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Abstract. The hybrid finite element method, proposed by Pian on the basis of the Hellinger-Reissner 

potential, has proved itself a conceptual breakthrough among the discretization formulations. A 

proposition made by Przemieniecki – for the generalized free vibration analysis of truss and beam 

elements – was incorporated into the hybrid finite/boundary element method developed by the third 

author and extended to the analysis of time-dependent problems by making use of an advanced mode 

superposition procedure that adequately takes into account general initial conditions as well as general 

body actions. It is shown that such a consistent approach leads to frequency-dependent stiffness and 

mass matrices that enter a generalized modal analysis based on a nonlinear eigenvalue problem for 

complex-symmetric systems. This paper presents the basic features of the formulation as applied to 

plane frame structures and assesses some examples available in the technical literature to show that 

remarkable improvements may be achieved with the proposed formulation when compared to the 

classical structural dynamics. Although the formulation is generally valid for three-dimensional 

analysis, owing to space restrictions only two-dimensional plane frames and trusses are dealt with. The 

analytical frequency-domain expressions of beams with and without hinges on the extremities is 

displayed to make evident how axial and transversal modes interact and should be properly taken into 

account.  
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1  Introduction 

An established technique to solve time-dependent problems other than directly dealing with the 

time variable is the formulation of a complete frequency-domain analysis via Laplace or Fourier 
transforms, with subsequent ad hoc expression of results by numerical inversion (Aguilar [1], Dumont 

and Aguilar [2], Dubner and Abate [3], Crump [4], De Hoog et al [5]). Although usually easy to 

implement, such a transform inversion is computationally intensive, if accurate results are to be 

obtained, and is not void of numerical instabilities. Moreover, the inclusion of non-homogeneous 

initial conditions and general body forces may become troublesome.  

An alternative formulation is the modal analysis, which is mainly applied to structural dynamics 

and is based on the expansion theorem for continuous systems, according to which any sufficiently 
continuously differentiable function satisfying the boundary conditions of the problem can be 

represented by the absolutely and uniformly convergent series of the system's eigenfunctions. 

The first author and collaborators have proposed to solve transient problems of potential and 
elasticity using an advanced mode superposition technique that applies to equilibrium-based finite 

element and boundary element models. The developments combine and extend Pian’s hybrid finite 

element formulation [6] and Przemieniecki’s suggestion of displacement-based, frequency-dependent 

elements [7], thus arriving at a hybrid finite/boundary element method for the general analysis of 

transient problems [8]. Starting from a frequency-domain formulation, it is shown that there is an 

underlying complex-symmetric (if viscous damping is included), non-linear eigenvalue problem 

related to the lambda-matrices of a free-vibration analysis, with an effective stiffness matrix expressed 

as the frequency power series of generalized stiffness, damping and mass matrices [9, 10]. The 

eigenvectors of this problem fulfill generalized orthogonality properties that enable the 
implementation of an advanced mode superposition technique. This leads to the solution in the time 

domain and the immediate expression of all results of interest. Since this is an equilibrium-based 

formulation, general domain actions (including body forces and moving loads) as well as boundary 
and initial conditions may be dealt with in a straightforward way.  

The generalized modal analysis ends up having the same mathematical characteristics of the 

traditional one, except that the eigenvalue problem is solved more accurately and fewer degrees of 
freedom may become ultimately required in the practical solution of a given problem. The price to be 

paid is the evaluation of more coefficient matrices of the frequency power series.  

The formulation is extremely advantageous in the analysis of framed structures, as it comes up 

that the classical proposition of one stiffness matrix and one mass matrix (and eventually one damping 

matrix) is just a – conceptually and numerically – unjustified series truncation. This is outlined in the 

paper, thus highlighting some improprieties in the classical text books. Owing to space restrictions 

only the frequency-dependent expressions for Euler-Bernoulli beams considering the four different 

cases of hinge end conditions are given explicitly. 

Przemieniecki’s displacement-based proposition of frequency-dependent truss and beam elements 
was the clear, however very initial, inspiration for the outlined general developments. Although a 

literature review is not intended herein, it should be mentioned that similar, however questionable and 

limited – both conceptually and in terms of applicability –, intents can be assigned to previous 
researchers, such as in the dynamic element method proposed by Voss [11] (see also Triebsch [12] and 

the questioning in the introductory part of Dumont [9]) and in the component-mode method for trusses 

proposed very early by Hurty [13], with similar developments by Craig and Bampton [14] and 

revisited by Weaver and Loh [15] and Weaver and Johnston [16]. 

2  Problem formulation 

The following developments are already outlined in papers by the first author and co-workers [1, 
2, 8 – 10, 17 – 22], although not as compact and objectively as here for the simplest case of Euler-

Bernoulli beams (of which a truss element is a particularization). The conceptually paramount 

expressions of Section 2.2 are to the authors' best knowledge displayed for the first time in the 
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technical literature. It is worth observing that the following developments can be seamlessly obtained 
in the frame of a Laplace or Fourier transform [1]. The frequency term ω  (physical meaning rad/s) to 

be introduced may just be seen as an in principle arbitrary separation constant, as given in the books 

on partial differential equations, with the complete time and space dependent problem eventually dealt 
with in terms of a modal analysis – in the present case a generalized or advanced modal analysis that 

must rely on the solution of a generalized, non-linear eigenvalue problem [10].  

