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Abstract. The structure known as Beck’s Column consists of a beam-column, subject to a tangential fol-
lower force applied at its free end. Beck presented in 1952 the critical load, which induces the vibration
of the structure (flutter). This paper uses a simple and general numerical model that allows the solu-
tion of the problem of columns with different properties and different boundary conditions associated to
follower forces. In this work, emphasis was given to the experimental simulation of the phenomenon,
in a qualitative way. A metal ruler was adopted to represent a slender fixed-free beam-column and, to
simulate the following force, a brushless motor was attached to the free end. A thrust force is generated
when air is moved by the propeller and the motor follows the rotation of the free end, changing the direc-
tion of the thrust force. Tests were performed with different setups in order to observe the effect caused
in the presence of gravitational force (motor weight) in concomitance with the tensile and compression
follower effect. The results were remarkably different, showing that the follower force can induce stabi-
lization, flutter and divergence. As the analysis was qualitative, videos and photos were made to record
the results. The values of critical loads and frequencies were within the range expected by numerical
analysis. Attempts to instrument the tests with accelerometers and LVDTs (Linear Variable Differential
Transformer) were made and a discussion is presented on the differences and influence of these devices
on the structure behavior.
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Experimental analysis of a beam-column subjected to nonconservative forces

1 Introduction

In 1952, Von Max Beck studied a cantilevered column subjected to a tangential follower force at its
free end, as shown in Figure 1, taken from [1]. Such forces are nonconservative and nondissipative. This
structure, known as Beck’s Column, is not an exact model of an actual structure, but just an idealized
model.

Figure 1. Beck’s Column, taken from [1].

Follower forces are mostly noted in structures subject to aerodynamic forces. The thrust generated
by rockets in missiles and spacecraft are examples of follower forces [2]. Because of this, the study of
these forces became a wide field in aerospace structures engineering.

Beck developed a dynamic criterion to determine the critical load of this problem. However, his
results and related topics have not been appreciated well by structural engineers.

In 1961, when commenting on Beck’s Column, Timoshenko and Gere stated that “no definite con-
clusion can be made (as yet) regarding the practical value of this result, since no method has been devised
for applying a tangential follower force to a column during bending” [3].

In 1996, Koiter proposed the “elimination of the abstraction of the follower forces as external loads
from the physical and engineering literature on elastic stability”. “Beware of unrealistic follower forces”,
he concluded [4].

This paper presents a review of the analytical development for this problem and a numerical model to
predict critical loads. The numerical model uses cubic polynomial functions enriched with sine functions
combined with cubic polynomials (a generalized Fourier series), which do not interfere in the nodal
displacements. This allows for simple treatment of follower nodal forces. In addition, it contributes
with a set of experiments that illustrate the phenomenon of flutter. Hence, the contributions of the
present study is to provide a new experimental approach to the modeling of the tangential forces in
Beck’s Column, and to demonstrate the capability of a simple and efficient numerical model to model
the problem.

2 Literature Review

2.1 Numerical Anaysis

Beck’s original study [1] stated that the original form of equilibrium is stable only up to a certain
value of the tangential follower force, which he termed as critical load (Pcr). At a force exceeding this
value, the structures do not present a new form of equilibrium, but a form of motion. For a cantilevered
column, Beck concluded that

Pcr = 20.05
EI

ℓ2
, (1)

where EI represents the flexural rigidity of a beam in the plane of bending and ℓ is the column length.
It is well known that one of the basic differential equations for bending of beam-columns is
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EI
d4y

dx4
+ P

d2y

dx2
= q, (2)

in which P is an axial compressive force and q is a distributed lateral load, as shown in Figure 2.

P

q

Figure 2. A beam-column.

When no lateral loads are applied, the differential equation reduces to

EI
d4y

dx4
+ P

d2y

dx2
= 0. (3)

Equation (3) can be rewritten as
d4y

dx4
+ k2

d2y

dx2
= 0 (4)

with
k2 =

P

EI
. (5)

The general solution to this differential equation is given as

y = A sin(kx) +B cos(kx) + C x+D, (6)

where A, B, C and D are constants to be determined from boundary conditions.
When solving Beck’s problem, Timoshenko and Gere [3] decomposed the force P into two com-

ponents (P1, in the vertical direction, parallel to column undeformed axis; and H , in the horizontal
direction, perpendicular to column axis), as shown in Figure 3, taken from [3]. It can be noted that P1 is
approximately equal to P if deflections remain small.

Figure 3. Timoshenko and Gere’s decomposition.

