
 

 

CILAMCE 2019 

Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC, 

Natal/RN, Brazil, November 11-14, 2019. 

AN EFFICIENT LOCKING-FREE COROTATIONAL BEAM 
 FINITE ELEMENT 

Jéssica G. S. A. Meireles 

Regiane P. de Barros 

Eliseu Lucena Neto 

Francisco A. C. Monteiro 

jessicagmeireles@gmail.com 

regianefp@hotmail.com 

eliseu@ita.br 

facm@ita.br 

Instituto Tecnológico de Aeronáutica 

Praça Marechal Eduardo Gomes, 50, 12228-900, São José dos Campos, SP, Brazil 

Abstract. An efficient and accurate locking-free corotational beam finite element is developed in this 

work. The element is locally linear, with the displacement varying according to the Timoshenko 

assumption and the difference of electric potential varying linearly through each piezoelectric layer 

thickness. The shape functions are appropriately derived from the exact solution of the homogeneous 

form of the linear equilibrium equations written in terms of displacements, rotations and differences of 

electric potential. Since the resulting 2-node element has the same degrees of freedom as the 

associated purely mechanical beam element (two displacements and one rotation per node), it can be 

directly plugged into an element-independent corotational algorithm to suitably analyze piezoelectric 

plane frames under small strains but large rotations. A consistent incremental-iterative technique based 

on the Newton-Raphson method is employed for the solution of the nonlinear equilibrium equations. 

Numerical examples that demonstrate the efficiency and large rotation capability of the corotational 

formulation are presented. The element results are validated by exact solutions available in the 

literature. Very good agreement is found in all cases. 
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1  Introduction 

Smart materials are those that exhibit some type of coupling between different physical domains 

and may have their characteristics modified by controlled changes of state variables that characterize 

the mechanical, electrical, thermal and chemical domains, for example. Thus, piezoelectric materials 

are classified as smart because they exhibit coupling between the mechanical and electrical domains 

[1]. Piezoelectrics, available in the form of thin sheets of ceramic or polymer, are the most popular and 

practical smart materials due to their coupled electromechanical properties, that make them suitable 

for use as distributed sensors and actuators to control structural response. 

In the sensor application, strains can be determined from measurements of induced electric 

potential (direct piezoelectric effect), whereas in actuator applications strains can be controlled 

through the input of appropriate electric potential (converse piezoelectric effect). The technology of 

self-monitoring and self-controlling smart structures, by integrating distributed piezoelectric sensors 

and actuators, provides the possibility for the development of light-weight and rigid structures. 

Linear analysis of smart structures is much more widespread in the literature than the more 

sophisticated non-linear analysis [2]. However, the contribution of geometric nonlinearities may be 

crucial because external excitations can lead to this type of structure at high rotations, even under 

small strains, given its inherent flexibility [3]. Therefore, a linear analysis may be insufficient to 

accurately estimate the voltage measured by the piezoelectric sensors [3,4,5], impairing the control of 

these structures by the restorative voltage to be provided in the actuators. Non-linear models of 

piezoelectric beams under large rotations (but not totally unrestricted) are more widespread in the 

literature [4-6] than models with free restriction rotations [2]. 
Structures under geometric nonlinearity caused by large rotations, but restricted to small strains, can 

be described by the corotational formulation, as explained below. The motion of a solid in space is 

illustrated in Fig. 1, for didactic purposes, by a clamped–free beam divided into four finite elements 

and subjected to a moment-load. Suppose we want to determine the configuration �� of the element 

near the free end when the acting load has magnitude ��. The non-linear nature of the problem 

requires that the solution be obtained in steps: we know the configurations ��, ��, … , ���� to then 

determine the configuration ��. Four of these configurations are indicated in Fig. 1: the initial 

configuration ��, an intermediate configuration ��, the configuration ���� and the current 

configuration �� to be determined. 

If in the incremental-iterative process for the determination of �� the equations are established by 

reference to a known configuration, a Lagrangian description is being used: in the total Lagrangian 

description �� is the reference configuration; in the updated Lagrangian description the reference is the ���� configuration. Cescotto et al. [7] suggest the ‘generalized’ name for the description with 

reference in an intermediate configuration ��, which has as particular cases the total Lagrangian 

description (�� = ��) and the updated one (�� = ����). The Eulerian description, which would use the �� configuration itself as a reference, has limited use in the mechanics of solids because �� is an 

unknown configuration in the solution process. In geometrically linear problems, the use of the total 

Lagrangian description is tacit due to the proximity between �� and ��. 

