
 
 

CILAMCE 2019 

Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC, 

Natal/RN, Brazil, November 11-14, 2019. 

NONLINEAR ANALYSIS OF VISCOELASTIC RECTANGULAR PLATES 

Phablo V. I. Dias 

Zenón J. G. N. del Prado 

Renata M. Soares 

phablo@discente.ufg.br 

zenon@ufg.br 

renatasoares@ufg.br 

School of Civil and Enviromental Engineering, Federal University of Goias.  

Avenida Universitária, 1488, Setor Leste Universitário, 74605-200, Goiânia, GO, Brazil 

Abstract. In this work, the non linear vibrations of thin, viscoelastic and isotropic clamped 
rectangular plates, subjected to concentrated harmonic load are studied. The Von Karman 
non linear strains relations are used and to describe the clamped boundary conditions, 
rotational springs are considered. The viscoelastic material is described as the Kelvin-Voigt 
model and the Raylrigh Ritz method is used to obtain a system of non linear dynamic 
equilibrium equations with 39 degrees of freedom which is solved, in turn, by the Runge-Kutta 
tnethod. A parametric detailed analysis is performed to study the influence of axial load, 
viscosity parameter and geometry on the non linear response of the plate. The frequency-
amplitude relation and resonance curves were plotted. The frequency-amplitude curves 
showed that as the viscosity parameter is increased, the maximum amplitudes and the degree 
of nonlinearity are reduced, it was also observed that when both the dimentions of the plate 
and external load are increased, the frequency-amplitude relations are quasi linear, The 
resonance curves  showed that the plate has a typical hardening behavior with two coexisting 
atractors with high sensitivity to initial conditions. 
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1  Introduction 

Plates are plane structural elements with large applications in several engineering áreas and 

depending on its geometry and imposed external loads, it is necessary to study the non linear dynamic 

response of the plate. In literature, it is possible to find several works related to the nonlinear behavior 

of viscoelastic plates, a detailed bibliographic revision can be obtained in Amabili [1]. A lrge number 

of works related to the non linear vibrations of plates can be found in literature but, when non linear 

damping is considered, a reduced number of work is found.  

Viscoelastic material have several applications in engineering such as metals in high 

temperatures, elastomeric, biological  and composite materials. In general, viscoelastic materials have 

in its constitutive relation an elastic and a damping part and it is necessary to consider a mechanical 

model that considers correctly the strain-stress relation. The most common are the Maxwell, Kelvin-

Voigt, Linear Solid (Zener) and Boltzmann models  (Flügge [2], Amabili [3]). The stress-strain 

relations of a viscoelastic material are obtained by fluence and relaxation tests, which are weel 

described by the Zener and Boltzman models. The Kelvin-Voigt model has a limitation in the 

relaxation test but captures correctly the fluence phenomena and it is large applied in vibrations of 

viscoelastic materials. (Balasubramanian et al [4]). 

Xia and Lukasiewicz [5, 6] studied the dynamic response of a laminated plate, where the external 

layers were considered as isotropic and elastic and the internal layer as viscoelastic described by the 

Kelvin-Voigt model. Rossihkin and Shitikova [7] studied the free non linear vibrations of a 

viscoelastic plate considering the Riem ann-Liouville fractional derivative. The modal interaction was 

analyzed when subjected to different internal resonances and, it was observed, that depending on the 

degree of the fractional derivative several vibrational regimes can co-exist. Bilasse, Azrar and Daya 

[8] developed a numerical method to study the non linear vibrations of sandwich viscoelastic plates. 

The computational procedure was based on the finite element method coupled with ah harmonic 

equilibrium of a complex mode of the Galerkin method. Balkan e Mecitoğlu [9] studied numerical and 

experimentally the dynamics behavior of sandwiche viscoelastic plates subjected to non uniform 

blasts. The external layers were considered as isotropic and elastic and the internal layer as 

viscoelastic described by the Kelvin-Voigt model. It was observed that, for and efficient vibration 

control with small amplitudes, it is more convenient to increase the thickness of the internal layer. 

Amabili [10] analyzed the non linear vibrations of viscoelastic rectangular plates considering the 

Kelvin-Voigt model and comparing with a viscous damping model. It was observed that the frequency 

response of the plate is different for both models considered. Balasubramanian et al [4] studied the non 

linear oscillations of viscoelastic plates and comparing some results with a finite element model using 

ABAQUS. It was observed that the Kelvin-Voigt model has limitations in describing large amplitude 

oscillations of the plate and, to fit numerical and experimental results it was necessary to change the 

viscoelastic parameter of the model. 

