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Abstract. Structural analysis requires the derivation of complex functions usually of many variables, 

especially when nonlinearities are considered. From a computational standpoint, to derivate can be a 

great challenge due to a series of limitations inbuilt in the usual derivation techniques. Surmising both 

these factors, this work presents the development of an automatic differentiation (AD) algorithm in 

Python 3.x and its application to structural analysis, aiming at preventing possible compatibility and 

truncation errors inherent to other derivation processes. The software implemented both the forward and 

reverse modes of differentiation and is able to work with algorithms written as string or def Python 

classes. Later, the package was used to obtain the local stiffness (tangent) matrices for plane trusses and 

frames in linear and geometrically nonlinear analysis, derived through energy methods. The results were 

compared with benchmarks found in the literature. Excellent results were found for the stiffness 

matrices, nodal displacements and internal forces, supporting that this technique can be used for solid 

mechanics problem with ease. 
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1  Introduction 

Between the end of the 20th century and the beginning of the 21st, new technology linked 

to Civil Construction impacted and profoundly modified the practice on this sector. From a 

Structural Engineering standpoint, the need was created for engineers to evolve and try to 

apprehend and simulate through more profound studies and thorough analyzes the behavior of 

such innovations, that allowed for slenderer, more economical and complex structures. 

From these studies, two types of nonlinear analysis were developed: physically nonlinear, 

where materials with a stress-strain relationship other then Hooke’s law are considered 

(elastoplastic, plastic and others) and geometrically nonlinear, where the structural equilibriums 

is imposed in a deformed configuration so that to capture higher order effects. Nonlinear 

analyses are highly expensive both on theoretical development and computational effort. 

According to Cook, Malkus e Plesha (1989 apud Sales [1]), they are more difficult to formulate 

and their computational solution may cost from 10 to 100 times as much as a linear 

approximation with the same number of degrees of freedom, especially due to: the complexity 

of the adopted mathematical model, the need to solve nonlinear system of equations and even 

the use of computational numerical methods (as numerical integration and derivation). 

These needs require interesting alternatives that can optimize repetitive processes used in 

nonlinear analyses, such as derivations. For example, using energy methods, equilibrium can 

be imposed as the point of minimal potential energy of the structural system, and the search for 

this minimum requires the evaluation of the derivatives of energy functions. Another point is 

relative to the equilibrium itself, may it be imposed directly or by energy minimization, that 

renders a series of nonlinear equations on the displacements and the techniques usually used 

for the solution of this system require the derivatives of the system equations. 

This work aims at presenting an alternative technique for geometrically nonlinear analyses 

of beams and rods, using an automatic differentiation algorithm (DAALGPY) for imposing 

equilibrium and obtaining the local and global tangent stiffness matrices for trusses and frames. 

2  Derivation techniques and automatic derivation 

The most common methods for determining derivatives are: by hand, numerically, 

symbolically and through algorithms, the latest known as algorithmic or automatic derivation. 

Hand differentiation consists in developing the necessary algebraic expressions making 

use of differential calculus to obtain mathematical formulae for the derivatives. It is hard to 

develop for long and complex expressions and susceptible to errors on calculations or 

implementation. Numerical methods approximate de derivative value around a point by finite 

differences. This allows for simpler functions to be used but accounts for truncation errors that 

reduce its efficiency (Haftka and Gurdal apud Barthelemy and Hall [2]). 