The boundary conditions are

y =
dy

dx
= 0, when x = 0

and
d2y

dx2
=

d3y

dx3
= 0, when x = ℓ.
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Experimental analysis of a beam-column subjected to nonconservative forces

Applying these conditions to Eq. (6), it can be noted that a trivial solution with all constants null
can be obtained. Therefore, Timoshenko and Gere reached a dead-end and concluded that, from a static
point of view, only the straight form of equilibrium is possible within the elastic range.

So, Timoshenko and Gere approach the investigation of the stability of the column from a dynamic
point of view, by assuming that the loaded column is subjected to an initial disturbance which produces
small vibrations. They stated that “if these vibrations decrease with time, we can conclude that the
straight form of equilibrium of the column is stable. (. . . ) On the other hand, if the external forces acting
on the column are such that the amplitude of the vibrations begins to grow without limit, the straight
form of equilibrium of the column is unstable”.

By applying D’Alembert’s principle and substituting inertia forces for the lateral load on Eq. (2), he
obtained the following:

EI
∂4y

∂x4
+ P

∂2y

∂x2
+m

∂2y

∂t2
= 0, (7)

with m denoting the mass per unit length of the column.
Considering Eq. (5) and a = m/EI , and dividing by the flexural rigidity, the differential equation

in (7) can be rewritten as

∂4y

∂x4
+ k2

∂2y

∂x2
+ a

∂2y

∂t2
= 0. (8)

The solution of this differential equation with constant coefficients can be taken in the form

y = A0f(x) e
iωt. (9)

Substituting Eq. (9) into Eq. (8), the differential equation becomes

∂4f(x)

∂x4
+ k2

∂2f(x)

∂x2
− a ω2f(x) = 0, (10)

for which the general solution is

f(x) = A cosh(λ1x) +B sinh(λ1x) + C cos(λ2x) +D sin(λ2x), (11)

where

λ1 =

√√
a ω2 + (k4/4)− (k2/2) (12)

and

λ2 =

√√
a ω2 + (k4/4) + (k2/2). (13)

In order to determine A, B, C and D, the four boundary conditions described previously for Timo-
shenko and Gere’s solution must be adopted. Hence we now have four homogeneous equations for A, B,
C and D. The undeformed straight column corresponds to zero values for the constants, as mentioned
earlier. To obtain another solution, the determinant of the equations must be equal to zero, which leads
to the following equation:

2aω2 + k4 + 2aω2 cosh(λ1ℓ) cos(λ2ℓ) + k2
√
aω2 sinh(λ1ℓ) sin(λ2ℓ) = 0. (14)

The angular frequency ω can be calculated for any value of P . Table 1 reproduces the first two
frequencies (ω1 and ω2) obtained by Timoshenko and Gere for different P values, in a non-dimensional
format.
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Table 1. Frequencies of compressed column.

Pℓ2

π2EI
0 0.5 1.0 1.5 2.0 2.001

ω2
1
aℓ4

π4 0.125 0.26 0.30 0.46 0.96 0.98

ω2
2
aℓ4

π4 4.86 4.2 3.3 2.6 1.02 0.99

The values of ω2
1 and ω2

2 approach each other as P increases. Timoshenko and Gere conclude their
solution for Beck’s Column critical load stating that a more refined calculation shows that

Pcr = 2.008
π2EI

ℓ2
= 19.82

EI

ℓ2
. (15)

Therefore, Timoshenko and Gere’s solution presents a slightly lower value for the critical load (Pcr)
when compared to Beck’s original value (approximately 1,16% lower).

3 Numerical modeling

The analytical solution of columns with varying properties and different boundary conditions asso-
ciated with follower forces is cumbersome. So, a simple and general numerical model was developed
[5], using a Ritz approach with displacement functions to generate mass, elastic stiffness and geometric
stiffness matrices for the modeling of the beam, including the load behavior in the so-called load stiffness
matrix associated with the free end translation and rotation. The load stiffness matrix is symmetric in the
case of conservative forces and non-symmetric for non-conservative forces.

As indicated in Eq. (16), the usual cubic polynomials for Euler-Bernoulli beam theory were adopted
as functions associated with nodal displacements [6] (see Figure 4).

wp(x, L) =



1− 3 x2

L2 + 2 x3

L3

x− 2x2

L + x3

L2

3 x2

L2 − 2 x3

L3

−x2

L + x3

L2

 . (16)

Figure 4. Nodal displacements.