2.1 Basics for truss and beam elements 

The general frequency-domain, small displacement solution ( )u x  of a truss element of constant 

cross section A, elasticity modulus E and specific mass ρ  is 

 1 2

sin
( ) cosN

N
N

k x
u x C C k x

k
= + , (1) 

where 

 ( )2 2 2N Nk i
E

ρ
ω ζ ω= +  (2) 

and such that 1 2
0

lim ( )
Nk
u x C x C

→
= + . Viscous damping 2 Nζ ρ  (force by volume per unit velocity) in 

the axial direction is included just for the sake of completeness but will not be considered in the 

further developments.  

The general frequency-domain, small transversal displacement solution ( )v x  of a slender beam 

element in the Cartesian plane ( , )x y , for constant cross section A, elasticity modulus E, specific mass 

ρ , moment of inertia zI  and transversal viscous damping 2ζρ  is 

1 2 3 42 3

cos cosh sin sinh cos cosh sin sinh
( ) 3

2 2

kx kx kx kx kx kx kx kx
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k k k

+ + − −
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where 
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z

A
k i

EI A

ρ κ
ω ζω

ρ

 = + −    
 (4) 

and such that 2 3
1 2 3 4

0
lim ( )
k
v x C C x C x C x

→
= + + + . Just for the sake of completeness, we include in 

the expression of 4k  the pressure κ  exerted by an elastic (Winkler) foundation on the beam. A more 

general expression for the beam displacements should take into account the transversal shear effect 
(Timoshenko beam) as well as an eventual normal tensile force [1, 7]. However, we consider in the 

following developments only the effect of inertia forces for the transversal displacements of an Euler-

Bernoulli beam, whose general solution is Eq. (3).  

2.2 Stiffness matrices in the frequency domain 

Equations (1) and (3) may be combined to compose a beam's stiffness matrix in the frequency 

domain, as referred to the natural system on the left of Fig. 1, which is oriented according to the 

beam's axial direction in the Cartesian plane. Four cases are given below depending on whether the 
beam is continuously linked or hinged to its adjacent part of the structure. The following array of 

matrices bK  has entries , 0,1i j = , which are precisely the codes for continuity (0) or hinge (1) of a 

beam's left or right extremity. A more general case of the extremities connected to a spring with 

stiffening and viscous damping might be envisaged, but is not considered in this paper. 
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Figure 1. Locally- and globally-oriented coordinate systems of a bar element [25] 

Case (0,0): Continuous beam at both extremities. The stiffness matrix of a bar continuously linked to 
adjacent bars at both extremities is expressed from Eq. (1) for the truss contribution in the coordinates 

1 and 4 as well as from Eq. (3) for the beam contribution in the coordinates 2, 3, 5 and 6 as 
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where we introduce for the particular case of the local coordinate x = ℓ , the bar's length, the 

simplifying notation from Eqs. (1) and (3): 

 sinN Ns k= ℓ ,  cosN Nc k= ℓ , (6) 

 s sink= ℓ ,  c cos k= ℓ ,  sinhS k= ℓ ,  C cosh k= ℓ . (7) 

Case (1,0): Continuous beam on the right and hinged on the left. The stiffness matrix is obtained 

from the matrix of Eq. (5) by linear-algebra condensation of coordinate 3 given on the left of Fig. 1: 
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Case (0,1): Continuous beam on the left and hinged on the right. The stiffness matrix is obtained 

from the matrix of Eq. (5) by linear-algebra condensation of coordinate 6 given on the left of Fig. 1: 
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Case (1,1): Beam hinged at both extremities (truss). The stiffness matrix is obtained from the matrix 
of Eq. (5) by linear-algebra condensation of both coordinates 3 and 6 given on the left of Fig. 1: 
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K . (10) 

Observe that not only the latter matrix for a truss element, but actually all matrices above 
accurately take into account frequency-dependent, longitudinal and transversal inertia effects: quite 

simpler than the approximate component-mode method for trusses proposed by Hurty [13, 14, 15]. It 

should be remarked that the longitudinal and transversal displacement shapes for a beam element – 

whether or not hinged – should also be accurately represented in the post-processing stage as the ones 

of the static analysis added by higher order polynomials that behave as bubble functions: this is 

obtained by just developing the displacements of Eqs. (1) and (3) as frequency power series and after 
expressing the constants in terms of the nodal degrees of freedom represented on the left of Fig. 1. 

The rotation of the matrices above from the bar-oriented system on the left of Fig. 1 to the 

globally-oriented system on the right is a simple task. Assembling all elements' local stiffness matrices 
leads to a global, frequency-dependent effective stiffness matrix while conveniently eliminating 

coordinates to which no stiffening is attached (void global rotation-moment effects at hinges). This 

may be the seen as a procedure in the frame of Laplace or Fourier transforms [1]. (A similar 
development might be conceived for the time-domain analysis and consistently showing transversal 

cross effects for truss elements – which seems to be still explored technically.) 

