a 

customized material model based on the Ottosen criterion, whose results were also used for comparison 

purposes. It was concluded that the DP-Concrete model is an adequate modeling strategy for the concrete 

behavior, and its main advantages are its simplicity, flexibility and compatibility with other current 

ANSYS functionalities. 
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1  Introduction 

The numerical simulation of reinforced concrete structures can become quite complex, due to large 

differences in tensile and compressive behavior of concrete, as well by the cracking and crushing 

phenomena. In order to achieve these objectives, finite element programs often implement different 

plastification surfaces and constitutive models. Chen [1] presents models that can be adjusted to the 

plastification and rupture surfaces of the concrete, from 1 parameter models (e.g. Rankine), 2 parameters 

(e.g. Drucker and Prager [2]), 3 parameters (e.g. Willam and Warnke [3]), 4 parameters (e.g. Ottosen 

[4]) and 5 parameters (e.g. modified Willam-Warnke). Although a model with a larger number of 

parameters can theoretically represent more accurately the actual behavior of the concrete, it is necessary 

to consider that increasing the number of parameters also increases the surface shape complexity, 

therefore more convergence problems may appear. For example, Queiroz et al. [5] cited convergence 

problems while using the Willam-Warnke model, which had been implemented in previous versions of 

ANSYS. In addition, the utilization of this model is no longer recommended in version 19.2 of ANSYS, 

used in the present work, because it is only compatible with the hexahedral finite element SOLID65, 

which is classified as a legacy-element by the software manual [6]. The Ottosen model [4], on the other 

hand, was implemented by Lazzari et al. [7] in ANSYS through the usermat interface, which allows the 

customization of a material model, but is not available in the commercial versions of the software. 

In this context, an alternative is the utilization of a new model composed by two different 

uncomplicated surfaces, one for tensile behavior (Rankine or Drucker-Prager), and another for 

compressive behavior (Drucker-Prager). In ANSYS, this model is called DP-Concrete, and has been 

made available in its most recent versions. For the simulation of crushing and cracking, different 

hardening and softening rules are provided by the software. 

The present work aims to evaluate this new model in the simulation of two reinforced concrete 

beams tested experimentally by Bresler and Scordelis [8]. In addition, analyses will be performed with 

the customized model based on the surface of Ottosen [4]. 

2  Numerical model 

In this section, the numerical model developed in ANSYS is presented, showing the element types, 

the material models and the boundary conditions used. 

2.1 Element types 

The concrete beam was modeled by hexahedral elements with twenty nodes and three degrees of 

freedom per node (translations in x, y and z), called SOLID186 in ANSYS [6]. In the present work these 

elements were used in their homogeneous form with full integration. Its formulation is based on 

Zienkiewicz [9]. Because it is a current-technology element, SOLID186 is compatible with several 

current ANSYS features, such as the generation of embedded elements and the use of new material 

models, e.g. DP-Concrete. 

The reinforcement bars were modeled by discrete embedded elements, called REINF264 in 

ANSYS [6], which are suitable for simulating steel bars. These elements use the same nodes of the base 

elements SOLID186, even if their geometric position does not coincide with them. The REINF264 

element presents only axial stiffness, thus the stiffnesses to bending, torsion and shear stress are 

neglected. A perfect interaction between the reinforcing element and the concrete base element is 

admitted, so there is no relative movement between them [6]. 

For the generation of reinforcement embedded elements, a new ANSYS functionality was used, 

which is denominated mesh-independent method. This method uses MESH200 elements, which are only 

guide elements, and thus do not directly contribute to the solution, but determine the positions where 

REINF264 reinforcement elements are created. Therefore, it is possible to insert the positions of the 

reinforcement bars from the lines drawn in absolute coordinates, unlike the standard method, in which 

it is necessary to use relative coordinates in respect to the base elements, which generates mesh 
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dependence. Figure 1 illustrates the elements SOLID186 (in black) and REINF264 (in red). 

 

Figure 1. Elements SOLID186 and REINF264 [6]. 

2.2 Material models 

This section presents the material models used for concrete and steel. In the case of concrete, two 

models are presented: (i) DP-Concrete and (ii) customized model via ANSYS usermat interface. 

2.2.1 DP-Concrete 

A single Drucker-Prager surface does not represent the large differences in tensile and compressive 

behavior of concrete. Thus, the DP-Concrete model uses a Drucker-Prager plastification surface for 

compression, and a second surface, which may be Drucker-Prager or Rankine, for tension and tension-

compression. Figure 2 illustrates the two possible compositions (referred to as DP-DP or DP-Rankine) 

in the two-dimensional principal stress plane. The surfaces formulations are presented below, based on 

Chen [1] and ANSYS [6]. 