In order to enrich the displacement field along the beam, it was added a series of functions which
combine cubic polynomials and a sine function. These additional functions are constrained to have zero
values for displacements and rotations at the beam ends. This allows for a simple procedure for treating
different boundary conditions and refinement of solutions (N is the number of additional functions).

wt(x, n, L)=−nπ

L
x+

nπ

L2
[2+(−1)n]x2 − nπ

L3
[1+(−1)n]x3 + sin

(
nπx

L

)
;

n = 1, . . . , N. (17)

The resulting matrices have dimensions (N + 4) × (N + 4), and are obtained in the usual way in
Ritz analysis (finite element format with global conventional and additional functions forming a vector
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w). In the equations below, m is the mass per unit length of the beam, EI is the flexural rigidity of the
beam cross section, P is the axial force along the beam, and L is the beam length.

M =

∫ L

0
mwwTdx. (18)

K =

∫ L

0
EIw′′w′′Tdx. (19)

Kg =

∫ L

0
Pw′w′Tdx. (20)

In the case of forces applied at the nodes, the load stiffness matrix KL affects only the nodal func-
tions. For the nodal displacements shown in Figure 4, consider the left end fixed and a tension force P
applied at the right end of the beam. If it remains tangential to the beam upon rotation q4 at the end, a
transverse component appears, with the value Pq4 (considering small rotations approximation). Hence,
the corresponding “load stiffness” coefficient is −Pq4. It results in the submatrix below, to be added to
the adequate positions in the geometric stiffness. It should be remarked that all terms associated with
enrichment functions are null.

KL = P



0 0 0 0

0 0 0 0

0 0 0 −1

0 0 0 0


. (21)

The dynamical equations for the beam subjected to an initially axial force, disregarding damping,
are

Kq+ (KG +KL)q+Mq̈ = 0. (22)

Assuming modes of vibration in the form q = qk sin(ωkt), we are led to the following generalized
eigenvalue problem expression for the calculation of the angular frequencies[

K+ (KG +KL)− ω2M
]
q = 0. (23)

The resulting frequencies are affected by the magnitude of the load P . For divergence instability,
the critical load corresponds to a zero frequency (see Figure 5). This case can be investigated statically
by finding the smallest load magnitude which corresponds to a zero determinant of the tangent stiffness
matrix (alternatively, and more efficiently, the first zero pivot in a Gauss decomposition, as shown in
Figure 6). On the other hand, for flutter instability, the critical load corresponds to the coalescence of the
two first frequencies, as shown in Figure 7. The approximated results f1, f2, f3, etc.., are obtained by
successive linear extrapolation and incremental analysis with increasing load and a bisection or similar
procedure, as illustrated in figures 5, 6 and 7.
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f3 f2 f1 f

Figure 5. Static case (zero frequency at critical load).

|KT|

f2f3 f1 f

Figure 6. Static case (zero determinant and zero pivot at critical load).

f3 f2 f1 f

k+1

k

Figure 7. Dynamic case, showing the coalescence of two frequencies.

4 Experimental investigation

As commented in the previous section, applying a follower force in an experimental simulation is
not an easy task. The column has to be subjected to a force that changes its direction with time. In this
work, a force exerted by the thrust of a rotating propeller attached to the free end was used to simulate
the follower force.

4.1 Material characterization

Determining the Young’s Modulus of the material is important because with this determination it is
possible to predict the force required for the material to reach the conditions predicted by Beck.

The critical static buckling load (Pcrs) is calculated from the expression
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Pcrs =
π2EI

L2
, (24)

where L is the effective buckling length. In the case of the fixed-free pillar, the buckling length must be
taken equal to 2ℓ.

Therefore, the ratio between the Beck’s critical dynamic load (Pcrd), presented previously, and the
static critical buckling load (Pcrs) is

Pcrd

Pcrs
=

20.05EI
ℓ2

π2EI
4ℓ2

= 8.13. (25)

The problem is that, when conducting an experimental analysis of such structure, buckling due to
its own weight is easily achieved, whereas the conditions provided by Beck require more thrust.

To determine the Young’s Modulus of the material, a direct tensile test was chosen. The ruler was
cut in its half and, therefore, two specimens of 50 cm each were tested. In order for the ruler to be pulled
by the MTS c⃝ High-Force Servohydraulic Test System, an adaptation was necessary: four metal plates
were fixed on each test piece. It should be noted that the displacement control was set to a rate of 0.5
mm/min.

To measure the strain during test, a single strain gage was installed in the middle of each specimen.
In order to attach the strain gage to the ruler, it was necessary to sand the surface of the ruler to make it
smooth and adherent, since the numbers and the millimeter indicators had low relief.

Both specimens failed with rupture in the middle, where the strain gage was fixed. It is believed that
this is due to the previous sanding process, which slightly decreased the straight section in that region.