Symbolic derivation consists on the use of specific mathematical analysis software the 

encode calculus rules to automatize the algebraic operations used to derivate. The results are 

precise and have no truncation error, and depending on the capabilities of the used software, 

the expressions can be simplified and compact. On the other hand, it presents an elevated 

computational cost, demanding long processing times for large scale problems. Another 

disadvantage appears when the platform used for symbolic derivations is not the same as for 

algorithm development. In these situations, the expressions must be translated into code, a step 

also susceptible to implementation errors. 
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Lastly there is Algorithmic Derivation (AD). It consists in applying derivation rules 

directly in a computational code. The original function is programmed and the AD algorithm is 

applied, rendering a new function with the derivatives. These are determined by interpreting 

the original function by a computer graph such as Fig. 1, dividing it into successive composite 

functions and latter applying the chain rule of derivations into the nodes. The strategies to 

analyze the graphs are divided into two methods: forward mode and reverse mode. On the first, 

the whole computational graph is analyzed through linear combinations between the node 

derivatives, and the second walks the graph in reverse order, using only the nodes where the 

variable being analyzed exists. 

 

Figure 1 – Graph representation of a function of two variables 

Algorithmic Differentiation, in comparison with other techniques, has the advantage to 

generate results with analytical precision, with no truncation errors and with computational 

costs similar or even lower than symbolic derivation. Due to these characteristics, AD have 

been used by the academic community, with applications on diverse areas as machine learning 

(Šrajer, Kukelova and Fitzgibbon [3]), topology optimization (Linn [4]), among others. 

3  DAALGPY 

The package DAALGPY (Python Algoritmo de Diferenciação Automática) is an 

application of computational differentiation algorithms in Python 3x developed by the first 

author using both forward and reverse modes for the determination of gradients. The algorithm 

accepts as inputs both a single function of a system of functions, as long as each equation is a 

string or an algorithmic function. The semantics for the implemented functions are the same as 

the native module math, so it is possible to use: 

● Binary operations: addition (+), subtraction (−), division (/) and multiplication 

(∗); 

● Trigonometric functions: sine (𝑠𝑖𝑛(∙)), cossine (𝑐𝑜𝑠(∙)), tangent (𝑡𝑎𝑛⁡(∙)), secant 

https://pt.wikipedia.org/wiki/%C5%A0
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(𝑠𝑒𝑐⁡(∙)), cossecant (𝑐𝑜𝑠𝑠𝑒𝑐⁡(∙)) e cotangent (𝑐𝑜𝑡𝑔(∙));  

● Elementary functions: exponencial (𝑒𝑥𝑝⁡(∙)), power (∗∗), natural logaritm (𝑙𝑜𝑔(∙)) 

and square roots (𝑠𝑞𝑟𝑡⁡(∙)). 

 

Figure 2 – Data input in DAALGPY  

On Figure 2, a use example of the derivation package is shown, where: 

● Line 7 imports the derivation module DAALGPY; 

● Line 9 introduces equation X as a string; 

● Lines 11 and 12 build function Y; 

● Lines 14 to 15 build function Z; 

● Line 17 defines the list of variables to be analized; 

● Line 18 defines the list of constants in the problem; 

● Line 19 uses the DAALGPY module in the reverse mode. From left to right: a list 

with all the equations to be derived, the variables, the problem constants and a 

string pointing to a py file name, generated to numerically calculate the jacobian. 

As it analyzes functions or strings, the algorithm uses the native module dis to interpret 

and transform the objects bytecode into a text file in ASCII format. The dis module returns a 

simple human readable representation of how the machine interprets the working code. The file 

generated by the dis module contains 5 columns, as shown in Fig. 3. 

● The first indicates the initial line for that function or string; 

● The second represents the machine address of that bytecode instruction; 

● The third, the bytecode instruction’s name; 

● The fourth column brings the index where that argument is allocated in the table of 

variables and constants 

● The last column shows the human code name of the variable 
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Figure 3 – Bytecode output of equation Z. 

Graphs are constructed from the interpretation of the txt file, as the data generated by the 

dis module are represented by Reverse Polish Notation. Nevertheless, for the subsequent 

operations, it is necessary to convert the representation to direct algebraic, where it is easier to 

apply the chain rule. After conversion of each function 𝑓𝑖 (𝑅
𝑛 → 𝑅), a computational dictionary 

is created to store the computational graph, as shown in Fig. 4.  

 

Figure 4 – Vertices of the computational graph stored in a dictionary for equation Z. 