The following advanced modal analysis develops the matrices above as power series of the 

frequency ω  (the λ −matrices referred to by Dumont [9] in a wider context), with as many terms as 

deemed adequate in a numerical simulation – and not just one term, as unconditionally shown in the 
text books on structural dynamics. Such power series developments can be easily carried out using 

symbolic mathematics and stored for sheer numerical coding, such as in Fortran. The symbolic 

developments in this paper have been done using Maple [26]. Some very simple illustrations of power 
series developments are shown by Dumont [9, 10], for instance. 
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3  Advanced modal analysis 

Instead of formulating the problem for a prescribed frequency ω , as in a Laplace or Fourier 

transform, one expresses a structure's global effective stiffness matrix as a truncated power series of 

ω  [1, 2, 8 – 10, 17 – 22]: 

 2 2 4 6
0 0 1 2 3

1

...
n

j
j

j

ω ω ω ω
=

= + = + + + +∑K K M K M M M . (11) 

In this equation, 0K  is explicitly given as the stiffness matrix of the static discrete-element 

formulation, and the remaining terms of the power series are renamed as generalized mass matrices, 

although they actually constitute a consistent blending of inertia and stiffness properties (Dumont [10] 

presents the complete complex-symmetric linear algebra structure of the problem including damping). 

In this way, the traditional dynamics equation becomes a more general differential equation of time, 

 ( )
2

0 2
1

( 1) ( ) ( ) ( ) ( )
n j

j b b
j j

j

t t t t
t=

 ∂   − − − = −   ∂ 
∑K M d d p p , (12) 

as here proposed for considering some particular solution ( )( ), ( )b bt td p , as for body forces, and for 

which the associate generalized, non-linear eigenvalue problem 

 ( )2( ) ( )ω ω ω− =K M 0  (13) 

must be solved. In this equation, the frequency-dependent stiffness and mass matrices are 

 2 4 6
0 0 2 3

2

( ) ( 1) 2 ...
n

j
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j

jω ω ω ω
=

= + − = + + +∑K K M K M M , (14) 

 2 2 2 4
1 2 3

1
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j

jω ω ω ω−

=

= = + + +∑M M M M M , (15) 

as shown by Dumont [10]. The eigenpairs of this problem come out to satisfy the following 

generalized orthogonality and normalized conditions: 

 T2 2 2 2

1 1

n n
j i i

j
j i

− −

= =

=∑∑ M I    Ω Ω , (16) 

 T T

1 1
2 2 2

0 1
1 1

n n
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j
j i

M

− −

+
= =

+ =∑∑K            Ω Ω Ω . (17) 

Once the problem is solved, mode superposition of the nodal displacements is shown to be 

applicable [10], 

 ( ) ( )t t=d  , (18) 

exactly as in the traditional structural dynamics, except that the eigenpairs are evaluated more 

accurately. The amplitudes ( )t  are then obtained either analytically (Duhamel's integrals) or 

numerically, depending on the time expression of ( )( ) ( )bt t−p p , as an uncoupled set of second-order 

differential equations of time, as traditionally [10]: 

 ( ) ( ) ( )T2 ( ) ( )b b bt t+ = −p pɺɺ ɺɺ                        Ω . (19) 
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3.1 Non-homogeneous initial conditions for damping-free problems 

The more elaborated problem of considering non-homogeneous initial conditions for problems 
with viscous damping as well as some other conceptual issues are dealt with by Dumont [20, 24] and 

Dumont and Chaves [18]. Just for the sake of completeness we present an important remark 

concerning the adequate inclusion of non-homogeneous initial conditions as well as the evaluation of 

b  from given nodal data bd  for the solution of Eq. (19). Let the subsets ( )el  and ( )elΩ  of modes and 

frequencies be related to pure elastic deformation. The initial values at a time instant 0t  of 

displacement amplitudes ( ) 0( )el t  and corresponding velocities ( ) 0( )el tɺ  – to be considered in Eq. (19) 

– are obtained from initial nodal displacements ( ) 0( )el td  and velocities ( ) 0( )el tdɺ  as  

 T
1

( ) 0 ( ) 0 ( ) ( ) 0 ( ) 0( ) ( )el el el el elt t
− =   

K K d             . (20) 

For the subsets ( )rig  and ( )  rig ≡0Ω  of modes and frequencies related to rigid body displacements, 

 T

( ) 0 ( ) 1 ( ) 0( ) ( )rig rig rigt t= M d     . (21) 

The latter expression is given in the books on structural dynamics for all modes (they just write 

M), but is generically valid only as proposed. Equation (20) is obviously not applicable to (time-

varying) rigid body displacements. Several numerical applications in the wider framework of the 
hybrid boundary element method have attested the consistency of these developments [18, 20, 24]. 

4  Numerical examples 

Barros [25] applied the present developments to assess some 2D and 3D frame and truss 

structures proposed in the classical structural dynamics books by Weaver and Johnston [16], Paz and 

Leigh [27] and Petyt [28]. A few 2D examples by Weaver and Johnston [16] are discussed in the 

following. Some more examples as well as some paramount conceptual issues are discussed presently. 