The direct tensile test generated a stress vs. strain curve, in which it is possible to determine the
Young’s Modulus by verifying the slope of the line still in the elastic regime.

The stress vs. strain curve obtained as a result of the direct tensile test of the first test piece is shown
Figure 8. The rupture stress was equivalent to 784.5 MPa.

Figure 8. Stress vs. strain curve of the first test piece.

The stress vs. strain curve of the second test is shown in Figure 9. This time, the rupture stress was
equivalent to 775.9 MPa.

In both experiments, it was found, by extracting the slope of the line in the elastic regime from each
curve, that the Young’s modulus was approximately 210 GPa, which was the value used in the calcula-
tions and in the qualitative comparisons.
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Figure 9. Stress vs. strain curve of the second test piece.

4.2 Brushless motor

It was decided to fix a brushless motor on the top of the metal ruler, simulating the slender column.
This equipment is commonly used as a drone component. A thrust force was generated by the motor as
the air is moved by the propeller. The motor axis (and the thrust force direction) rotates together with the
rotation of the ruler at the end.

A major advantage of this type of motor is that, just by switching two wire connection to the mo-
tor controller, the motor will rotate in the opposite direction. Therefore, compressive follower forces
(throwing air in the opposite direction of the ruler) and even tensile follower forces (throwing air in the
direction of the ruler) were extremely easy to achieve.

Thrust test

To find out the maximum thrust generated by a given brushless motor, a test was performed in
a Turnigy c⃝ thrust stand, in which different configurations were simulated so that the determined Pcr

was reached. This stand has one degree of freedom and the thrust generated by the brushless motor
causes a displacement that is measured by the apparatus. It is also possible to control the amount of
energy driven into the motor, therefore changing its rotation speed. Different motors, propellers and
batteries were used. The highest thrust, (slightly) higher than 11 N, was obtained with the Turnigy c⃝
aerodrive motor (model SK2830-750), a Turnigy c⃝ ten-inch diameter propeller with four-inch pitch and
a MaxAmps.com c⃝ Lithium-Polymer four-cell (4S) battery, with 4000 mAh. After the thrust test in the
stand, it was used an HJ c⃝ Digital Servo Tester to control the amount of energy driven into the motor, by
generating a Pulse Position Modulation (PPM) signal for the motor controller.

4.3 Tests without attached instrumentation

It was decided to carry out tests without any attached instrumentation. It was also decided to sub-
mit the ruler to the follower forces of compression and tension. To capture its behavior, audio visual
equipment was used, which resulted in photos and videos with a high frame rate per second.

Vertical in compression

The first simulation was performed by positioning the ruler vertically and applying a compressive
force.

The main difficulty in this case was to position the cables that connect the battery to the motor
without influencing the behavior of the ruler. It was not possible to extend the cables between the motor
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controller and the motor, because this extension would affect the operation of the motor, since in this case
the digital signals generated by the motor controller would not reach to the motor correctly. Because of
this, the motor controller had to remain close to the brushless motor. Therefore, the cables between the
battery and the motor controller were extended.

The ruler was positioned vertically. In order for it to remain vertical prior to the application of the
compression follower force, the ruler was tied to the supports using thin light wires. After the motor was
started, these wires were cut.

Despite having a slight inclination on one side, the structure did not collapse while the motor was
on, generating the compression follower force. It is believed that this inclination is due to the different
interferences present in the configuration, such as the presence of the motor controller near the motor,
the cable arrangement and the mass of the motor/propeller assembly. It remained in this position until
the motor was turned off, when the weights of the system caused the structure to buckle and collapse.
So, it is easy to assume that the compressive follower force was responsible for avoiding the collapse.

Vertical in tension

The same configuration of the previous test was repeated, but this time the ruler was subjected to a
tensile follower force. As mentioned before, in order to make the motor to generate the tensile follower
force, it is sufficient to perform the inversion of two of the three wires coming out of the motor controller
towards the motor. In this way, the wave generated by the motor controller is changed and the motor
rotation is reversed, pushing the air in the opposite direction.

This time the structure did buckle. From the moment of the cutting of the support lines, the structure
was directed to one side and, as the following force was increased, the structure curvature increased.

These two first tests were considerably conclusive in the qualitative analysis of the difference in
behavior of slender columns when subjected to compressive and tensile follower forces. While in the
first the compression follower force prevented the structure to buckle, in the second the tensile follower
force contributed to the structure to buckle.

