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Abstract. Modal Analysis plays an important role in understanding the dynamics of structures. The
mode shapes and natural frequencies are crucial structural properties that must the known to avoid catas-
trophic failures due to resonances. Moreover, eigenmodes can be used to reduce the number of degrees
of freedom of a Dynamic System by using Reduced Order Models (ROM) such as Craig-Bampton, Dual-
Craig-Bampton, Rubin, among others. Despite its importance, full eigenanalysis is rarely required, and
in general, only the smallest eigenvalues are computed due to their relevance for practical problems.
Therefore, Lanczos and implicit restarted Arnoldi algorithms are often used as eigensolvers due to their
efficiency. The major cost of those algorithms lies in the multiple solutions of static-like problems, which
can produce prohibitive computational cost when the discretized dynamic model has more than millions
of unknowns. In this work, a nonoverlapping dual domain decomposition method, namely Finite El-
ement Tearing and Interconnection, is combined with a modified version of the Arnoldi Algorithm to
efficiently compute the eigenpairs of large scale structural problems.
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1 Introduction

The core of linear dynamic systems lies in its free vibration properties, namely the eigen-frequencies
and mode shapes. The eigen-modes are so important, that they are the basis for a variate of reduction
techniques such as Craig-Bampton [1], Dual-Craig-Bampton [2], Rubin [3], among others. In general,
only the smallest eigenvalues are computed due to their relevance for practical problems. Therefore,
iterative methods such as Lanczos and implicit restarted Arnoldi algorithms are often used when large
dynamic system are considered due to their computational efficiency, as shown in [4], [5],[6], [7], [8],
[9].

The major cost of those algorithms lies in the inverse iteration, where the equilibrium solution
between the internal elastic forces and inertia must be resolved. This procedure may be computationally
prohibitive when the discretized model has more than millions of unknowns. In 1991 the Finite Element
Tearing and Interconnection (FETI) was introduced by Farhat et al, [10] in order to solve structural static
problems using parallel computers in an efficient and scalable manner. Since then, many authors have
proposed different variants of the method to improve its converge properties and robustness. Some of
the popular implementation variants are FETI-2 [11], FETI-DP [12], Total-FETI [13], FETI-Geneo [14],
S-FETI [15].

The connection between free-vibration analysis and FETI was firstly exploited in [16] in a block
Lanczos type of algorithm. However, the initial vector to start Lanczos procedure is not discussed in de-
tails. This seems to be an important aspect in the propagation of the error in higher frequency modes, due
to the compatibility displacement requirements. Moreover, the aforementioned paper does not describe
how the tolerance criteria in the FETI-PCPG solver affects the precision of the eigenpairs of the struc-
tural component. Another work concerning eigen-analyses and dual domain decomposition is presented
in [17]. Although the Power eigensolver algorithm is described, no further discussion concerning the
orthogonalization procedure of the constrained Krylov space is presented. Understanding how to build
the orthogonal Krylov vectors is especially relevant when Lanczos and Arnoldi methods are used and
the interface compatibility is not precisely fulfilled. In the present work, we discuss how to reformulate
the inverse iteration in order to make the eigensolver less sensitive to the tolerances given to the itera-
tive interface solver. Besides that, we perform strong scalability tests to prove that FETI-solvers can be
efficiently used to solve generalized eigenvalue problems.

2 Modal Analysis of Connected Subdomains

In this section, the free vibration equation for one domain is reformulated in terms of multiple
subdomains. This procedure introduces interface compatibility equations that must be satisfied together
with the classical generalized eigenvalue problem. There are multiple ways to approach the constrained
generalized eigenvalue problem however, we will focus on the global assembly, Dual and Dual-Projected
formulations. Special treatment is given to the iterative dual formulations in order to solve robustly the
modal analysis of connected substructures.