In this work, the non linear vibrations of a clamped rectangular plate subjected to a concentrated 

harmonic load are studied. To describe the clamped boundary conditions, rotational springs are 

considered in all boundaries and the Kelvin-Voigt model is applied to descried the viscoelastic 

material. The Rayleigh-Ritz method is applied together with the Hamilton principle to obtain a set of 

39 non linear equations of dynamic equilibrium. Both, the resonance curves and frequency amplitude 

relation are obtained to observe the non linear behvior of the plate when varying the viscoelastic 

parameter, the geometry of the plate and the external load value. 

2  Mathematical formulation 

In this work a perfect, flexivel, rectangular, clamped, isotropic, viscoelastic plate subjected to an 

harmonic concentrated load is studied. The plate has coordinates (O; x; y; z) and displacement fields u, 

v e w with length a, with b and thickness h as observed in Fig. 1. In the following section, all 

fomulation is based in the work of Balasubramanian et al [4]. 
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Figure 1. Rectangular viscoelastic plate 

The von Kármán non linear strain – displacement relations were considered where, x, y e xy  are 

strain components in any point of the plate which are related to the strain of the middle surface given 

by  x0, y0 e xy,0 and the changes of curvature of the middle surface kx, ky e kxy given by Eq.1. 
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The viscoelastic material is described by the Kelvin-Voigt model, the stress-strain relation is 

described by: 

 ( )E    . (2) 

Then, the constitutive equation of the plate is given by: 
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where E is the Young modulus and  is the viscoelasticity parameter in seconds (s)  

In this work, rotatory inertia and shear deformation are not considered, then the strain energy of 

the plate can be writen as: 
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Substituting Eq. (1) and Eq. (3) in Eq. (4) it is obtained the strain energy which contains elastic 

(UE) and viscoelastic (UV) terms which are given by: 
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finally: 

 P E VU U U  . (7) 

As observed in Eqs. (5) and (6) the viscoelastic terms (UV) can be obtained by deriving in time the 

elastic terms and multiplied by the viscoelastic parameter (), as described by: 

 E
V

dU
U

dt

 

  
 

. (8) 

Rotational springs are applied in all boundaries to describe the clamped effect then, the strain 

energy due to the rotational springs is given by: 
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where: kr is the stiffness of the springs. The boundary conditions of the plate are: 
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The viscoelastic plate was also considered as pre-tensioned by in plane loads in both directions as 

seen in Fig. 2, then strain energy due to in-plane load is given by: 

 

Figure. 2. Clamped viscoelastic plate with in-plane loads 

yN

yN

xNxN

y

x



P. Dias, Z. del Prado, R. Soares 

CILAMCE 2019 

Proceedings of the XLIbero-LatinAmerican Congress on Computational Methods in Engineering, ABMEC, 

Natal/RN, Brazil, November 11-14, 2019 

 

22

0 0

1

2

a b

C x y

w w
U N N dydx

x y

    
           

  . (11) 

Then, the total strain energy of the plate is given by: 

 P M CU U U U   . (12) 

The work done by tem concentrated external harmonic load, acting at x = x1 and y = y1, can be 

written as: 

      1 1
0 0

cos
b a

W f t w x x y y dxdy      . (13) 

where f, , t are, respectively, load intensity, frequency of excitation and time; w is the transversal 

field displacement and  is the Dirac delta. 

Finally, the kinetic energy of the plate is given by: 

  2 2 2
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The expansions for the axial and transversal field displacements, considering simple-supported  

boundary conditions are given in Eq. 9. These field displacements does not satisfy forced boundary 

conditions but, assuming rotational springs it is possible to consider clamped boundaries for the plate. 
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where m and n are the halwave number in x and y directions, respectively; M and N are total number of 

terms used in each expansion and um,n(t), vm,n(t) and wm,n(t) are the unknown amplitudes of each 

displacement. Then, the vector of generalized coordinates can be written as: 

 , , ,( ), ( ), ( )
T

m n m n m nu t v t w t   q . (16) 

the dimension of q is related to Nq, which representes de humber of degrees of freedom of the plate. 