 

Figure 2. Combinations DP-DP or DP-Rankine (adapted from [6]). 

The Drucker-Prager surface in tension and tension-compression is defined by Eq. (1). 

𝑓𝐷𝑃𝑡 =
𝜎𝑒

√3
+ 𝛽𝑡 . 𝜎𝑚 − 𝜎𝑌𝑡 = 0. (1) 

Where 𝜎𝑚 = 𝐼1/3 is the hydrostatic stress; 𝐼1 is the first stress invariant; 𝐽2 is the second deviatoric 

stress invariant; 𝜎𝑒 =  √3𝐽2 is the von Mises stress; and 𝛽𝑡 , 𝜎𝑌𝑡 are values calculated from material 

parameters and HSD model functions. 

While the value of 𝑓𝐷𝑃𝑡 is less than zero, the behavior in tension and tension-compression is 

admitted as linear elastic. When 𝑓𝐷𝑃𝑡  equals zero, the plastic regime is started, in which the cracking 

phenomenon can be simulated, approximately, by increments of plastic strain. In this step, the values of 

𝛽𝑡 and 𝜎𝑌𝑡, both constant in the elastic regime, can vary according to the functions Ω𝑐 and Ω𝑡, which, in 
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turn, depend on the adopted HSD model. This variation determines how the plastification surface moves 

in the plastic regime. The Eq. (2) and (3) define the values of 𝛽𝑡 and 𝜎𝑌𝑡. 

𝛽𝑡 =
√3. (𝑅𝑐 . Ω𝑐 − 𝑅𝑡 . Ω𝑡)

𝑅𝑐 . Ω𝑐 + 𝑅𝑡 . Ω𝑡
. (2) 

𝜎𝑌𝑡 =
2. 𝑅𝑐 . Ω𝑐 . 𝑅𝑡 . Ω𝑡

√3. (𝑅𝑐 . Ω𝑐 + 𝑅𝑡 . Ω𝑡)
. (3) 

Where 𝑅𝑐 is the uniaxial compressive strength of concrete [kN/cm²]; 𝑅𝑡 is the uniaxial tensile 

strength of concrete [kN/cm²]; Ω𝑐 is the compression function of the adopted HSD model 

(dimensionless); Ω𝑡 is the tension function of the adopted HSD model (dimensionless).  

The Rankine surface in tension and tension-compression is defined by Eq. (4). 

𝑓𝑅 = 𝜎𝑚 +
2

3
. 𝜎𝑒 . 𝑐𝑜𝑠(𝜃) − 𝑇. Ω𝑡 =  0. (4) 

cos(3𝜃) =
3√3

2
.

𝐽3

√𝐽2
3

. 
(5) 

Where 𝜃 is the similarity angle, defined by Eq. (5); 𝐽3 is the third deviatoric stress invariant; 𝑇 is 

the uniaxial tensile strength of concrete. 

While the value of 𝑓𝑅 is less than zero, the tensile and tensile-compressive behavior is admitted as 

linear elastic. When 𝑓𝑅 equals zero, the plastic regime starts, in which the cracking can be simulated, 

approximately, through increments of plastic strain. In this step, the Rankine surface moves according 

to the function Ω𝑡 of the adopted HSD model. 

The Drucker-Prager surface under compression is defined by Eq. (6). 

𝑓𝐷𝑃𝑐 =
𝜎𝑒

√3
+ 𝛽𝑐 . 𝜎𝑚 − 𝜎𝑌𝑐 . Ω𝑐 = 0. (6) 

Where 𝛽𝑐 , 𝜎𝑌𝑐 are the constants calculated from material parameters. 

While the value of 𝑓𝐷𝑃𝑐 is less than zero, the behavior in compression is admitted as linear elastic. 

When 𝑓𝐷𝑃𝑐equals zero, the plastic regime starts: the Drucker Prager surface moves according to the 

function  Ω𝑐 of the adopted HSD model. As a general rule, unless concrete is accepted as perfectly 

elastoplastic (without the adoption of any HSD model), all available HSD models are divided into two 

sections in the compression behavior: (i) hardening, which governs surface expansion, until the 

maximum compressive stress is reached; and (ii) softening, which governs the shrinkage of the surface, 

initiating the crushing process, after reaching the maximum compressive stress. 