Upside down vertical in compression

After the first two tests, it was decided to perform the same tests, but with the ruler hanging upside
down. In this way, the fixed end was positioned at the top of the ruler and the motor at the base. The
main difference obtained in this case is that the structure is initially stable. In the previous configuration,
the structure was statically unstable in the straight position (due to its slenderness and the weight of the
equipment), and it was necessary to use lines to tie the ruler to the supports.

In the compression test, the structure presented a behavior similar to flutter instability and also
reached the second mode of vibration.

Upside down vertical in tension

When subjected to a tensile follower force, the structure, which was statically stable prior to the
motor start, became unstable. The follower force generated by the motor counterbalanced the stabilizing
effect of the motor’s weight, causing the structure to move like a pendulum.

Therefore, it was possible to conclude that the tensile follower force was able to destabilize a struc-
ture that appears to be initially stable.

Horizontal in compression

The vertical tests showed a considerable influence of the weight of the motor/propeller assembly. In
order to reduce the effect of the weight, other tests were conducted with the ruler positioned horizontally.
In this way, the displacement of the ruler would be in the horizontal plane, eliminating, therefore, the
influence of the weight of the structure and its components, while still maintaining the effect of their
masses in the dynamic behavior of the structure.
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It must be said that the ruler has a little more than one meter and, in the previous tests, was being
fixed only in the small flap that exists in one of the ends of it. For the horizontal test, however, it was
necessary to fix a larger length of the ruler in the fixed end, since the moment generated by the weight
of the motor/propeller assembly was non-negligible and the pressure exerted by the bench vise on the
flap fixed was not sufficient to prevent rotation of the structure. Because of this, it was decided to set a
further 10 cm (beyond the initial flap) and, therefore, in the horizontal tests, the ruler had a free length
equivalent to 90 cm.

Of course, when the ruler size was decreased, it was necessary to calculate a new Pcr, for ℓ=900
mm. Thus, considering Eq. (1),

Pcr =
20.05× 210× 2.1577

9002
= 0.011216 kN = 11.216 N. (26)

Therefore, the motor thrust, measured at the stand, is very close to the new Pcr value.
For the horizontal in compression test it was also decided not to fix the cables and the motor con-

troller to the ruler. In this configuration, these components were hanged, so that it was possible to observe
the behavior of the ruler with less interference of them.

In this test, it was possible to observe that the ruler reached flutter instability and vibrated in the
first, the second and even in the third vibration mode (see figures 10 and 11). This observation was made
with naked eye and captured in video and photo.

Figure 10. The structure, before the beginning of the test.

Figure 11. The structure, while the test was being conducted, reaching the second mode of vibration.

It was also observed that the mass of the motor remained almost at the same point, as shown in
Figure 12. So, it is possible to conclude that existence of the motor in the structure interfered on its
behavior when vibrating, being not quite similar to the vibration behavior of a fixed-free beam-column.

Figure 12. While vibrating, the mass of the motor remained almost at the same point.
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Horizontal in tension

For the horizontal in tension test, the rotation of the motor was inverted. In addition, it was neces-
sary to fix the cables and the motor controller back on the ruler. It was not possible that they remained
hanging because, unlike observed in the “Horizontal in Compression” test, the tensile force destabilized
the structure and, therefore, the position of the end of the rule (where the motor was installed) varies ac-
cording to the increase of the tensile follower force. As in the “Vertical in Tension” test, as the following
force increased, the structure’s curvature also increased (see Figure 13).

Figure 13. The great curvature created by the tensile follower force.

It was also verified that, when the tensile force reached its maximum limit, the ruler, besides pre-
senting a great curvature, also presented a lateral torsion, generated by the combination between the
weight of the motor/propeller assembly and the performance of this follower force.

As in the tests in which the rule was tested in the other positions (vertical and upside down), it
was possible to observe in the horizontal position the difference of behavior of the structure when it is
submitted to a follower force of compression and tension. While in the first the structure reached flutter
instability, in the second it was possible to observe characteristics inherent in divergence instability.
Figures 12 and 13 also show the decomposition of the applied force, which explains the difference of
each behavior.

4.4 Tests with instrumentation

After the non-instrumentated tests, in which it was possible to qualitatively analyze the behavior of
the structure when subjected to follower forces in different configurations, the tests were instrumented
in order to try to capture data referring to these behaviors. The results obtained from these tests will be
described in Section 5.

Instrumentated with accelerometers

The first attempt was to implement the ruler with accelerometers, so that it was possible to determine
the transverse displacement of different points of the structure over time.