4.1 A three-bar plane truss [16] 

The plane truss on the left of Fig. 2 is the example 3.4 by Weaver and Johnston [16] and explored 

in several parts of their book. We choose this example for its simplicity, which nevertheless enables 
some important – and hitherto unheard of – conclusions related to structural dynamics. Although the 

technical literature – and so do Weaver and Johnston [16] – as a rule only requires a bar's cross section 

area and its length as the geometrical properties for a truss element, our developments show that the 
cross section moment of inertia is of paramount relevancy. For this sake, we suggest that all bars in 

this example have hollow circular cross sections with 0.4 m of external diameter and thickness of 

approximately 5.2 mm, 3.1 mm and 4.15 mm, respectively, in such a way that the cross section areas of 
the bars be exactly 10 in2, 6 in2 and 8 in2, as originally proposed. This is shown in Table 2, which also 

gives the bar lengths corresponding to 10, 6 and 8 inches. The second last row in Table 2 gives the 

slenderness ratio of the bars, which are unlikely to undergo relevant buckling effects. The last row 

displays a slenderness measure proposed by Weaver and Johnston [16] in their chapter on the 

component-mode method for trusses [13]. (An alternative study is carried out by Barros [25] using 

bars with hollow square cross sections). The material is steel, with elasticity modulus 4 23 10 k in , 

which is approximately 206.843GPa , to be entirely consistent with Weaver and Johnston's data. The 

material specific density is 7 2 47.35 10 -k s in
 , or, approximately, 37854.87 kg m . Although all 

quantities in the present development are displayed with up to six figures of precision, all unit 

transformations and all numerical evaluations are actually carried out with 20 digits of precision in the 

software Maple [26].  
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Table 1. Geometrical properties for the plane truss of Fig. 2 (adapted from [16]) 

Tube properties Bar 1 (nodes 1-2) Bar 2 (nodes 1-3) Bar 3 (nodes 2-3) 

Diameter (m) 0.4 0.4 0.4 

Thickness (m) 35.20166 10
∼  

33.10451 10
∼  

34.15028 10
∼  

Cross section area A (m2) 36.4516 10
  

33.87096 10
  

35.16128 10
  

Moment of inertia Iz (m
4) 41.25720 10

∼  
57.62268 10

∼  
41.01106 10

∼  

Length L (m) 6.35  3.81 5.08  

Slenderness ratio 45.4889∼  27.1507∼  636.295∼  

Ratio 
2

z
AL I   2069.24∼  737.159∼  1317.37∼  

 

The left of Fig. 2 is a drawing from a didactical Maple [26] code for general plane frames 

(Dumont's unpublished lecture notes on matrix structural analysis, 1995), where small (blue) triangles 

and squares at the nodes represent support displacement and rotation restrictions, whereas (red) circles 

at the bars' extremities represent eventual hinges. Hinged bars have their hinges specifically 

considered – to be dealt with according to Section 2.2 – and node rotational degrees of freedom (dof) 
to which there is no stiffness attached are restricted. The present problem, with three truss elements 

and three nodes, has only three displacement degrees of freedom: the horizontal displacement at node 

1 and both horizontal and vertical displacements at node 2. Since a truss element has no rotational 
stiffness at the extremities (hinges), the nodal rotational degrees of freedom are all restricted (as given 

by the small squares). As proposed by Weaver and Johnston [16], the simple plane truss on the left of 

Fig. 2 is subjected to a point force acting horizontally at node 2 and given as a succession of five linear 
segments of time, as shown on the right (values originally given in kip). 

 

           

Figure 2. Plane truss (left) submitted to a piecewise-linear force (right) at node 2 [16] 

Table 2 shows in the first row the three eigenfrequencies for the truss analyzed as classically, 
which are also the values given by Weaver and Johnston [16] (with four digits of precision). An 

analysis of this problem with two and three more terms in the frequency power series of Eq. (11) 

shows that the series does not converge, which means that the space discretization of this truss with 
three nodes and three dof is a too coarse one. A second analysis is carried out considering a middle 

node in each bar [which leads to stiffness matrix cases (1, 0) and (0, 1) of Section 2.2], then with a 

total of 6 nodes and 12 dof, with results for the eigenfrequencies given in Table 3. A third analysis, 
with each physical truss element represented as three bars [stiffness matrix cases (1, 0), (0, 0) and (0, 

1) of Section 2.2], with a total of 9 nodes and 21 dof, leads to the frequency results of Table 4. We 

( )P t

1

2

32

1

3

( )ms

20 4.448kN

15 4.448kN

10 4.448kN

5 4.448kN
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may conclude from comparing the results of Tables 3 and 4 that the second analysis with 12 dof and 
three mass matrices quite accurately represents the truss's dynamic behavior when up to the first 6 

vibration modes are activated by some applied load. By the way, the completely wrong vibration 

modes for the truss discretized with three nodes and one mass matrix is given in Fig. 3 [configurations 
with three mass matrices would be different and still wrong, as the power series of Eq. (11) does not 

converge]. The vibration modes for the second analysis, with 6 elements, 6 nodes, 12 dof and 3 mass 

matrices are correct within several digits of precision and are represented in Fig. 4: there is of course 

no correlation with the vibration modes of the too coarse analysis. The deformed configuration of the 

truss at the time instant t = 0.01 s for the piece-wise linear pulse represented on the right of Fig. 2 is 

given in Fig. 5 for both the coarse and the more adequate meshes and one concludes once more how 
wrong some numerical results may become if one is not aware of the issues treated in this paper and 

just follows a text book. The horizontal displacement of the top node of this truss for the applied load 

is given as a function of time in Fig. 6 for both the coarse and the adequate mesh discretizations. This 
coarse mesh result (with one mass matrix) is also displayed by Weaver and Johnston [16], but they are 

probably inadvertently referring to some applied damping, as their data slightly differ from the dash 

line results of Fig. 6. 
 