After the graph representing the operations is constructed, there is a bifurcation on how the 

data is treated according to the chosen differentiation method. In the forward mode (as Fig. 5), 

lists are created to indicate from which variables each node depends. As for the reverse mode, 

the lists will contain the paths walked by each variable, as shown in Fig. 6. 

 

Figure 5 – List on the forward mode. 

 

Figure 6 – Paths on the reverse mode.  

Using the paths or the dependencies, the derivatives are calculated for every node, both in 

the forward or reverse mode. For the implementation of the forward mode, the graph is run one 

more time to determine each derivative, similar to what Birgin [5] indicates for the cases of 
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gradients with few nonzero entries. Unfortunately, this strategy reduced the efficiency of the 

forward mode from a processing time standpoint. 

The last step for the module is to create the output functions in one of two ways: a list 

containing the respective symbolic derivatives (as shown in Fig. 7) or a py file with a function 

to numerically compute the derivatives of the original function, according to the chosen 

derivation technique. 

 

Figure 7 – Data output as symbolic variable for the example.  

4  Energy Methods 

The strain energy (𝑈) of a given body is the energy it absorbs under the influence of an 

external loading, neglecting the rigid body displacements. For a beam of isotropic material 

under normal forces and bending, the stored strain energy is connected to its normal stress and 

strain as 

 
1

.
2

xx xx

V

U dV =   (1) 

Besides of the strain energy, the action of a given load generates an external work (𝛺). It 

is the product of the load (𝑄𝑖) and the displacement (𝑢𝑖) in its application point. As loading, it 

is encompassed volumetric (𝜌), superficials (𝑏), concentrated loads (𝑃𝑖), couples (𝑀𝑗) e torques 

(𝑇𝑘) acting on a body 

     .i i j j k k

n n nV S

u dV b u dS P u M u T u    + + = + +   Ω    (2) 

In a structural system whose strains occur in a gradual manner (quasi-static loading), 

kinetic energy can be neglected, so the total potential energy of the system is 

 Π  U -  Ω.=   (3) 

It is known that internal energy and external work vary with displacements, so that the total 

potential energy can be expressed as a function of the structure’s nodal displacements. From 

the first theorem of Castigliano, the partial derivative of the strain energy 𝑈 with relation to any 

displacement 𝑢𝑖 is equal to a corresponding internal force 𝐹𝑖. By its turn, the derivative of the 

external work by the nodal displacement is the generalized load 𝑄𝑖 itself. With this information 

at hand, the equilibrium condition is imposed according to variational theorems as the point of 

minimal potential energy, that is, ‖𝛻𝛱‖ = 0.  

 = −
i

i

dU
Q

du
  0     (4) 

Deriving the strain energy function in relation to the 𝑛 nodal displacements to which the 
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structure is subject, it is possible to establish the system of equations responsible to describe 

the structural equilibrium. The solution of this system of equations consists in finding the nodal 

displacement values, which can be determined by numerical methods such as Newton-Raphson. 

4.1 Kinematics of a truss element 

In order to determine the strain energy in a truss rod, an element is shown in Fig. 8 in a 

global 𝑋𝑌 system of coordinates, with its position before and after a generic loading is applied. 

It is imposed that the rod stays straight the whole time. 

 

Figure 8 – Nodal displacements. 

From Fig. 8, the initial nodal coordinates are 
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and the final coordinates are 
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The lengths of the bar before and after deformation are respectively 

 
( ) ( )

( ) ( )

= − + −

= − + − + − + −

0 i i i i

i i i i

x2 x1 y2 y1

L u3 u1 x2 x1 u4 u2 y2 y1

L
2 2

2 2

   and

,

  (7) 

so the change in length for the rod is 

  = −
0

L L L    .   (8) 

From mechanics of materials, the axial strain on the bar is 

 


=
xx

0

L
ε

L
.   (9) 

Linear elasticity is assumed, so the constitutive relation is expressed by Hooke’s law and 

strain energy can be expressed as 
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 =  xx

V

U E ε dV
1

² .
2

  (10) 

A truss element is considered to be of constant area and straight. As no external load is 

applied along the bar (only at the nodes), xx  is constant, so the internal energy in an element 

is 

 
 

=    =



l

xx
e xx

E A l
U E ε ² A dx

0
2

0

0

1
.