The values of the constants 𝛽𝑐 e 𝜎𝑌𝑐 are calculated by Eq. (7) and (8). 

𝛽𝑐 =
√3. (𝑅𝑏 − 𝑅𝑐)

2. 𝑅𝑏 − 𝑅𝑐
. (7) 

𝜎𝑌𝑐 =
𝑅𝑏 . 𝑅𝑐

√3. (2. 𝑅𝑏 − 𝑅𝑐)
. (8) 

Where 𝑅𝑏 is the biaxial compressive strength of concrete [kN/cm²]. 

Depending on the HSD (hardening, softening and dilatation) model adopted, the functions Ω𝑐 and 

Ω𝑡 assume a certain format. Through these models, it is possible to simulate, approximately, the 
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phenomena of cracking, in the tensile behavior, and crushing, in the compressive behavior, through 

increments of plastic strain related to hardening and softening rules. ANSYS offers four types of HSD 

models. In this work, three of them (Linear, Exponential and Steel Reinforcement) were used, shown in 

Fig. 3. If no HSD model is adopted, the software admits the material as perfectly elastoplastic. 

 

Figure 3. HSD Models (adapted from [6]). 

In Fig. 3, the graphs represent the values of the softening and hardening functions in compression 

and tension (Ω𝑐 and Ω𝑡) in the ordinates, and the effective plastic strain (κ) in the abscissa. The other 

parameters indicated in the graphs are input parameters, which can be adjusted to change the format of 

the functions, i.e., the constitutive laws are partially customizable. The softening laws in tension allow 

the effect of the contribution of concrete between cracks (known as tension stiffening phenomenon) to 

be considered. 

2.2.2 Customized model via usermat 

It was also used, for purposes of results comparison, a customized model for concrete developed 

by Lazzari et al. [7], based on the Ottosen criterion [4], through the ANSYS subroutine called usermat, 

which can be programmed to customize a material model [6], [10]. The surface of Ottosen [4] is given 

by Eq. (9) and (10). 

𝑓(𝐼1, 𝐽2, cos(3𝜃)) = 𝛼.
𝐽2

𝑓𝑐𝑚
2 + 𝜆.

√𝐽2

𝑓𝑐𝑚
+ 𝛽.

𝐼1

𝑓𝑐𝑚
− 1 = 0. (9) 

𝜆 = {
𝑐1. cos (

1

3
𝑎𝑟𝑐𝑐𝑜𝑠(𝑐2. 𝑐𝑜𝑠(3𝜃)))    𝑓𝑜𝑟  𝑐𝑜𝑠(3𝜃) ≥ 0.          

𝑐1. cos (
𝜋

3
−

1

3
𝑎𝑟𝑐𝑐𝑜𝑠(−𝑐2. 𝑐𝑜𝑠(3𝜃)))   𝑓𝑜𝑟  𝑐𝑜𝑠(3𝜃) ≤ 0.

 (10) 

Where 𝑓𝑐𝑚 is the average compressive strength of concrete; 𝛼, 𝛽, 𝑐1 𝑎𝑛𝑑 𝑐2 are material parameters. 
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For the compressive behavior, the hardening law adopted is given by Eq. (11), illustrated in Fig. 

4(a), suggested by fib2010 model code [11].  

𝜎𝑐

𝑓𝑐𝑚
= − (

𝑘. 𝜂 − 𝜂2

1 + (𝑘 − 2). 𝜂
).  (11) 

Where 𝜎𝑐 is the compressive stress; 𝜀𝑐 is the compressive strain of concrete; 𝜀𝑐1 is the strain at the 

ultimate compressive stress; 𝜀𝑐,𝑙𝑖𝑚 is the ultimate compressive strain; 𝐸𝑐𝑖 is the initial tangent modulus 

of elasticity of concrete; 𝐸𝑐1 is the secant modulus of elasticity of concrete; 𝑘 = 𝐸𝑐𝑖/𝐸𝑐1 is the plastic 

number; and 𝜂 = 𝜀𝑐/𝜀𝑐1. 

For the tensile behavior, a model of distributed cracks was adopted, considering the tension 

stiffening effect through the softening law shown in Fig. 4 (b). Initially, the concrete is admitted as linear 

elastic until the tensile strength (𝑓𝑐𝑡𝑚) is reached. After the cracking occurs, the softening is governed 

by a decreasing line that intersects the vertical axis in the value of 𝛼. 𝑓𝑐𝑡𝑚 and the horizontal axis in the 

limit strain value (𝜀𝑐𝑡𝑢). In the present work, 𝛼=0.6 e 𝜀𝑐𝑡𝑢=0.001 were adopted. 