 

Figure 3. Vibration modes 1, 2 and 3 of the plane truss of Fig. 2 discretized with 3 elements, 3 nodes, 

3 dof and one mass matrix (eigenfrequencies given in Table 2) 

Table 2. Eigenfrequencies (rad/s) for the plane truss of Fig. 2 with 3 nodes and 3 dof 

Frequency number 1 mass matrix 2 mass matrices 3 mass matrices 

1 419.951 282.412 235.100 

2 1167.71 897.417 609.013 
3 1861.80 1055.98 945.186 

Table 3. Eigenfrequencies (rad/s) for the plane truss of Fig. 2 with 6 nodes and 12 dof 

Frequency number 1 mass matrix 2 mass matrices 3 mass matrices 

1 170.147 169.001 168.975 

2 265.100 263.314 263.273 

3 493.146 489.690 489.606 

4 646.512 606.835 597.730 

5 882.701 792.752 774.154 

6 1272.42 1173.75 1146.07 

⋮ ⋮ ⋮ ⋮ 
10 3585.07 3234.81 3150.03 

11 4965.06 4401.01 4237.59 

12 5989.27 5141.13 4804.40 
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Figure 4. Vibration modes 1, 2 and 3 of the plane truss of Fig. 2 discretized with 6 elements, 6 nodes, 

12 dof and 3 mass matrices (eigenfrequencies given in Table 3) 

        

Figure 5. Deformed configuration at the time instant t = 0.01 seconds of the example of Fig. 2 for the 

indicated pulse, with the truss discretized with 3 elements, 3 nodes, 3 dof and one mass matrix (left) as 

well as 6 elements, 6 nodes, 12 dof and 3 mass matrices 

Table 4. Eigenfrequencies for the plane truss of Fig. 2 with 9 nodes and 21 dof  

Frequency number 1 mass matrix 2 mass matrices 3 mass matrices 

1 169.142 168.975 168.975 

2 263.535 263.273 263.272 

3 490.108 489.606 489.604 

4 603.248 594.778 594.353 

5 774.992 764.290 763.566 

6 1146.56 1129.24 1128.01 

⋮ ⋮ ⋮ ⋮ 
10 2212.97 2130.13 2119.03 
11 3021.91 2670.59 2592.64 

12 3640.72 3392.39 3332.55 

 

It should be mentioned that Weaver and Johnston [16] were most probably aware of the bad 

results they displayed for the coarse mesh of Fig. 2, as they present a similar simple truss study in their 
section on component-mode method for trusses (example 10.4) and propose a dramatic improvement 

by explicitly considering flexural modes (a conceptually restricted development, actually). This 

example, which has basically the same geometry of the truss of Fig. 2 (just horizontally reversed) with 
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node 1 completely restricted to displacements, was also assessed in the frame of the present advanced 

modal analysis. In this example, the vertical and inclined bars have the same properties and 
z
I  is 

proposed such that the ratio 
2 250zAL I  , which corresponds to a quite unrealistic cross section, 

although Weaver and Johnston asserts exactly the contrary. The first three vibration modes given by 

Weaver and Johnston [16] are visually corroborated by us, but the fourth mode differs significantly. 

The first six eigenfrequencies given by them compare well with our more accurate analysis (with bars 

subdivided), as reproduced in Table 5, which is certainly due to the extremely high moment of inertia 

they propose: just compare with the results obtained with the data of Table 1. 

 

Figure 6. Horizontal displacement of the top node of the plane truss of Fig. 2 for discretizations with 3 

bars, 3 nodes, 3 dof and one mass matrix (dash line) as well as 6 elements, 6 nodes, 12 dof and 3 mass 

matrices (solid line) 

Table 5. Eigenfrequencies (rad/s) for the plane truss of Fig. 10.14 of Weaver and Johnston [16], 

which is similar to the structure on the left of Fig. 2 with node 1 also horizontally restricted 

Frequency number 1 mass matrix 4 mass matrices Weaver and John 

1 0.204021 0.203962 0.203 

2 0.316677 0.316586 0.317 

3 0.800003 0.795624 0.796 
4 1.19562 1.18870 1.189 

5 1.70362 1.66331 1.668 

6 2.18658 2.14458 2.171 

7 2.92301 2.88231 3.034 

8 3.16742 3.03699 3.163 

9 4.03510 3.56016 3.628 
10 5.98138 5.20551 5.146 

11 6.56036 5.52458 5.575 

12 7.37174 6.77306 8.267 

 

 

Time (s)

D
is

p
la

ce
m

en
t 

x
 0

.0
2

5
4
 (

m
) 



Improved numerical simulation of 2D frame structures using a generalized modal analysis 

CILAMCE 2019 

Proceedings of the XLIbero-LatinAmerican Congress on Computational Methods in Engineering, ABMEC, 

Natal/RN, Brazil, November 11-14, 2019 

By the way, the same example of Fig. 2 is investigated once more for the moments of inertia 
given in Table 1 multiplied by 100 (which also corresponds to a quite unrealistic cross section). The 

results are shown in Tables 7 and 8, which are to be directly compared with the original results of 

Tables 2 and 3: the transversal inertia effects are always of concern no matter how stiff a physical truss 
structural bar may be conceived. 