For large rotations under small strains, the corotational finite elements have shown a certain 

superiority comparing to the elements that use Lagrangian descriptions. Such elements adopt an 

undeformed auxiliary configuration ���, very close to the ��, which is obtained exclusively by the 

rigid-body motion of the element of its configuration ��. No portion of rigid-body motion exists 

between the ��� and �� configurations so that any displacement between these configurations is 

converted into strain. To identify ��� with this property would be ideal for the corotational 

description, which has its origin in the polar decomposition theorem [8,9]. Using both configurations �� and ��� as a reference, the corotational description can not, strictly speaking, be classified as 

Lagrangian or Eulerian, as it sometimes appears labeled in the literature. 

For a better understanding of why the simultaneous use of the �� and ��� configurations is so 

essential to the success of the corotational finite elements, realize that we can  approximate  ��� of  ��  
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Figure 1. Equilibrium configurations ��, ��, �� and auxiliary configuration ��� 

as much as we want by reducing the size of the element with the refinement of the mesh. Since strain 

is measured relative to ���, and not to �� as it does, for example, the total Lagrangian formulation 

[10], we can adopt a simple linear element to describe the motion between ��� and ��. All the 

geometric non-linearity that occurs in the complete motion between �� and �� is excluded from the 

local formulation (between ��� and ��) of the element. It is the relationship that we establish between 

the nodal displacement increments between the ��� and �� configurations and the �� and �� 

configurations that will account for the geometric nonlinearity in the formulation.  

Argyris [11] was a pioneer in the formulation of finite elements that is based on the 

decomposition of the movement in the rigid portion and in the one that produces strain. This ‘natural 

approach’, as it has come to be called, is described in detail in [12]. Similar ideas were also used by 

Wempner [13], Belytschko and Hsieh [14], Oran [15-16] and Oran and Kassimali [17]. It is in the 

work of Belytschko and Glaum [18] that the name ‘corotational’ appears for the first time to designate 

the existence of a local system of axes that moves and rotates continuously with the element. Since 

then, most of the articles published on the subject have adopted this terminology. 

Using a total Lagrangian description, Mukherjee and Chaudhuri [4,5] propose nonlinear finite 

element models for piezoelectric beams under large rotations, but not totally unrestricted. In a similar 

description, Cardoso and Fonseca [2] bring a rigorous treatment of geometric non-linearity and show 

examples of beams and plane frames using a piezoelectric version of the isoparametric 8-node element 

under plane stress found in [19]. Differently from those who deal with a corotational formulation, in 

the work of [2], the measurements of stress, strain and electrical quantities are carefully defined about 

the �� configuration taking into consideration large transformations. 

Although we have not found in the literature any corotational model of piezoelectric beams, we 

find the works of Rama et al. [20] and Marinković and Rama [21] about corotational models of 

piezoelectric shells. They are emphatic in drawing attention to the difficulty of considering strictly the 

follower nature of the load induced by actuators, where both the direction and the intensity of the load 

changes with each new configuration of the structure. They suggest, based on recommendations by 

[19], that the solution of the nonlinear problem be done in small increments accompanied by the 

appropriate updating of this type of load to obtain sufficiently precise results. 

We developed in this paper a corotational model of finite elements for piezoelectric plane frames. 

A linear element is proposed to describe the motion between the ��� and �� configurations, whose 

displacement varies according to Timoshenko assumption and the electric potential has linear variation 

along with the thickness of each piezoelectric layer. Unlike [2], the proximity between ��� and �� 

configurations avoids the use of far-reaching measures of stress, strain and other quantities, thus 

justifying the adoption of the linear element. The interpolation functions of the element are identified 

from the general solution of the homogeneous part of the system of equations that describes the linear 

problem. Therefore, it is a superconvergent element [22-24]. That is, the element can provide exact 

nodal results for mechanical quantities (displacement, rotation and stresses) in linear static problems, 
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Figure 2. Timoshenko beam configuration 

regardless of the number of elements used in the mesh or applied loads. Nothing is yet known about 

the accuracy of the electrical quantities obtained by such a type of element. 