  

Figure 4. Constitutive laws for concrete in usermat model: (a) compression; (b) tension. 

2.2.3 Steel models 

The longitudinal reinforcement bars steel was modeled by von Mises plastification criterion for 

yielding with isotropic hardening. As hardening law, the constitutive model proposed by Gattesco [12], 

shown in Fig. 5 (a), was adopted. This model is divided into three stages of loading: (i) elastic-linear; 

(ii) yield plateau; (iii) hardening governed by parabolic curve, according to Eq. (12). 

 

Figure 5. Constitutive laws for steel reinforcement: (a) longitudinal bars; (b) stirrups. 

𝜎 = 𝑓𝑦 + 𝐸ℎ . (𝜀 − 𝜀ℎ). (1 −
𝐸ℎ . (𝜀 − 𝜀ℎ)

4. (𝑓𝑢 − 𝑓𝑦)
). (12) 

Where fy and fu are the steel yielding and ultimate strengths, 𝜀𝑦 is the strain at steel yielding stress, 

𝜀ℎ is the strain at the initial hardening, 𝜀𝑢 is the strain at ultimate stress, 𝐸 is the steel modulus of 



Matheus E. Benincá, Inácio B. Morsch 

CILAMCE 2019 

Proceedings of the XL Ibero-LatinAmerican Congress on Computational Methods in Engineering, ABMEC, 

Natal/RN, Brazil, November 11-14, 2019 

elasticity and e 𝐸ℎ is the tangent modulus of elasticity.  

On the other hand, stirrup steel was simplified as perfectly elastoplastic, as shown in Fig. 5 (b). 

2.3 Boundary Conditions 

The developed model admits the beams as simply supported and uses the symmetry condition. 

Thus, the nodes at the first support, on the lower face of the beam, had the displacements in y and z 

restricted; and the nodes at the central cross-section of the beam had the displacements in x and the 

rotations around y and restricted, as shown in Fig. 6. The total load is divided by two, due to the 

symmetry, and applied in the center of the span. 

 

Figure 6. Boundary conditions. 

3  Examples analyzed 

Two beams, experimentally tested by Bresler and Scordelis [8], named A1 and A3, were modeled. 

The DP-Concrete analyses were performed with the three HSD models previously described and with 

the two available surface combinations – DP-DP and DP-Rankine – in order to compare the results 

between them. In addition, analyses were performed with the usermat model, and the results were also 

compared with those obtained by Lazzari [13], who simulated numerically these beams. 

Figure 7 shows the geometry of the beams cross sections, the reinforcement arrangements and the 

data of the steel used, which were inserted in the numerical model. Figure 8 shows schematically the 

tests, which consisted in the application of concentrated loads on the midspan. 

 

Figure 7. Cross sections of the beams A1 and A3 (adapted from [8] and [13]). 
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Figure 8. Schematic drawing of testing setup (adapted from [8] and [13]). 

In addition to the data of Fig. 7, the values of  𝜀ℎ/𝜀𝑦=1.5 and 𝐸ℎ=1000 kN/cm², were used for the 

numerical steel modeling of the inferior longitudinal bars with the constitutive model of Gattesco [12], 

adjusted to the results of tensile tests performed and made available by Bresler and Scordelis [8]. 

Table 1 shows the data used for the concrete, and indicates which values were provided by Bresler 

and Scordelis [8], obtained from the tests performed by the authors; and which were calculated by 

analytical expressions, such as the initial modulus of elasticity (𝐸𝑐𝑖), that was calculated according to 

the model code fib2010 [11]. For the analysis with the usermat, this initial modulus of elasticity was 

used; and for the analysis with the DP-Concrete a reduced modulus was used, since the initial domain 

of the stress-strain curve is approximated by a linear function until the stress reaches the value of 0.4.𝑓𝑐𝑚. 

For this purpose, the value of 0.9.𝐸𝑐𝑖 was adopted in the two analyzed beams. 

The average tensile strength is calculated internally by the usermat model, automatically, as a 

function of 𝑓𝑐𝑘, from an equation provided by the fib2010 code [11]. On the other hand, for the DP-

Concrete model it is possible to provide the value of this resistance. In this case, since Bresler and 

Scordelis [8] provided the value of the tensile strength in bending (𝑓𝑐𝑡,𝑓) obtained in a test, 70% of this 

value was used as the average tensile strength, as recommended by NBR 6118 [14]. For this reason, the 

values used for the tensile strengths in the DP-Concrete model were slightly different from the values 

used in the usermat and Lazzari [13] models. 