Table 7. Eigenfrequencies (rad/s) for the plane truss of Fig. 2 with 3 nodes and 3 dof for the 

moment of inertia of Table 1 multiplied by 100 (to be compared with results of Table 2) 

Frequency number 1 mass matrix 2 mass matrices 3 mass matrices 

1 419.951 414.080 413.816  

2 1167.71 1114.38 1107.13 

3 1861.80 1690.36 1639.71 

Table 8. Eigenfrequencies (rad/s) for the plane truss of Fig. 2 with 6 nodes and 12 dof for the 

moments of inertia of Table 1 multiplied by 100 (to be compared with results of Table 3) 

Frequency number 1 mass matrix 2 mass matrices 3 mass matrices 

1 414.092 413.802 413.802 

2 1121.06 1106.19 1105.62 

3 1594.06 1576.11 1575.12 

4 2612.05 2513.47 2499.95 

5 3078.19 2949.71 2927.71 

6 4058.08 3890.98 3863.12 

⋮ ⋮ ⋮ ⋮ 
10 10863.4 9006.23 8352.15 

11 15403.8 12707.3 11821.7 

12 24902.6 20919.9 20034.4 

4.2 A four-panel plane truss presented by Weaver and Johnston [16] 

The following numerical study concerns the symmetric plane truss example 3.5 of Weaver and 

Johnston [16], with eight panels of triangle trusses with a total of 18 nodes. Owing to its symmetry, 

only half of the truss is discretized with 10 nodes and support conditions at the right extremity entered 

to simulate either a symmetric or an antisymmetric behavior. The example is shown in Fig. 7 for the 

case of symmetry. The material is aluminum, with elasticity modulus 69GPa  and material specific 

density 3
2620 kg m . Weaver and Johnston [16] give as geometrical properties only bar lengths and 

cross section areas. In order to estimate the bars’ moments of inertia, Barros [25] considered 0.4 m of 

external diameter of circular cross sections, but we are redoing the calculations with more slender 
bars, of just 0.2 m of external diameter. The geometrical properties of the bars are shown in Table 9. 

The second last row in this Table gives the slenderness ratios of the bars, which are unlikely to 

undergo relevant buckling effects. Observe that bar 12 – on the symmetry axis of the structure – 

contributes with half of the values of cross section area and moment of inertia in the discretization. 

Actually, the cross section area of this bar contributes only in the symmetric part of the simulation, 

whereas the moment of inertia contributes only in an antisymmetric simulation that uses more than 

one mass matrix. The numerical model has a total of 12 truss elements, 10 nodes and 14 dof. 

The vertical translation of node 6 in Fig. 7 is graphically given by Weaver and Johnston [16] and 

could be visually checked by Barros [25] for one mass matrix as closely as possible. However, this is a 
very coarse implementation, and there is no convergence when more mass matrices are introduced, as 

shown for the first three eigenfrequencies displayed in Table 10, which actually invalidates all results. 

We run a second simulation with double the number of bars [stiffness matrix cases (1, 0) and (0, 1) of 
Section 2.2], with a total of 32 bars, 26 nodes and 60 dof. The corresponding results for the first six 

modes are given in Table 11 for implementations with one through four mass matrices: convergence 

can be attained and numerical results are validated for just one mass matrix. Mode shapes, single node 
responses and whole structure configurations with time (a Maple [26] command enables time 
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animation) could be most reliably run for any time-dependent force application and are to be displayed 

in a more extensive version of this paper. The improvements obtained with this example are then of 

the same quality as for the first example. 

Table 9. Geometrical properties for the plane truss example of Fig. 6 (Weaver and Johnston [16]) 

Tube properties Bars 1-11  Bar 12  Bars 13-16 

Diameter (m) 0.2 - 0.2 

Thickness (m) 2
1.00548 10


∼  - 2

1.55298 10


∼  

Cross section area (m2) 3
6 10


  

36 10 2
  3

9 10


  

Moment of inertia (m4) 52.71352 10
∼  

52.71352 10 2
∼  53.85542 10

∼  

Length (m) 5  5  7.07107∼  

Slenderness ratio 74.3497∼  74.3497∼  76.3933∼  

Ratio 
2

zAL I   5527.87∼  5527.87∼  11671.9∼  

 
 

Figure 7. Plane truss submitted to a step force at node 3 (example 3.5 of Weaver and Johnston [16]) 

Table 10. First eigenfrequencies for the plane truss of Fig. 6 with 16 bars, 10 nodes and 14 dof 

Frequency number 1 mass matrix 2 mass matrices 3 mass matrices 

1 79.5502 70.6044 66.6298 

2 276.627 172.044 128.882 

3 520.502 262.323 169.842 

Table 11. First eigenfrequencies for the plane truss of Fig. 6 with 32 bars, 26 nodes and 60 dof 