The Rayleigh-Ritz method is applied together with the Hamilton principle to obtain a set of 

nonlinear differential equatins of dynamics equilibrium which are in turn solved by the Runge-Kutta 

method. The modified Hamilton principle can be written as (Amabili [1]): 

 , for 1
j j j j

d T T U W
j N

dt q q q q


    
     

     
. (17) 

Finally, the nonlinear system of equations can be described as: 

     cos( )t       2 3 2 3Mq G G G q K K K q F . (18) 

where M is the diagonal mass matrix with dimensions Nq  Nq; G, G2 and G3 are, respectively, the 

viscoelastic matrix of linear, quadratic and cubic terms; K, K2 and K3 are, respectively, the elastic 

matrix of linear, quadratic and cubic terms; F is the load vector with represents the projection of the 

concentrated harmonic load in the generalized coordinates and         are the acceleration, velocity and 

displacement vectors, respectively. 
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 = 0,0012 s

 = 0,0018 s

 = 0,0020 s

 = 0,0050 s

3  Numerical results 

Consider a viscoelastic plate with the following physical and geometrical properties h = 1,5 mm, 

a = b = 26 cm, E = 5,62 MPa,  = 1430 kg/m³ e  = 0,5 (Balasubramanian et al [4]). The static traction 

in-plane loads are  Nx = 100 N/m and Ny = 90 N/m. The concentated harmonic load is located at x1 = 

0,11 m and y1 = 0,19 m four levels loads were considered as 0,01 N, 0,04 N, 0,07 N, 0,10 N, and also, 

four levels of the viscoelastic parameters (): 0,0050 s, 0,0020 s, 0,0018 s, 0,0012 s. To garante the 

clamped boundary condition, the rotational springs have the following stiffness kr = 1000 N/rad. It was 

considered a model with 39 degrees of freedom as given in Table 1.  

Table 1. Generalized coordinates utilized in the expansions of the displacements 

Displacement Generalized coordinates 

u u2,1, u4,1, u6,1, u8,1, u2,3, u4,3, u6,3, u8,3, u2,5, u4,5, u6,5, u2,7, u4,7 

v v1,2, v3,2, v5,2, v7,2, v1,4, v3,4, v5,4, v7,4, v1,6, v3,6, v5,6, v1,8, v3,8 

w w1,1, w1,3, w1,5, w1,7, w3,1, w3,3, w3,5, w3,7, w5,1, w5,3, w5,5, w7,1, w7,3 

First, the natural frequency of the plate was obtained, as can be seen in Table 2, there agreement 

with reference Balasubramanian et al [4]. 

Table 2. Comparison of natural frequencies values 

Natural Frequency, 

1,1 (Hz) 

Balasubramanian et al [4] Present work (%) 

20,90 21,02 0,57 

The frequency-amplitude curves are observed in Fig. 3, as can be seen, the plate displays 

hadening behavior for all four cases of viscoelasic . It is also possible to observe that, the hardening 

effect is stronger for small values of the viscoelastic parameters and, if this value is increased, the 

hardening effect is reduced. 

 

Figure 3. Frequency-amplitude curves for different values of  

After this initial analysis, now considering the external harmonic load, the resonance curves were 

obtained for increased values of the frequency of the external load and considering several values of 

the viscoelastic parameter. Figure 4 displays the resonance curves and were plotted using the 

continuation method (Del Prado [11]), in these figures, continuous lines represent stable vibrations and 

dotted lines represent unstable vibrations. Figure 4a,display the obtained values and Fig. 4b display the 

obtained values by Balasubramanian et al [4], both figures show very good agreement. 

As can be observed, for small values of amplitude of the external load, the resonance curves 

display linear behavior with small amplitude oscillations and a mean peak at /1,1 = 1,0. If the value 

of the amplitude of excitation is increased, the plate starts to display hardening behavior with large 
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amplitude oscillations with jumps between small and large amplitude oscillations with stable and 

unstable non linear paths. 

  
(a) (b) 

Figure 4. Resonance curves of viscoelastic plate (a) obtained in this study (♦ f = 0.01 N; ■ f = 0.04 N; ▲ f = 

0.07 N; ● f = 0.10 N) and (b) comparison between curves obtained by Balasubramanian et al [4]: (+) 

3.1 Parametric Analysis 

In this section, changes on the geometry and on the values of the in-plane loads were introduced. 

This was done looking to understand the influence of both the geometry and axial load on the non 

linear response of the plate.  

Table 3 displays the values of the geometry adopted in analysis as well as the obtained natural 

frequencies of the plate.  