2.1 Equation of Motion of Subdomains

The linear dynamic equation of a global domain Ω decomposed in N subdomain Ω(i) is governed
by the local dynamic equations and the interface compatibility which in the discretized form are written

M(i)ü(i) + K(i)u(i) = f (i) +
∑
ij∈IiΓ

B(ij)Tλ(ij) i ∈ IΩ and (ij) ∈ IiΓ

B(ij)u(i) + B(ji)u(j) = 0 ij ∈ IΓ

(1)

where K(i), M(i), f (i) and u(i) represents the stiffness, mass, external force and displacement of the do-
main i respectively. The Lagrange multiplier λ(ij) represents the interface forces connecting subdomain i
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and j. The matrix B(ij) is a sign Boolean matrix which extracts the interface dofs from the local domain
and has a minus sign for j > i. The IΩ = {1, 2, ..., N} is the index set of the subdomains, IΓ is the
index set of all interface pairs, and IiΓ is the index set of the neighbors of domain i. Defining the global
disconnected displacement vector as the concatenation of local displacement u(i), such that u =

⋃
IΩ ui

and also the global interface Lagrange multipliers vector λ =
⋃
IΓ λ

ij , one can write the block system
of equations as M 0

0 0

ü
λ̈

+

K BT

B 0

u
λ

 =

f
0

 (2)

where M is the block diagonal matrix of M(i), K is the block diagonal matrix of K(i), and B is the
global assembled Boolean matrix which acts in the global disconnected displacements and produces the
interface gap vector that has the same size of the global Lagrange multiplier vector. Figure (1) shows a
domain decomposed in subdomains and the B associated with it.

Figure 1. (a) Domain decomposed in 4 subdomains (b) Assembled global Boolean matrix.

2.2 Constrained Generalized Eigenvalue Problem

The free vibration analysis of eq.(2) assumes that both displacements and Lagrange multipliers are
harmonic functions and also that no external force is applied into the system. This assumption leads to
the constrained generalized eigenvalue problemK BT

B 0

ũ
λ̃

 = ω2

M 0

0 0

ũ
λ̃

 (3)

where ω is the circular frequency, and [ũ, λ̃] is a eigenvector. The dimension of the above problem is
nλ+ndofs, where nλ is the number of interface constraints, and ndofs is the total number of displacement
degrees of freedom. As shown in the work developed by Cardona and Geradin in [18], the eigenpair
solutions (ωi, [ũi, λ̃i]) of eq. (14) have the following form

(
ωu1 ,

ũ1

λ̃1

), ...,(ωu
ndofs

,

ũndofs

λ̃ndofs

),(+∞,

 0

λ̃ndofs+1

), ...,(+∞,

 0

λ̃ndofs+nc

) (4)
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In practical problems, the first eigenpairs are the most relevant, whereas higher frequency modes
and the dual counterpart of the mode shapes [0, λ̃i]

T can be discarded.
The eigenvalue problem presented in eq.(14) is generally solved by Krylov subspace iteration meth-

ods such as Lanczos and Arnoldi. Both algorithms produce a similar matrix of a dynamic system linear
operator by means of the orthogonalization of the Krylov vectors generated by successively matrix mul-
tiplication. When the lowest eigenvalues are required to be computed, the inverse action of the linear
operator is needed, what is known as the inverse iteration, which involves the solution of the linear
system such K BT

B 0

ũn+1

λ̃n+1

 =

M 0

0 0

ũn
λ̃n

 (5)

The direct application of Krylov methods in the system (5) is generally not recommended due to the
system singularity, and the possibility of finding spurious modes. In the next subsection we discuss how
eq. (5) can be reformulated, in order to produce an stable and scalable eigensolver.

2.3 Global Assembly Formulation

It is possible to define new a set of basis vectors L = [l1, l2, ..., lp] for eq. (1), such that they span
the nullspace of B eliminating the need of the interface constraints. On the other hand, all the domain
are coupled by this linear operator. In [19], Klerk et. al, called this approach the primal assembly
formulation, once its operator reassembles the classic Finite Element assembly operator. However, in
the presented case, the operator assembles subdomains instead of finite elements. Mathematically, one
writes

u = Lup (6)

where L is the primal assembly operator, that forms a bases of the nullspace of the constraint operator
B, mathematically

BL = 0 (7)

Figure (2) illustrates the connection between the linear constraint operator B and the basis of the
primal assembly operator L. It is possible to see that all bases vector of L lie in the constraint hyperplane
Bu = 0. Also it is shown the orthogonality between the BT and L.

Figure 2. Constraint hyperplane Bu and the connection with the base vectors of L.

Replacing definition (6) into eq. (14) and multiplying it by LT results in the classical generalized
eigenvalue problem without constraints
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LTKLup = ω2LTMLup (8)

The above formulation creates a positive-definite LTKL which can be factorized and usually pro-
duces a stable inverse iteration in Krylov methods. On the other hand, the resulting system is not naturally
parallel, which makes it difficult to achieve numerical scalability due to the strong coupling among the
subdomains.