Frequency number 1 mass matrix 2 mass matrices 3 mass matrices 4 mass matrices 

1 60.0043 59.6827 59.6764 59.6763 
2 66.4225 65.9594 65.9483 65.9480 

3 66.6907 66.2239 66.2126 66.2123 

4 66.7414 66.2739 66.2626 66.2623 

5 87.5428 87.2359 87.2292 87.2290 

6 132.679 131.781 131.761 131.760 

 

The attempt to improve results in terms of the component-mode method for trusses [13] has 

motivated Weaver and Johnston [15] to run a series of simulations for a plane truss similar to the one 

of Fig. 7, obtained by letting the nodes at the right extremity to completely displace and reversing the 

figure horizontally. Weaver and Johnston's thesis is that, when such a truss has a sufficiently large 

number of panels, the results obtained in a classical implementation should coincide – for practical 
applications – with results obtained in a more sophisticated approach, such as proposed by Hurty [13].  

We checked that with our more precise numerical tool and can only partially agree with the 

thesis. To start with, we run the four-panel truss of Fig. 7 again, for nodes 9 and 10 free to displace 
and with the same properties given in Table 9, with either 10 or 26 nodes, as before.  

( )P t
1

2

3
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The main difference is that, with the nodes on the right extremity free to displace in Fig. 7, the 
horizontal bars are no longer submitted to total elongation restraint and the structure tends to behave 

like a cantilever beam (small displacements considered all along the analyses). Instead of showing the 

structure's eigenfrequencies in tables, as before, we attempt to diagnose the whole problem 
graphically, as shown in Fig. 8, for an analysis with 16 bars, 10 nodes and 16 dof compared with the 

analysis with 32 bars, 26 nodes and 64 dof using one through four mass matrices (solid, long dash, 

dash dot and dash lines, respectively). The results are still bad for the 10 nodes analysis, although not 

as bad as in the original example of Fig. 7. The first eigenfrequency seems to not differ much, this 

time (compare with the original results in Tables 10 and 11), but the values for 10 nodes in Fig. 8 

actually converge from 57.6116 to 51.2334 rad/s, while the correct value obtained for 26 nodes is 
50.48300 rad/s (7 digits accuracy). 

This cantilever beam behavior is in fact the effect explored by Weaver and Johnston [15] in their 

example 10.5. They use the geometry of Fig. 7 for one extremity completely free to displace, but 

assuming that all truss members have the same properties ρ , E, A and 
z
I , such that 

2 2250zAL I  , 

for L the panel dimension, in a study for one through six panels and a step force vertically applied at 

the top middle of the panel at the free extremity. The bars' cross sections are then bulkier than the ones 
assumed in the previous example, as shown in the last row of Table 9. The conclusion by Weaver and 

Johnston [15] is that reasonable responses with one bar as one truss element are obtained for a 

structure with four or more panels. We run the same cases as described for Fig. 8, this time with the 
geometry and the mechanical properties given above. A diagnosis in terms of frequency values may be 

drawn from Fig. 9. In fact, when just a few, low vibration modes are activated by the applied forces, 

the results may not be so bad. However, they cannot be considered as reliable, particularly because 

they apply to the very particular case of using a plane truss to simulate a cantilever beam's behavior. 

4.3 A complex plane truss 

The simply supported complex plane truss on the left of Fig. 10 has a large number of panels, to 
show that the local behavior of a truss bar may very much influence a structure's global behavior. The 

dimensions are 9 m in the horizontal direction and 16 m in the vertical, with nodal coordinates of the 

12 nodes multiples of 3 horizontally and of 4 vertically. The material is steel, as in the first example, 

with 2
0.006A m  for all bars and moment of inertia such that 

2 2500zAL I   for the nominal bar 

length 5L m  as for the diagonal members. This corresponds to a hollow circular cross section with 

0.28952m∼ of external diameter and 6.75430mm∼  thickness. (This example was also analyzed 

with a relation 
2 250zAL I  , which would correspond to a tube with 0.89660m∼  of diameter and 

2.13529mm∼  thickness, leading to very stiff truss elements and to results with no flexural 

contribution at all, but corresponding to an unrealistic structure.) 

The structure is first analyzed as shown on the left of Fig. 10, with 12 nodes, 24 bars and a total 
of 21 dof. A second analysis is carried out with double the number of bars, corresponding to 36 nodes 

and a total of 93 dof. The eigenfrequencies for both sets of analysis are shown in Fig. 11 for one 

through four mass matrices (solid, long dash, dash dot and dash lines, respectively). No numerical 
convergence is achieved in the analyses using 24 bars and no result coming from such a discretization 

should be considered reliable. On the other hand, the results with 48 bars look excellent and 

convergence is attained as the number of mass matrices increases. A direct comparison of eigenmodes 

for the structure with 24 and 48 bars is not a simple task. The first three eigenmodes of the plane truss 

with 24 and 48 bars are shown in Figs. 12 (one mass matrix) and 13. In the reliable discretization with 