The tests were performed with three and four accelerometers distributed evenly along the 90 cm
of the ruler, this time in a horizontal position. The ruler could not be tested with accelerometers in the
vertical position due to the mass of the accelerometers, which caused the structure to buckle and collapse.
The intention of this uniform distribution is to determine in which mode of vibration the structure was.
Data was captured using an InfiniiVision c⃝ Mixed Signal Oscilloscope, model MSOX2024A.

For the test with four accelerometers, it was decided to balance the moment generated by the mass of
the accelerometers. The accelerometers were positioned at an 11.25 cm (A1), 33.75 cm (B1), 56.25 cm
(C1) and 78.75 (D1) distance to the set base of the ruler. These positions were obtained by subdividing
the ruler into four quarters, each 22.5 cm long. The accelerometers were positioned in the middle of each
quarter. Accelerometers A1 and D1 were glued to one side of the ruler, while accelerometers B1 and C1
were glued to the opposite side. In this way, theoretically, the moment generated in the set base from the
mass of the accelerometers (and that would cause lateral torsion) would be null.
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For the test with three accelerometers, this moment balance was not possible. However, similarly to
the test with four accelerometers, the total length of the ruler was subdivided into three thirds, each 30
cm long. The accelerometers were positioned at 15.0 cm (A2), 45.0 cm (B2) and 75.0 cm (C2) distance
to the set base of the ruler, as shown in Figure 14. Even though it was not possible to balance the
moment as well as the test with four accelerometers, it was decided, as an attenuation attempt, to attach
the accelerometers A2 and C2 on one side of the ruler and the B2 on the opposite side.

Figure 14. The horizontal in compression test, instrumented with accelerometers.

Instrumentated with LVDTs

The second attempt consisted in instrumenting the ruler with Linear Variable Differential Trans-
formers (LVDTs). The intention, this time, was to avoid introducing additional masses to the structure
(which occurred, for example, in the accelerometers instrumentation).

The ruler was placed on a flat metal plate, in which electromagnet bases were installed and to which
the LVDTs were connected. A total of four LVDTs (one pair with a width of 20 mm and another with 50
mm) were used, which could capture the transverse displacement and the vibration frequency of a given
point.

For this, each LVDT pair was positioned at the same longitudinal point of the ruler, but on the
opposite side for balancing the system and avoiding undesired out-of-straightness (see Figure 15).

Figure 15. The test instrumented with LVDTs.

5 Results and discussion

In this section, the results of the instrumented tests and the respective interpretations will be pre-
sented.
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5.1 Instrumentation with accelerometers

When the results, obtained by fixing accelerometers to the ruler, were analyzed, they were found
to be unsatisfactory. It occurred that the masses of the accelerometers, added to the system, made it
impossible for the structure to behave in the same way that it behaved when it was not instrumented. It
is explained: as the mechanical energy generated by the motor remained the same and the system had a
significant increase of mass, logically it would not be possible that the behavior remained the same. In
order to obtain a similar behavior, in this case, it would be necessary to increase the energy generated by
the motor.

It was also found that the equipment is extremely sensitive and somewhat incompatible with the
noise caused by the proposed test, causing considerable interference in the obtained data.

Although it was possible to notice similarities between the curves generated by the tests with three
and four accelerometers, as over time the trend of the curves is very similar on a large scale, it was
observed, in a deeper analysis of the curves, a large degree of randomness in the behavior verified by
each accelerometer. So, it was decided to use the moving average principle. So, the figures 16 and 17
were generated.

Figure 16. Test instrumented with four accelerometers, with noise attenuation.

As can be seen, when instrumented with four accelerometers, the displacement curves indicated
that, although not possible to see with naked eye, the structure vibrated on second mode (see Table 2 and
Figure 18). This inference is explained by the difference noted in the waves. The curves referring to the
accelerometers A1 and C1 are in one phase, while those referring to B1 and D1 in another. However,

Table 2. Sign analysis for second mode.

Accelerometer A1 B1 C1 D1

Side (left = +, right = −) + − − +

Position + + − −

Final data + − + −

when instrumented with three accelerometers, the displacement curves in the time domain leads to the
belief that the structure vibrated on third mode (see Table 3 and Figure 19). This time, the inference is
explained by the similarities noted in the waves (all the curves are in the same phase).
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Figure 17. Test instrumented with three accelerometers, with noise attenuation.

+
A1

D1

B1

C1

Figure 18. Four accelerometers’ snapshot.

Table 3. Sign analysis for third mode.

Accelerometer A2 B2 C2

Side (left = +, right = −) + − +

Position + − +

Final data + + +

A2

+ +

C2

B2

Figure 19. Three accelerometers’ snapshot.
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Both previous inferences are consistent because it is natural that, when removing the mass from an
accelerometer (approximately 54 g), the structure attains higher modes of vibration.