2.4 Projected Formulation

The global assembly formulation generates displacement vectors that always satisfy the constraint
equation, but it does not explore fully the domain decomposition to accelerate the inverse iteration of
the eigensolver. In order to solve the eigenvalue problem efficiently and profit from the independence of
stiffness and mass matrices of the N subdomains, a constrained Krylov subspace might be built based
on the interface constraint operator, see [20]. The Krylov matrix for the generalized eigenvalue problem
without constraints is defined as:

V = [b, Db, D2b, ... , Dm−1b] (9)

where D ≡ (K−σM)−1M, which is the inverse shift operator such that D : Rn → Rn, and b is a initial
vector, such that b ∈ Rn. When a homogeneus linear constraint Bb = 0 is imposed, the constrained
Krylov basis vectors b′ must lie in the set of admissible vectors, mathematically ν = {b′ ∈ Rn | Bb′ =
0}. Therefore, the constrained Krylov matrix has the form

Vc = [b′, (Db′)′, (D2b′)′, ... , (Dm−1b′)′] (10)

Therefore, one can write a orthogonal projection operator PB into theNull(B) such that PB : b→
b′, where the constraint B(Pb) = 0 holds for every b ∈ Rn. The projection matrix is explicitly written
as

PB = I−BT (BBT )+B (11)

where + represents the generalized inverse, due to BBT be generally singular and I is a block identity
matrix. Defining the projected displacement as u = PBu

proj and replacing this definition in the dual
inverse iteration in (5) by PTB

PTBKPBu
proj
n+1 = PBMPTBu

proj
n (12)

The inverse problem associated with the linear system above is singular but has a solution since the
right-hand side is in the range of the operator PTBKPB. Besides that, the system is highly parallel when
iterative methods such as Conjugate Gradient, BicGS, GMRES are used due to its block structure. The
numerical and parallel scalability can be achieved by defining a proper preconditioner. The action of B
only requires close neighbor communication, and the global coupling between subdomains is performed
by the (BBT )

T+ operator in expression (11). Its computation requires global communication and it is
the factor which has the highest computational cost to assemble the projection.

If we define the scaled Boolean matrix B̃ = SB with the following properties B̃BT = I, where S

is a diagonal matrix whose elements are defined by the inverse of the number of shared subdomains for
a given degree of freedom. Therefore BBT = S−1I and the projection is given by

PB = I−BTSB (13)

where the action of PB defined above may be easily implemented in parallel since it only requires
communication among neighbors subdomains.
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2.5 Dual-Projected Formulation

Whereas the dual inverse iteration (5) can produce spurious modes due to the tolerance error, ε, on
the interface compatibility, Bu < ε, the projection iteration approach in eq. (12) fulfils this requirement
by projecting the solution in the constraint hyperplane. On the other hand, the projection formulation
needs to be solved by a iterative solver, which requires good preconditioner to achieve numerical scal-
ability. Therefore we combine the right-hand side of the projected inverse version in eq. (12) with the
left-hand side of the dual version in eq. (5) in order to have a robust and scalable formulation for the
inverse iteration. Mathematically one writesK BT

B 0

ũn+1

λ̃n+1

 =

PTBMPB 0

0 0

ũn
λ̃n

 (14)

Therefore a projected Arnoldi algorithm can be used to build the constrained orthogonal Krylov
bases vectors. This method is exploited in [21] for updating eigenvalues in nonlinear dynamic problems.
Moreover in [22] the projected Arnordi is used together with PCG method to efficiently compute cyclic
eigenmodes. The procedure is summarized in algorithm 1.

Algorithm 1 Projected Arnoldi Iteration
• Parameters: K,M,B,PB and nint.

1: Initialization
Start with a projected arbitrary vector u0 = PBr and β0 = 0, where r is a random vector.