Since the proposed element has two nodes, with the same degrees of freedom of the 

corresponding purely mechanical element (two displacements and one rotation per node), it can be 

easily inserted into a corotational algorithm that enables it to deal with piezoelectric plane frames 

under large rotations, but small strains. Thus, any additional complexity brought about by 

piezoelectricity is treated locally. An incremental-iterative approach based on the Newton- Raphson 

method is then employed for the solution of the nonlinear discrete problem. Contrary to the procedure 

adopted by [20,21], all the linearizations required by the Newton-Raphson method are analytically and 

consistently formulated, including those related to the follower nature of the piezoelectrically induced 

loads. Numerical examples illustrate the efficiency of the developed model. 

2  Fundamentals 

The beam of length 	 shown in Fig 2 has a pure mechanical core layer (width 
, thickness 2ℎ), 

and continuous piezoelectric layers attached with at the bottom (width 
�, thickness �) and at the top 

(width 
�, thickness �) of the beam. Under the linear kinematic assumptions of Timoshenko 

formulation, the displacement components of any (particle) point on the beam can be found by  ����, �� = ���� + �����        ����, �� = ���� �1� 
where ����, ���� are the axis displacements in the �, � directions, and ���� is the rotation of the 

cross-section. The potential value along the bottom �� = 1� and top �� = 3� of each piezoelectric 

layer may be expressed assuming a linear map [25] 

  ���, �� = �1 − ���!"! # �$��� + ���!"! �$%���� �2� 
through the thickness, where �$��� and �$%����  are the potential value at the bottom of the �-layer 

(� = �$) and at its top (� = �$%� = �$ + $) respectively. 

According Santos [10], the principle of virtual work applied to the beam depicted in Fig 3 states 

that 

 − & �'()* + �(+ + ,(- + 	�(�.� + 	�(�.��/�0�                            + & 12�(� + 2�(�30� /� + ∑ 15��(�� + 5��(�� + ��(6�3 = 08�9�  �3� 
with the generalized strains  )* = �′        + = �′        - = �′ + �        �.$ = ��$%� − �$� $⁄  �4� 
being the energy conjugates of the generalized stresses ', �, ,, 	$; the quantity 6� = −��; and a 

comma indicates differentiation with respect to �. Constitutive relations can be expressed in the form 

y
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Figure 3. Free-body beam diagram 
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with constants G�Q involving both geometry and material properties of the beam layers. Their values 

can vary depending on the constitutive model version. Herein, on assume the version adopted by [26-

29]. Explicit expressions for the entries G�Q can be found in [10,30]. 

After integration by parts of Eq. (3), the fundamental lemma of variational calculus [31] leads to  'R + 2� = 0        ,R + 2� = 0        �R − , = 0        	� = 0        	� = 0 �6� 
in 0 < � < 	. In these relations, equations involving the quantities ', �, , establish the mechanical 

equilibrium of the beam whereas the remaining ones state the Gauss law for each piezoelectric layer. 

3  Finite Element 

3.1 Superconvergent formulation 

The foremost requirement for formulating a superconvergent element is to derive its shape 

functions. Following [22-24], such functions can be identified from the general solution of  'R = 0        ,R = 0        �R − , = 0        	� = 0        	� = 0 �7� 
which are the homogeneous part of Eq. (6), i.e., the governing differential equations of the associated 

linear problem. Substitution of Eq. (5) and Eq. (4) into Eq. (7), and integrating the resulting relations 

yields 

   
 G���R + G�8βR + G�H�.� + G�I�.� = V�                                        G����R + β� = V8             G�8�R + G88βR + G8H�.� + G8I�.� = V8� + V�                 G�H�R + G8HβR + GHH�.� = 0                 G�I�R + G8IβR + GII�.� = 0

  �8� 
where V� are integration constants. 