48 bars it is not possible to single out the bars’ flexural contribution in the modal configurations. The 
deformed, now reliable, configuration for a step force applied horizontally on the top left node is 

shown on the right of Fig. 10 for the time instant t = 0.1 s. The horizontal displacement of the top left 

node, as related to the static effect of the load (an amplification factor of almost 2 is observed), is 
given in Fig. 14 for up to 0.2 s. The result with 48 bars and 93 dof is the solid (black) line, which is 

basically the same graphic for any number of mass matrices. The corresponding result for 24 bars and 

one mass matrix is given in dash (red) line, whereas the result for four mass matrices (always for just 

21 dof) is in longdash (blue) line. As we see, any results with 24 bars are just wrong. 
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Figure 8. Eigenfrequencies for the plane truss of Fig. 7 with nodes on the right free to displace 

 

Figure 9. Eigenfrequencies as in Fig. 8 for a plane truss with stiffer bars 
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Figure 10. Complex truss of Section 4.3 and displacement configuration for t = 0.1 s 

 

Figure 11. Eigenfrequencies of the plane truss of Fig. 10 for discretizations with 24 and 48 bars 

Frequency number

E
ig

en
fr

e
q

u
e
n

cy
 (

ra
d

/s
) 



N. Dumont, R. Barros, C. Aguilar 

CILAMCE 2019 

Proceedings of the XL Ibero-LatinAmerican Congress on Computational Methods in Engineering, ABMEC, 

Natal/RN, Brazil, November 11-14, 2019 

       

Figure 12. Vibration modes 1, 2 and 3 of the plane truss of Fig. 10 discretized with 24 bars 

   

Figure 13. Vibration modes 1, 2 and 3 of the plane truss of Fig. 10 discretized with 48 bars 
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Figure 14. Horizontal displacement of the top left node of the plane truss of Fig. 10 for 24 bars and 

one (dash line) or four mass matrices (long dash line) as well as with 48 bars (solid line) 

5  Concluding remarks 

Barros [25] analyzed the plane frame model proposed as example 6.13 by Weaver and Johnston 
[16], which had already been the subject of analysis by Prazeres [21]. A three-dimensional frame 

model proposed by Petyt [28] was investigated by Barros [25] as well as by Carvalho [29]. The 

analyses by Barros [25], Prazeres [21] and Carvalho [29] – which had research interests independent 

from each other – had in common the application of the generalized modal analysis proposed by 

Dumont and co-workers. The results obtained in [21, 25, 29] corroborate that the models proposed by 

Weaver and Johnston [16] and also by Petyt [28] are adequate if not too high vibration modes are 

activated. On the other hand, another 3D frame model proposed by Paz and Leigh [27] was found out 

completely inadequate by Barros [25]. One may conclude that, since a beam structural model 

inherently takes into account the moment of inertia, the classical structural dynamics developments for 
2D or 3D frames are usually of good quality – if not too high vibration modes are activated.  

On the other hand, as carried out by Barros [25] in his own investigations of the plane trusses of 

Figs. 2 and 7 corresponding to examples 3.4 and 3.5 by Weaver and Johnston [16], as well as for a 
three-dimensional truss model proposed by Paz and Leigh [27], the classical understanding of a hinged 

bar under dynamic loading must be completely revised. The attempts in References [11-16] are just – 

in part misled – approximations of the correct structural and linear algebra treatment proposed by 
Dumont and co-workers in a wide framework, as referenced here. 

The main conclusion to be drawn from the developments of the generalized modal analysis for 

boundary and finite elements – and shown to be extensive to frame structures – is that the classical 

approach of a stiffness matrix plus a mass matrix (and eventually a matrix for viscous damping) is just 

a truncation. In structural dynamics there should not be such a thing as a truss element. Moreover, it 

should be a surprise that, if for a structure made of slender beam elements (local and global buckling 

duly prevented), the global effect of axial deformation may be neglected in the presence of the flexural 

effect, why is that that we feel justified to neglect the effect of flexural deformations in a truss 

element? This paradox is solved here. 
Analyses using lumped matrices, for instance, may work for large numbers of degrees of 
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freedom, or because we know or hope that low vibration modes dominate and there are so many more 
uncertainties to be taken into account (liability of a structure to buckling, non-linear effects, stiffening 

and damping of the joints). It should never be taken for granted in a frame structure – particularly if 

there are hinges – that a numerically modeled node should occur only where there are physical joints. 
The use of the proposed generalized modal analysis is not compulsory in structural dynamics and 

sometimes just shows that a proposed geometric mesh discretization is too coarse, as seen in Fig. 11 

for the example of Fig. 10. A convergence analysis is always advised – most importantly in the text 

books. The computationally simplest and conceptually most enriching refinement should be in the 

frequency domain: just allow for a second mass matrix in your model – one term more in the power 

series – and compare results. An executable Fortran module for the solution of both real and complex-
symmetric, associate non-linear eigenvalue problem may be requested directly to the first author [10]. 

The module can be easily accessed from inside a Fortran, C, Matlab or Maple code. 

It should be once more remarked that the longitudinal and transversal displacement shapes for a 
beam element – whether or not hinged – come out to be the ones of the static analysis added by higher 

order polynomials that behave as bubble functions: this is obtained by just developing the 

displacements of Eqs. (1) and (3) as frequency power series. 
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