2: First step iteration
Compute a projected unitary vector v1 = PBMPBu

0

||u0||PBMPB

Solve the dual static-like problem using FETI-solver in alg. 2 :

K BT

B 0

 u1

λ1

 =

v1

0


Compute α1 = uT1 v1

Compute a new orthogonal constrained Krylov vector v2 = u1 − α1v1

3: For j = 2, ..., nint
compute βj = ||u(j−1)||PBMPB

if βj 6= 0 then compute vj = PBMPBu(j−1)/βj
Compute uj by solving the dual static like problem for vj using FETI-solver in alg. 2.
Compute αj = uTj vj
Compute a new constrained Krylov vector vj+1 = uj − αjvj − βjv(j−1)

The bottleneck of alg. (1) is the solution of the dual linear system presented in (5). In the present
work, the linear system is solved by a FETI algorithm which is described is alg. 2. Even though Dirichlet
preconditioner is optimal as shown by Farhat in [23], the Lumped preconditioner is selected due to its
low cost and good efficiency for the numerical examples described below.

3 Numerical Examples

The algorithms described in the previous sections were implemented in Python using Scipy [24],
NumPy and mpi4py. Two numerical examples are considered to illustrate the impact of the different
algorithms strategies in the computations of the eigenpairs. In both cases, structural steel constants are
used (E = 210GPa, ν = 0.3 and = 7500Kg/m3) as the material property. In order to take advantage
of the Scipy wrapper for the ARPACK [6], we construct a sparse linear operator for the inverse iteration
for the three formulations: global assembly, Dual, and Projected-Dual. These linear operators are passed
to the eigensolver method eigsh provided by the scipy linear algebra sparse module. The intention is to
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Algorithm 2 FETI Algorithm
• Parameters: K,B, and v.

Initialization
Compute the pseudoinverse and the Kernel of K→ {K+,R}
Assemble G := −RTBT ,d := BK+v, and e := −RTv
Construct the parallel linear operators F := BK+BT and PG := I−GT (GGT )−1G

2: Solving the interface force λim ∈ Im{G} and compute d̃
λim = GT (GGT )−1e
d̃ = d− Fλim
Solve Dual Interface problem by PCPG
Initialize variables: r0 = d̃, λker = 0, β0 = 0,p0 = 0
Iterate k = 1, 2, ...,while||wk|| > tolerance

Projection wk−1 = PGr
k−1

Precondition zk−1 = F̃−1wk−1

Projection yk−1 = PGz
k−1

βk = yk−1Twk−1/yk−2Twk−2 if k > 1
pk = yk−1 + βkpk−1

αk = yk−1Twk−1/pkTFpk

λkker = λk−1
ker + αkpk

rk = rk − αkpkFpk
4: Assemble u

λ = λker + λim
α̃ = (GGT )−1G(d− Fλ)
u = K+(v −BTλ) + Rα̃

compare the results achieved by both dual strategies with the reference solution given by global assembly
formulation, which is the most accurate and robust method. We vary the tolerances in the FETI solver
to verify its impact in the computation of the eigenmodes. For both cases, 10 eigenpairs are computed
where the eigensolver tolerance is set to 1.0−8 and maximum iterations nint is set to 200.

The first example is a 2D plane-stress beam with width equals 100 m and height equals 10 m. The
global domain is decomposed in 12 subdomains with 252 dofs each, and the local matrices are assembled
using a AMFE, which is a Finite element framework written in Python. We solve the dual linear system
with 3 different tolerances, 10−5,10−6, and 10−7, for the stop criteria on the interface compatibility
defined in alg. 2. The first 6 mode shapes are illustrated in figure 3.

Table (1) shows the maximum, average, and minimum of the absolute value of the Pearson correla-
tion between the first 10 eigenmodes of the reference solution versus the classical dual formulation, and
versus the projected dual version.

Table 1. Pearson correlation between reference solution versus Dual and Dual-Projected formulation.

Dual with Projection Dual without Projection

Tolerance Max Corr. Avg Corr. Min Corr. Max Corr. Avg Corr Min Corr

10−5 0.99 0.42 0.01 0.99 0.47 0.02

10−6 0.99 0.55 0.01 0.99 0.52 0.02

10−7 0.99 0.97 0.90 0.99 0.88 0.46

Analyzing table (1), it is possible to verify that average and minimum values of the correlation are
higher in the projected formulation which shows that this method is more accurate than the classical
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Figure 3. First 6 mode shapes solved by the Dual-Projected formulation using a tolerance equal 10−7

version. Figure (4) illustrates the 8th computed mode shape for the three formulations where different
tolerances are given to the iterative linear solver. It is possible to observe that the mode shape given by
the projected formulation is more similar to the reference sector, when compared with the classical dual
method.