Table 3. Plate geometry variations 

Plate 

variation 

Plate dimensions (m) Natural 

frequency (Hz) 

Load position at y 

coordinate (y1) a b 

1.5a 0.26 0.39 17.99 0.285 

2.0a 0.26 0.52 16.82 0.380 

Now, Table 4 displays the values of the reduced in-plane loads as well as the natural frequencies 

for each case, for this, the vales of the plate geometry were adopted as shown in Table 3. 

Table 4. In-plane loads variation 

Plate 

variation 

In-plane loads (N/m) Natural 

frequency (Hz) Nx Ny 

75% 75 67.5 18.29 

50% 50 45 15.05 

Now, the frequency-amplitude relations for each plate case were obtained and are displayed in 

Fig. 5. As can be observed, all curves show hardening behavior and due to the low degree of 

nonlinearity, the curve related to  = 0.0050 s was no plotted. In Fig. 5(a), Fig. 5(b) and Fig. 5(c), 

black dots represent the original plate geometry, red dots represent the plate for b = 1,5a and blue dots 

represent the plate for b = 2,0a. In Fig. 5(d), Fig. 5(e) and Fig. 5(f), black dots represent the original 

in-plane load of the plate, red dots represent the plate with 50% of the original load and blue dots 

represent the plate with 75% of the original in-plane load. As can be observed, depending on the 

adopted values of geometry of in-plane load, the nonlinearity degree is affected. The non-linearity is 

higher for a square plate as well as for a plate with low values of in-plane loads. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 5. Amplitude-frequency curves of the viscoelastic plate for the (a) geometry variation:  = 0.0020 s; 

(b) geometry variation:  = 0.0018 s; (c) geometry variation:  = 0.0012 s; (d) in-plane loads variation:  = 

0.0020 s; (e) in-plane loads variation:  = 0.0018 s; (f) in-plane loads variation:  = 0.0012 s; 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 6. Resonance curves of the viscoelastic plate for the (a) geometry variation: f = 0.04 N; (b) 

geometry variation: f = 0.07 N; (c) geometry variation: f = 0.10 N; (d) in-plane loads variation: f = 0.04 N; 

(e) in-plane loads variation: f = 0.07 s; (f) in-plane loads variation: f = 0.10 N; 

Now the concentrated external harmonic load will be considered.  Figure 6 displays the obtained 

resonance curves and colors follow the same criteria adopted previously in Fig. 5. Due to the small 

degree of nonlinearity, the resonance curve for f = 0,01 N was no displayed. As can be observed, all 
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curves show hardening behavior with jumps from large to small amplitude oscillations where stable 

and unstable solutions co-exist.  

It is also possible to observe that, that higher nonlinearity is seen in the plate with lower values of 

the in-plane loads as well as with smaller geometric dimensions. Figure 6(b), Fig. 6(c) and Fig. 6(d) 

the phase portraits and Poincare mapping corresponding to gray lines of Fig. 6(a) between /1,1 = 

1.05, /1,1 = 1.075, /1,1 = 1.1), are displayed. It is possible to verify the coexistence of attractors 

of large and small amplitude vibrations and all atractors have 1T periodicity. Also, in Fig. 6(a) all 

curves in  intersect at /1,1 = 1.0, which means that, independing on the parameters, the plate  will 

display the same amplitu oscillations for all cases. 

  
(a) (b) 

  
(c) (d) 

Figure 6. (a) Resonance curves for in-plane loads variation and f = 0.10 N with the three frequency points 

analyzed; (b) Poincaré maps for:  = 1.05; (c) Poincaré maps for:  = 1.075; (d) Poincaré maps 

for:  = 1.10. 

4  Concluding remarks 

In this work, the nonlinear vibrations of a tensioned clamped viscoelastic plate subjeted to 

concentrated harmonic external axial load was studied and the Kelvin-Voigt model was applied to 

ddes cribe the stress-strain relation. A model with 39 degrees of freedom was obtained using the 

Rayleigh-Ritz method and the Hamilton principle. 
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To study the degree of nonlinearity, the frequency-amplitude relations were obtained showing 

hardening behavior and for incremental values of the viscoelastic parameter () the plate shows linear 

behavior. 

The resonance curves of the plate were obtained showing hardening behavior but, the degree of 

the nonlinearity, depends on the geometric and physical characteristics as well as on the value of the 

internal in-plane loads. Also, is was showed the phase portraits and Poincaré mapping of the plate in 

regions where there is coexistence of large and small amplitude vibrations. All responses displayed 1T 

stables oscillations. 
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