Numerical modeling results

As the behavior of the structure was different from that observed in the compression test without
instrumentation, it was decided to analyze the structure according to the modeling described in Section
3.

The mass of the motor/propeller assembly was considered equivalent to 90 g. The accelerometers
were modeled considering the mass of 54 g. These data were obtained by weighing the components.

Free beam analysis

In the modeling considering the free beam (without the application of the tangential follower force),
and disregarding the mass of the motor and the accelerometers, the vibration frequencies ω1 and ω2 were
respectively equivalent to 0.20 and 1.26 rad/ms (31.83 and 200.54 Hz).

In Table 1, the values presented refer to the non-dimensional quantities ω2
1
aℓ4

π4 and ω2
2
aℓ4

π4 .
So, if ω1 = 0.20 and ω2 = 1.26, the values presented in the table should be

ω2
1

aℓ4

π4
= 0.202

0.00021
210,000×2.1577900

4

π4
= 0.125 (27)

and

ω2
2

aℓ4

π4
= 1.262

0.00021
210,000×2.1577900

4

π4
= 4.956. (28)

Thus, it was concluded that the table presented by Timoshenko and Gere present a starting value
(without the application of the follower force) different from that found in the modeling. This is, there-
fore, believed to be the cause of the disparity between Beck’s and Timoshenko and Gere’s Pcr values.

On the other hand, Weaver et al. [7] present the following table for determining the free beam
vibration frequency.

Table 4. Values of kℓ given by Weaver et al.

k1ℓ k2ℓ k3ℓ k4ℓ k5ℓ k6ℓ

1.875 4.694 7.855 10.996 14.137 17.279

So,

k1 =
1.875

ℓ
=

1.875

900
= 0.002083 mm−1 (29)

and

k2 =
4.694

ℓ
=

4.694

900
= 0.005215 mm−1. (30)

The following equation is also presented by Weaver et al.

ω = k2

√
EI

ρA
, (31)
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where ρA = m. So,

ω1 = k21

√
EI

m
= 0.0020832

√
210, 000× 2.1577

0.000210
= 0.20 rad/ms (32)

and

ω2 = k22

√
EI

m
= 0.0052152

√
210, 000× 2.1577

0.000210
= 1.26 rad/ms. (33)

Thus, it is possible to conclude that the values found by the vibration mode modeling for free beams
were confirmed with the equations presented by Weaver et al. [7].

Next, the mass of the motor was included in the system. The masses were included in the numerical
model using the complete shape functions (in other words, a consistent mass matrix is used for both the
beam and the added masses). A load applied at a distance ℓ from the fixed end was considered. The
vibration frequencies, ω1 and ω2, were, respectively, 0.12 and 0.97 rad/ms (19.10 and 154.38 Hz).

Finally, masses of accelerometers were included in the system. In this analysis, we considered the
experiment with three accelerometers, positioned as described in Subsection 4.4. The vibration frequen-
cies, ω1 and ω2, were, respectively, 0.10 and 0.76 rad/ms (15.92 and 120.96 Hz). So, the inclusion of
the accelerometers did not cause a major change in the first mode vibration frequency and was therefore
more impacting in the second mode value. This is due to the previous inclusion of the motor mass which
significantly restricted the vibration in first mode, leaving the inclusion of the accelerometers, installed
along the ruler, to increase the vibration restriction in the second mode.

The results from the free beam analysis are shown in Table 5.

Table 5. Free beam analysis.

Free beam

parameter beam beam + motor
beam + motor

+ accelerometers

ω1 [rad/ms] 0.20 0.12 0.10

ω2 [rad/ms] 1.26 0.97 0.76

Compression analysis

The modeling of the beam, disregarding the mass of the motor and accelerometers, when subjected
to a tangential compression follower force, resulted in a Pcr equivalent to 11.21 N and a vibration fre-
quency ω equivalent to 0.63 rad/ms (100.27 Hz).

When the motor mass was included, the Pcr showed a reduction of approximately 20.0%, equivalent
to 9.01 N. The vibration frequency ω was equivalent to 0.42 rad/ms (66.85 Hz).

Finally, by including the mass of the three accelerometers, the Pcr showed an increase, representing
a smaller reduction, of approximately 16.8% of the original value (11.21 N), equal to 9.33 N. The vibra-
tion frequency ω, on the other hand, showed a reduction, equivalent to 0.35 rad/ms (55.70Hz). The values
found (increase of Pcr and decrease of vibration frequency), therefore, corroborate with the change in the
behavior of the structure that was observed in the compression test instrumented with accelerometers.