If the bottom/top layers are piezoelectric actuators then the last two equations of the governing 

differential system vanish, and the respective prescribed electric potential differences �.�, �.� are 

known quantities. In this way, one can accordingly rewrite Eq. (8) in the form 

x

y
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qy

F , ux2 2

F , vy2 2
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F , vy1 1
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G���R + G�8βR + ��G�H�.� + ��G�I�.� = V� − �X                                     G����R + β� = V8            G�8�R + G88βR + ��G8H�.� + ��G8I�.� = V8� + V� − �Y      ���G�H�R + G8HβR + GHH�.�� = 0      ���G�I�R + G8IβR + GII�.�� = 0

  �9� 
If a piezoelectric layer � has a sensing configuration then �$ = 1, else �$ = 0. A sensing layer 

configuration is consistently taken into account by introducing the relations derived from Gauss law 

into the left hand side (LHS) of equilibrium equations, and setting to unity the respective control 

parameter �$. The terms 

 �X = �1 − ���G�H�.� + �1 − ���G�I�.��Y = �1 − ���G8H�.� + �1 − ���G8I�.� �10� 
appearing on the right hand side (RHS) of equilibrium equations only relate to induced potential 

effects. 

In order to consistently determine the field variables �, � and �, it is necessary to remove from 

the RHS of Eq. (9) the terms �X, �Y, because of the initially required homogeneous form attribute of 

equilibrium relations. After have condensed the electrical relationships within the mechanical ones, 

integration of the resulting equation system leads to 

 [���\ = Δ��^_ �11� 
where _ is a vector of integration constants and 

 ^ =
DEE
EF G̅88� − �8 G̅�8�8 −G̅�8� Δ 0 0�8 G̅�8�8 abcc � − �d G̅���� − �8 G̅���8 0 −Δ� Δ

−G̅�8� �8 G̅���8 G̅��� 0 Δ 0MNN
NO         Δ = G̅��G̅88 − G̅�88  �12� 

with 

 
G̅�� = G�� − �� befgbff − �� behgbhh           G̅�8 = G�8 − �� befbgfbff − �� behbghbhhG̅88 = G88 − �� bgfgbff − �� bghgbhh

 �13� 
Imposition of the nodal displacements, as suggested by Fig. 4, yields  _ = Δî�jk �14� 

where 

 î =
DE
EE
EE
EF 0 0 0 Δ 0 00 0 0 0 0 Δ0 0 0 0 −Δ 0G̅88	� − �8 G̅�8	�8 −G̅�8	� Δ 0 0�8 G̅�8	�8 abcc 	� − �d G̅��	�� − �8 G̅��	�8 0 −Δ	� Δ

G̅�8	� − �8 G̅��	�8 −G̅��	� 0 −Δ 0MN
NN
NN
NO

        k =
=>
?
>@

����6��8�868A>
B
>C =

=>>
?
>>@

��0���0�−��0���	����	��−��	��A>>
B
>>C �15� 

Thus, 
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Figure 4. Element nodal displacements 

 [���\ = ^î��k = lmXnmonmYn
pk �16� 

with mX, mo, mY being the interpolation functions that suitably provide superconvergent properties. 

Following Meireles [30], the condensed mechanical-electrical equilibrium equation reads 

 (kn &qmXR 1G̅��mXRn + G̅�8mYRn3 + mYR 1G̅�8mXRn + G̅88mYRn3 + G��1moR + mY31moRn + mYn3r/�k                         −(kn &12�mX + 2�mo + �XmXR + �YmYR 3 /� − (kns = 0  �17� 
The vector s collects nodal reaction forces. Since the components of (k are arbitrary and independent 

then  t = u + s �18� 
where the vectors 

 t = vk        u = & 12�mX + 2�mo + �XmXR + �YmYR 30w� /� �19� 
gather the nodal internal and nodal equivalent forces, respectively. 

The element stiffness matrix 

 v = & qmXR 1G̅��mXR + G̅�8mYR 3 + mYR 1G̅�8mXR + G̅88mYR 3 + G̅��1moR + mY31moRn + mYn3r/�0w�  �20� 
can be analytically expressed as 

 v = 	���

DE
EE
EE
FG̅�� 0 −G̅�8 −G̅�� 0 G̅�82x	��� x 0 −2x	��� x�� G̅�8 −x �8G̅�� 0 −G̅�8sym 2x	��� −x�� MN

NN
NN
O

        x = 6	� � �8bcc + b̅ee0wg
∆

#�� �21� 

with 

 �� = x8 yb̅ee0wg�d∆g �4∆ + G̅�88 � + b̅ggbcc �8b̅ee�∆ + Hbcc0wg + �b̅gg#z
�8 = x8 yb̅ee0wg�d∆g �2∆ − G̅�88 � − b̅ggbcc �8b̅ee�∆ + Hbcc0wg − �b̅gg#z �22� 