Figure 4. 8th mode shape for (A) Reference solution , (B) Projected-Dual, and (C) Dual using difference
interface tolerances.

Looking fig. ( 4) we clearly notice that the projected formulation fulfills the compatibility constraint,
once gaps cannot be seen between the interfaces of the subdomains. Moreover, it is possible to observe
by the results in the table (1) that the dual formulation without the projection is more sensitivity to the
solver tolerances.

The second numerical example is a 3D model of a simple bladed-disk made of steel with 400mm
of diameter. The whole geometry is composed by 24 sector with 1536 dofs, which are considered as
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subdomains. We apply the same procedure described for the 2D case to compute the eigenpairs, however
we solve the problem with 10−8, 10−9, and 10−10 as tolerances for the interface iterative solver. The
small tolerances are necessary due to the smaller dimension and higher frequencies of the structure.
Four difference eigenshapes are shown in Figure (5) for the tolerance equal 10−9. Table 2 shows the
correlation between the eigenmodes of the global assembly, classical FETI, and FETI with the projection.

Table 2. Pearson correlation between reference solution versus Dual and Dual-Projection formulation

Dual with Projection Dual without Projection

Tolerance Max Corr. Avg Corr. Min Corr. Max Corr. Avg Corr Min Corr

10−8 0.97 0.18 0.00 0.98 0.2 0.00

10−9 0.99 0.51 0.01 0.99 0.52 0.01

10−10 0.99 0.64 0.26 0.99 0.39 0.01

Figure 5. 4 different mode shapes computed by the Dual-Projected formulation with tolerance equal
10−9

For the second case, we observe the same behavior as in the 2D case. The projected formulation
is converging quicker to the correct mode shapes whereas the standard formulation without projection is
not improving even when small tolerances are used.
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3.1 FETI Solver Parallel Scalability

To illustrate the parallel efficiency of the FETI algorithm implemented in Python we decomposed
gradually a 2D rectangular body with width = 800[mm] and height= 200[mm] in identical squared
subdomains with sizes 8x2,12x3,14x4,2x5. The element edge size of the global mesh is set equal 0.25mm
creating a problem with 2,880,000 nodes and 5,760,000 displacement degrees of freedom without any
domain decomposition. The body is fixed in all direction in the left side and it is loaded by a body force
equal 10N in the negative Y-direction. The tolerance of the interface problem is set to 1.0−5. The tests
were executed on the Salomon supercomputer located in IT4Innovations in Czech Republic. In table 3,
we report the computational time for preprocessing which involves the computation of pseudo-inverse,
kernel and factorization of GGT , which are performed in parallel. Besides that, the number of iterations,
total solver time and iteration duration are presented.

Table 3. Strong Parallel Scalability of FETI-solver varying the number of partitions.

Number of Subdomains 16 36 64 100

Total time [s] 298.63 117.02 70.84 54.99

Number of iterations 30 38 41 42

PCPG time [s] 41.42 36.12 32.89 33.39

Preprocessing time [s] 201.33 55.03 23.95 12.04

Interface size 18,472 32,158 45,996 59,854

Kernel size 42 99 180 285

Displacement size 5,787,232 5,786,424 5,814,528 5,828,200

Efficiency [%] 100.0 113.4 105.4 86.9

As summarized in table 3, it is possible to verify a good strong parallel scalability of the imple-
mented FETI algorithm up to 100 subdomains. The number of PCPG iterations increases slowly with
the number of subdomains, whereas the factorization time is drastically reducing as presented in the pre-
processing time row. Therefore, the use of FETI solver for the inverse iteration can reduce the overall
computational time of the eigenpairs calculations in the presence of computational parallel resource.

4 Conclusion

We described how to use FETI solvers to speed-up the computation of large scale eigenvalue prob-
lem. Special attention was given for the interface tolerance and how it affects the mode shapes computa-
tion. We showed that the direct application of FETI solvers for the computation of generalized eigenvalue
problem can produce modes that are not physical modes. Therefore, we introduced a projection formula-
tion to enforce the compatibility after every inverse iteration and consequently stabilize the eigensolver.
The projected formulation together with the classical FETI algorithm can be used safely and we showed
its good parallel strong scalability up to 100 domains for a problem with originally 5,760,000 dofs.
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