The results from the compression analysis are shown in Table 6.

5.2 Instrumentation with LVDTs

As mentioned previously, for this test, two pairs of LVDT’s were used, one with 20 mm and the
other with a 50 mm amplitude. Each pair was positioned at the same longitudinal point of the ruler, but
on opposite sides.
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Table 6. Compression analysis.

Compression

parameter beam beam + motor
beam + motor

+ accelerometers

Pcr [N] 11.21 9.01 9.33

ω [rad/ms] 0.63 0.42 0.35

Since each LVDT has a spring (and hence an elastic coefficient k), in theory, positioning a pair of
each side at one point would cause the force resulting from the one-way spring to compensate for the
force resulting from the spring of the opposite side (assuming that the elastic coefficients of the springs
of each pair are equivalent). This, in fact, occurred, but only in the initial position, before the motor was
started, as shown in Figure 20. When the structure began to move, the springs acted together, generating
a non-zero resultant force.

Each LVDT was initially pressed to half its full extent causing the spring to be partially compressed.
For example, each LVDT whose amplitude was 20 mm was initially pressed up to 10 mm and positioned
in contact with the ruler. Therefore, at the initial stage (before motor start), a given longitudinal point
had two LVDTs, one on each side, pressed down to its half (10 mm). So, when the ruler moves to one
side, the opposite side did not lose contact with the ruler. Therefore, the point instrumented with the pair
of LVDTs of 20 mm of amplitude could move, at most, these 20 mm, being 10 mm for each side of the
axis.

Figure 20. Non-zero resultant force.

This phenomenon caused the introduction of transverse displacement restraining points where the
LVDTs were installed. Because of this, in this case, the ruler also did not have the same behavior when
compared to the test without instrumentation.

With the purpose of attenuating this effect, tests were also performed using only a pair of LVDTs
with 20mm course. Even so, the same effect was observed.

In Figure 21, it is observed that the pair of LVDTs positioned closer to the motor (therefore farther
from the fixed end) had a considerably smaller transverse displacement than the fixed end nearest pair.
Due to the displacements between the pairs of LVDTs having different magnitudes, it is possible to
observe in the figure only the curves of the pair of greater magnitude, the others being close to zero.

On the other hand, in both figures (21 and 22) it is possible to observe that each pair of LVDTs
behave in a mirrored way. It is also possible to observe that, before the motor is activated, the reading of
each LVDT is null and, after the switch-off, the reading of each LVDT presents a non-null value. This
is due to the fact that, after the motor is switched off, the final transverse position of a given point of the
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Figure 21. Test instrumented with two pairs of LVDTs.

Figure 22. Test instrumented with one pair of LVDTs.

ruler is different from its initial position, resulting in a non-zero reading, since the spring in one LVDT
will be more compressed than the spring in its counterpart.

6 Conclusions

Beck’s Column is an idealized structure introduced in 1952 and has since divided researchers’ opin-
ions. Several recent studies, from the late 20th century and the early 21st century, have deepened the
analysis of the behavior of this structure, and no consensus has yet been reached on the subject.

Although it is extremely difficult to create a beam-column subject to a tangential follower force, the
structure created in this study was shown to be similar to Beck’s Column. The brushless motor, fixed
to the free end of the metallic ruler, made the force applied, at all times, tangential to the curvature of
the ruler. This setup is an interesting alternative to the one with friction forces presented by Bigoni and
Noselli [8].

In the analysis with the beam-column positioned vertically, it was possible to observe that the grav-
itational forces had considerable influence on the structure.
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In the analysis of the beam-column positioned horizontally, the effects of gravity were reduced. It
was therefore possible to clearly observe the differences in the behavior when the structure is subjected
to compression and tensile tangential follower forces. When subjected to compression, the structure
evidenced the occurrence of flutter, while when subject to tension the occurrence of divergence.

In an attempt to extract data, it was decided to add instrumentation to the test. When the test is
performed with accelerometers fixed to the ruler, it was observed that the mass increase altered the
behavior of the structure. This result is understood because, while the mechanical energy generated by
the motor remained the same, there was an increase in the mass of the structure. A numerical modeling,
presented in this research, corroborates this hypothesis.

When the test was performed with LVDTs by measuring the transverse displacement of certain
points of the ruler, the stiffness of the LVDTs springs influenced the behavior of the structure. At the
points where the LVDTs were positioned, the transverse displacement was compromised because the
structure was freer to vibrate at the other points (which were not instrumented).

These two attempts to add instrumentation to the test, therefore, were unsatisfactory.
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