If the quantities 2�, 2�,  �X and  �Y are constant along the element length then 

θ1

u1 u2

L0
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Figure 5. Element kinematics and coordinate systems 
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3.2 Corotational formulation 

The main idea in this formulation is to decompose the motion of the element into a rigid body and 

pure deformational parts, through the use of a reference system, which continuously rotates and 

translates with the element. The deformational response is captured at the level of the local reference 

frame, whereas the geometric nonlinearity induced by the large rigid-body motion, is incorporated in 

the transformation matrices relating local and global internal force vectors and tangent stiffness 

matrices. Assuming the pure deformation part to be small, a geometrical linear theory can be used in 

the local system. Using the notations defined in Fig. 5, the relations between the components of 

deformational nodal (corotational) displacements k{ = |6� �8 68}n in the local frame and the 

components of global displacements k~ = |�� �� Θ� �8 �8 Θ8}n are [30]  �8 = 	 − 	�        6� = Θ� − �� − ���        68 = Θ8 − �� − ��� �24� 
where 

 	 = ��	� cos �� + �8 − ���8 + �	� sin �� +�8 − ���8��/8� = tan����	� sin �� +�8 − ����	� cos �� + �8 − ������ �25� 
The transformation matrix � between the global displacements vector and the local deformational 

displacements vector is obtained by 
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 (k{ = �(k~        � = �k��k� = l��n�8n��n
p �26� 

with 

        ��n = 	��|−sin � cos � 	 sin � −cos � 0}n�8n = |−cos � −sin � 0 cos � sin � 0}n       ��n = 	��|−sin � cos � 0 sin � −cos � 	}n �27� 
By equating the internal virtual work in the local and global systems, the equilibrium relationship 

between the local and global systems takes the form  ψ~�k~� = t~ − u~ − s~ = �n�t{ − u{ − s{� = �nψ{�k{� = � �28� 
Assuming that the nodal reaction forces are independent of the element motion then �s~ �k~ =⁄ �, which implies 

 v" = �ψψψψ��k� = ����t���k� − �u��k� = �n �t��k� + ∑ �{� ����k���9� − �u��k� �29� 
where �{� are the components of 

 t{ = v{k{ = 	��� l	��� G̅�8 	��8G̅�� −G̅�8sym 	���
p [6��868\ = ��{��{8�{�� �30� 

According Meireles [30], the derivatives ∂t{ ∂k~⁄ , ∂�� ∂k~⁄  and ∂u~ ∂k~⁄  can be written as 

 �t��k� = v{�       ��e�k� = ��c�k� = 	�8��8�n + ��8n�        ��g�k� = 	����n         �u��k� = �X ��g�k�                                                                   �31� 
with 

 � = |sin � −cos � 0 −sin � cos � 0}n                                                                   �32� 
Assemblage of the global equilibrium relations may be done, as usual, by  ΨΨΨΨ = ∑ψψψψ~ = − ∑1v"∆k~3 = −�∆� = � − �� + ���"� �33� 

where  � = ∑ v"        ∆� = ∑ ∆k~        � = ∑ t~         � = ∑ u~ �34� 
Equilibrium is then reached by vanishing the global residual forces ΨΨΨΨ��� = �, which can be 

iteratively solved by the Newton method. 

4  Numerical Tests 

Piezoelectric cantilevers beams in the sensing configuration are investigated. The length 	 of the 

beams is equal to 200 mm. They consist of a core layer (width 
 = 25 mm, thickness ℎ = 1 mm) 

made of aluminum (� = 70.3 GPa, ν = 0.345) and continuous layers of PZT-5H attached at the 

bottom (width 
� = 
, thickness £� = ℎ) and top (width 
� = 
, thickness £� = ℎ) of the host 

structure. 