Table 1. Concrete parameters used in numerical models. 

Parameter 
Beam 

Unit Equation/Source 
Numerical parameter 

A1 A3 DP Usermat 

𝑓𝑐𝑚 2.41 3.50 kN/cm² Bresler and Scordelis[8] 𝑅𝑐 𝑓𝑐𝑚 

𝑓𝑐𝑡,𝑓 0.39 0.43 kN/cm² Bresler and Scordelis[8] - - 

𝑓𝑐𝑡𝑚 0.27 0.30 kN/cm² 0.7. 𝑓𝑐𝑡,𝑓[14] 𝑅𝑡 or 𝑇 - 

𝑓𝑐𝑘 1.61 2.70 kN/cm² 𝑓𝑐𝑚 − 0.8 [11] - 𝑓𝑐𝑘 

𝑓𝑐𝑡𝑚 0.19 0.27 kN/cm² 0.03. (10. 𝑓𝑐𝑘)2/3[11] - 𝑓𝑐𝑡𝑚 

𝑓𝑐2𝑚 2.83 4.08 kN/cm² 𝑓𝑐𝑚. (1.2 − 𝑓𝑐𝑚/100)  [11] 𝑅𝑏 𝑓𝑐2𝑚 

𝐸𝑐𝑖 2883 3264 kN/cm² 2150. (𝑓𝑐𝑚)1/3 [11] - 𝐸𝑐𝑖 

𝐸𝑐 2595 2938 kN/cm² 0.9. 𝐸𝑐𝑖 𝐸𝑐 - 

 

The parameters used for the HSD models (see Fig. 3) are presented in Table 2. In order to calculate 

the values of the effective plastic strains at the points considered, the elastic strains were discounted 

from the total strains. The total strain at the maximum stress point was assumed to be 2.1‰, and the 

ultimate total strain was assumed to be 3.5‰. Figure 9 shows the numerical models of the beams A1 

and A3. 
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Table 2. Parameters used in HSD models. 

Linear Exponential Steel Reinforcement 

𝜅𝑐𝑚 0.0021 − 𝑅𝑐/𝐸𝑐 𝜅𝑐𝑚 0.0021 − 𝑅𝑐/𝐸𝑐 𝜅𝑐𝑚 0.0021 − 𝑅𝑐/𝐸𝑐 

𝜅𝑐𝑟 0.0035 − Ω𝑐𝑟. 𝑅𝑐/𝐸𝑐 𝜅𝑐𝑢 0.0035 − Ω𝑐𝑢. 𝑅𝑐/𝐸𝑐 Ω𝑐𝑖 40% 

Ω𝑐𝑖 40% Ω𝑐𝑖 40% Ω𝑐𝑟 10% 

Ω𝑐𝑟 65% Ω𝑐𝑢 65% 𝜅𝑡1 0.0001 

𝜅𝑡𝑟 0.001 Ω𝑐𝑟 40% 𝜅𝑡2 0.00011 

Ω𝑡𝑟 2% Ω𝑡𝑟 2% 𝜅𝑡3 0.001 

- - - - Ω𝑡1 60% 

- - - - Ω𝑡2 2.1% 

- - - - Ω𝑡3 2% 

 

 

Figure 9. Finite element models for beams A1 and A3. 

It should be noted that the HSD Exponential model has an extra input parameter for the tensile 

behavior, besides those shown in Table 2, which is the specific fracture energy per area (𝐺𝑓𝑡), in 

kN.cm/cm². From some tests performed on simpler models, it was verified that this parameter is 

dependent on the elements size. Through the algebraic manipulation of equations provided by the 

software manual [6], Eq. (13) was deduced. 

𝐺𝑓𝑡 = −
�̅�. 𝑅𝑡 . 𝐿𝑖

ln(Ω𝑡𝑟)
. (13) 

Where �̅� is the effective plastic strain when the HSD function in tension reaches the residual stress 

(see Fig. 3); 𝐿𝑖 = √𝑉/83
, and 𝑉 is the element volume. In this work �̅�=0,0018 was assumed, and, from 

this value, 𝐺𝑓𝑡was calculated with Eq. (13), considering the elements volumes of each beam analyzed. 