Material piezoelectric constitutive entries are [32]: ��� = �88 = 126 GPa, ��8 = 79.5 GPa, ��� = �8� = 84.1 GPa, ��� = 117 GPa, �dd = ���� − ��8�/2, �HH = �II = 23 GPa, ¤�� = ¤�8 =−6.5 C/m8, ¤�� = 23.3 C/m8, ¤�I = ¤8H = 17 C/m8,  ξ� = ξ8 = 15.05 nC8/Nm8 and ξ� =13.02 nC8/Nm8. The poling axis of the piezoelectric layers is aligned along the through-the-thickness 

direction. 
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Figure 6. Cantilever beam subject to a moment-load 

Nonlinear analyses are carried out employing a full Newton-Raphson solution strategy assuming 

as starting point the (natural) undeformed configuration. Converge criteria control are set by  §¨� �¤©, ¤ª� ≤ 10�� �35� 
where  ¤©8 = ∆¬$n∆¬$ ¬$%�n ¬$%�⁄         ¤ª8 = ΨΨΨΨ$nΨΨΨΨ$ �� + ���"�$%�n �� + ���"�$%�  �36� 
At the �-th iteration, the quantity ¤© is the ratio between the Euclidean norm of incremental-iterative 

nodal displacement Δ¬ and the predicted one ¬, ¤ª is the ratio between the Euclidean norm of 

residual force vector ΨΨΨΨ and the predicted vector � + ���". It is interesting note that all numerical 

pitfalls due to the huge difference magnitude order involving the mechanic and piezoelectric dielectric 

constants [2,33] are absent in the proposed formulation, because only mechanical degrees of freedom 

are concerned with the solution. 

4.1 Cantilever beam with moment at free end 

The cantilever beam of Fig. 6 is subjected to a moment �i at the free end. The displacement and 

rotation components at the free end are identified by � = −��	�,  � = ��	� and Θ = 6�	� whose 

respective exact values ��, �� and Θ� are given by Santos [10]. Table 1 presents these values for �i	 2® �̄⁄ =  0.5, 1, 1.5, 2 which correspond to the deformed beam in half turn (semicircle), one turn 

(circumference), one and a half turns, and two turns, respectively. Parameter �̄ is defined by 

 �̄ = 8̄ + °�±� + °H±�        ±� = ncnf%nenhncg�ngnh         ±� = nenc%ngnfncg�ngnh  �37� 
where 

 °� = G8H + begbefbee         °8 = GHH + befgbee         °� = befbehbee       °H = G8I + begbehbee         °I = GII + behgbee         8̄ = G88 − beggbee
 �38� 

Table 2 shows the parameters �X = �/��, �o = �/��, �² = Θ/Θ� for successively refined meshes. In 

geometrical terms, the discretization with only 2 elements makes the solution impossible. It is 

observed a good accuracy of the corotational models with 8 and 16 elements. 

To evaluate the potential difference in a given element we proceed as follows. From Eq. (16), 

 ³��´ = µmXnmYn¶k = µmX{nmY{n ¶k{ �39� 

U

Θ

V
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Table 1. Exact values ��, �� and Θ�: cantilever beam with moment at free end �i	 2® �̄⁄  �� 	⁄  �� 	⁄  Θ� 

0.5 1 2/π π 

1 1 0 2π 

1.5 1 2/3π 3π 

2 1 0 4π 

Table 2. Obtained results: cantilever beam with moment at free end 

# Element �i	 2® �̄⁄  �X �o �²  
 0.5 1.000 1.111 1.000 

2 1 1.000 ∗ 1.000 

 1.5 - - - 

 2 - - - 

 0.5 1.000 1.026 1.000 

4 1 1.000 ∗ 1.000 

 1.5 1.000 1.275 1.000 

 2 1.000 ∗ 1.000 

 0.5 1.000 1.007 1.000 

8 1 1.000 ∗ 1.000 

 1.5 1.000 1.060 1.000 

 2 1.000 ∗ 1.000 

 0.5 1.000 1.002 1.000 

16 1 1.000 ∗∗ 1.000 

 1.5 1.000 1.015 1.000 

 2 1.000 ∗∗∗ 1.000 ∗ �̧ ¹"º���» = 0        ∗∗ �̧ ¹"º���» = 1 × 10�½         ∗∗∗ �̧ ¹"º���» = 3 × 10�½ 

where mX{ and mY{ are respectively mX and mY without the first, second and fifth components. Using 

the last two relations of Eq. (9), 

 ¾�.� �.� ¿ = − lbefbff
bgfbffbehbhh
bghbhh

p À�R �R Á = − lbefbff
bgfbffbehbhh
bghbhh

p µm′X{nm′Y{n ¶k{ �40� 
From Eq. (16) 

 mX{R = Â
∆0w =>?

>@− b̅eg8 �	� − 2��
∆Â− b̅eg8 �	� − 2��A>B

>C        mY{R = Â
∆0w =?

@ 8∆bcc0w + b̅ee� �2	� − 3��0− 8∆bcc0w + b̅ee� �	� − 3��AB
C �41� 

Finally, 

 ¾�.� �.� ¿ = − Â
∆0w lbefbff

bgfbffbehbhh
bghbhh

p =?
@ ∆Â �8 − b̅eg8 �	� − 2���6� − 68�0y 8∆bcc0w + b̅ee� �2	� − 3��z 6� − y 8∆bcc0w − b̅ee� �	� − 3��z 68AB

C �42� 
where �8,  6� and  68 are evaluated using Eq. (24). In this example, the obtained results 

 Ãe ÄeÅi �.� = Ãe ÄcÅi �.� = 1 �43� 
match the exact solution given by Santos [10] regardless of the mesh adopted. 
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Figure 7. Cantilever beam subject to a transverse load 

4.2 Cantilever beam with transverse load at free end 

The beam analyzed in the first example is now considered subjected to the transverse force 

indicated in Fig. 7. The components of displacement and rotation at the free end are identified by � = −��	�,  � = ��	� and Θ = 6�	�, whose respective exact values ��, �� and Θ� are given in Table 

3 for Æo	8 �̄ =⁄  1, 4, 7, 10. Parameter �̄ is defined by 

 �̄ = G88 − bgfgbff − bghgbhh �44� 
The table also contains, in its last column, the exact value of the parameter 

 Ф = bff0bgf �.� = bhh0bgh �.� �45� 
at the clamped end. 

These exact values are determined by Santos [10] by elliptic integrals of first and second species, 

after neglecting the transverse shear deformation (beam Euler-Bernoulli) and the axial deformation of 

the beam axis. Thus, they are used herein only as reference values. Table 4 shows the obtained values 

of �X = �/��, �o = �/��, �² = Θ/Θ�, �� = Ф�/Ф�, �� = Ф�/Ф� for successively refined meshes. 

Table 3. Exact values ��, ��, Θ� and Ф�: cantilever beam with transverse load at free end 

Æo	8 �̄⁄  �� 	⁄  �� 	⁄  Θ� Ф� 

1 0.056 0.302 0.461 0.944 

4 0.329 0.670 1.121 2.684 

7 0.473 0.767 1.335 3.690 

10 0.555 0.811 1.430 4.450 

5  Conclusions 

The corotational finite element model developed for piezoelectric plane frames has its efficiency 

and large rotations capability proven by numerical examples. The element equation and all the 

linearizations required by the Newton-Raphson method are analytically and consistently formulated, 

including those related to the follower nature of the piezoelectrically induced loads. The voltage 

sensed by piezoelectric sensors, which are important data for their control of these structures, is 

completely different from the voltage predicted by linear model. The superconvergent linear element 

developed to describe the motion between ��� and �� has interpolation functions dependent on the 

mechanical properties of the material and the electrical properties of the sensor layers. 

Q
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U
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Table 4. Obtained results: cantilever beam with transverse load at free end 

# Element Æo	8 �̄⁄  �X �o �²  ��  ��  
 1 0.962 1.007 1.006 1.001 1.003 

2 4 0.990 1.031 1.026 0.997 1.004 

 7 1.014 1.041 1.032 0.982 0.993 
 10 1.023 1.046 1.033 0.964 0.978 

 1 0.990 1.002 1.001 1.000 1.001 

4 4 0.998 1.007 1.006 0.999 1.003 

 7 1.000 1.009 1.006 0.997 1.003 

 10 1.002 1.011 1.007 0.994 1.003 

 1 0.998 1.001 1.000 1.000 1.000 

8 4 1.000 1.002 1.001 0.999 1.001 

 7 1.000 1.003 1.001 0.998 1.002 

 10 1.000 1.003 1.002 0.997 1.002 

 1 1.000 1.000 1.000 1.000 1.000 

16 4 1.000 1.001 1.000 0.999 1.001 

 7 1.000 1.001 1.000 0.999 1.001 

 10 1.000 1.001 1.000 0.998 1.001 

One advantage of the proposed element is that it can be treated by the corotational algorithm as 

being purely mechanical and, thus, any additional complexity brought by piezoelectricity is locally 

treated. For instance, all numerical pitfalls due to the huge difference magnitude order involving the 

mechanic and piezoelectric dielectric constants are absent in the proposed formulation. 
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