4  Results and discussion 

Figures 10 and 11 present the obtained results by the present work, with the different models used, 

of the total load applied versus midspan deflection relationships for the beams A1 and A3, along the 

experimental results by Bresler and Scordelis [8] and numerical results by Lazzari [13].  
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In the experimental test, the beam A1 presented shear compression failure, with crushing of the 

compressed diagonals due to shear. However, the beam A3, with a significantly larger span, failed by 

crushing of the compressed zone in the midspan, due to bending [8]. 

 

Figure 10. Load-deflection curve – Beam A1. 

 

 

Figure 11. Load-deflection curve – Beam A3. 

It is observed that the models with the combination of surfaces DP-Rankine that used Linear and 

Exponential HSD models obtained very good results for beam A1. For beam A3, these two models 

captured well the response at the initial loading, as well as the beginning of the cracking phenomenon 
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and the transition to stage 2, but presented differences slightly larger than the other models in the final 

stage of loading, although relatively small. In general, however, analyzing the two graphs, it is possible 

to affirm that, among the DP-Concrete models available, these two options presented the best results for 

the analyzed beams. It should be noted that the HSD Linear model has the advantage that its input data 

are mesh independent, unlike the HSD Exponential model, that uses the mesh dependent area-specific 

fracture energy (𝐺𝑓𝑡). The HSD Steel Reinforcement model cannot be applied to the DP-Rankine 

combination, being restricted to the DP-DP combination [6]. 

The three models with the combination of surfaces DP-DP, which used the Linear, Exponential and 

Steel-Reinforcement HSD models, presented very similar results to each other. They simulated very 

well the behavior of beam A3 throughout the analyzed domain but failed to capture the final stage of 

loading of beam A1, when the compressed diagonals crushed in the experimental test. 

The numerical model of the present study that used the usermat presented results close to those of 

the DP-Concrete models with DP-DP combination, and practically reproduced the numerical results 

obtained by Lazzari [13], who also used the same usermat. The subtle differences that are observed 

occur in function of the different meshes adopted and the constitutive model for the steel of the 

longitudinal reinforcement bars. 

The perfect elastoplastic models (EPP), as expected, overestimated the strength of beam A1, since 

they do not use softening rules in tension and compression, and therefore do not adequately simulate 

cracking and crushing. In any case, these models are interesting within the logic of gradual refinement 

of the results, since they serve as superior limiters for the beam response and can be very useful in 

preliminary tests and analyses. 

Cracking: In the DP-Concrete model, cracking is simulated in a simplified way by plastic strains, 

which are related to a softening rule in tension. Therefore, one way of verifying the evolution of cracking 

in concrete is to visualize the plastic strains of the model. Figure 12 shows the equivalent plastic strains 

of the beam A3, at the ultimate load, obtained by the DP-Rankine model with HSD Exponential, and 

the last experimental cracking pattern observed experimentally, as presented by Bresler and Scordelis 

[8]. It is verified that the numerical model is able to capture the cracking state in a global way, correctly 

indicating the regions in which this phenomenon occurs, although it is not able to capture localized 

effects with great precision, which was already expected, since works within the logic of distributed 

cracking models. 

 

Figure 12. Beam A3 experimental cracking pattern [8], and plastic strains from numerical simulation. 
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5  Conclusions 

A finite element numerical model was developed in ANSYS software, version 19.2, for the 

simulation of reinforced concrete beams, using a new material model, called DP-Concrete, made 

available by the software in its most recent versions and consisting of a combination of two plastification 

surfaces: one for tension (Drucker-Prager or Rankine) and one for compression (Drucker-Prager). The 

obtained results with this model showed good correlation with the experimental results of two beams 

tested by Bresler and Scordelis [8]. The two possibilities of surface combinations (DP-DP or DP-

Rankine) and three HSD models provided by the software were used. There were differences between 

the results obtained with the two combinations, especially in the analysis of beam A1, for which the 

model with the DP-Rankine combination presented better results in the vicinity of the ultimate load. 

Analyses were also performed with a customized material model, based on the surface of Ottosen 

[4], and its results were similar to those obtained with the DP-Concrete model, especially with the DP-

DP combination.  

Finally, it is concluded that the DP-Concrete model was able to properly simulate the two analyzed 

beams, and has great potential for use, since it employs two very simple surfaces (Rankine and Drucker-

Prager) in its formulation, which facilitates the convergence process of the non-linear solution. In 

addition, the model proved to be quite versatile and flexible, as it offers two options of surface 

combinations and different HSD models with adjustable parameters. In this way, it is possible to work 

within the logic of gradual refinement of results, gradually incorporating nonlinearities into the model, 

comparing results and developing a more reliable numerical model. 
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