2 2
  (11) 

If Eq. (8) is considered in its original form, the length of the bar is nonlinear in relation to 

nodal displacements and consequently the strain energy function and the nodal forces. This is 

said to be a geometrically nonlinear analysis and its linear counterpart comes from the 

linearization of Eq. (8) around the initial length with a Taylor series as 

 

( )
( ) ( ) ( ) ( )

=

 −  −  −  −
+ + + +

i i i i i i i i

L u u u u

u y y u y y u x x u x x
l

l l l l 0

0 0 0 0

1, 2, 3, 4

4 2 1 2 1 2 3 2 1 1 1 2
.   (12) 

Linear analyzes are easier to formulate and render a linear system of equations, much faster 

to compute. On the other hand, only with geometrically nonlinear analyzes, can higher order 

effects be captured, what is important in structures with large displacements. 

4.2 Kinematics of a frame element 

A beam of length 𝐿𝑜, Young modulus 𝐸, moment of inertia 𝐼 and cross-section area 𝐴 is 

shown in a local frame of reference in Fig. 9. Each beam node has 3 degrees of freedom 

(vertical, horizontal and rotation). 

 

Figure 9 – Kinematics of a frame beam 

The basic hypotheses for the beam elements are: 

● The body is continuous and deformable, it has length much larger than cross-

section dimensions; 

● In each discretized element, the cross-section area is constant and the material is 
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homogeneous and isotropic; 

● Euler-Bernoulli kinematics is assumed, so cross-sections remain plane and rigid 

and deformations due to shear forces are neglected; 

● Moderate rotations are assumed and small horizontal strains, so for the deformed 

configuration, normal forces increase the bending stiffness of the element. 

Displacements are given by 

 = −  =
x y

dv
u u d u v

dx0
  ,  and    .   (13) 

Considering moderate rotations and small displacements, the Green-Lagrange deformation 

tensor can be expressed in an additive form: 

   = +
xx L NL

  (14) 

The linear and nonlinear terms of the normal strain are stated in Eqs. (16) and (17): 

  = − 
L

du d v
d

dx dx
0 ²

²
  (15) 

 
 
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 

NL

dv

dx

2

1

2
  (16) 

The beam’s strain energy function is 

 ( )  =  +  L NL
U E dA dx

21
  .
2

  (17) 

A mapping is used for easier computer implementation, from a variable 𝜉 ∈ [−1,1] to 𝑥 ∈

[0, 𝑙]. 

 

( )
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− − − −
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−
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2 1
  (18) 

The displacements are approximated with Lagrange and Hermite polynomials for a two-

node element, the displacement fields are represented as 
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The strain energy in an element is than 
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Using a moderate rotations assumption, (𝑑𝑣/𝑑𝜉)4 can be neglected as the derivatives are 
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to the fourth power, thus 
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The linear equivalent is obtained by neglecting the higher order terms, specifically 𝜀𝑁𝐿, 

which depends on the square of the displacements, 

  
 − −

   
=  +     
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²
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5  Newton-Raphson’s method 

From the many methods for solving a system of nonlinear equations, Newton-Raphson’s 

is probably the more broadly used. Ruggiero and Lopes [6] detail its deduction and presents a 

complete algorithm, adapted here for the nonlinear elasticity problem. 

Let 𝐹(𝑥) = 0 be a system of nonlinear equations in multiple variables (gathered in vector 

𝑥) and 𝐽(𝑥) = 𝛻𝐹 its Jacobian. If 𝜂 is a limiting error measure and 𝑥𝑘 is an initial guess, a 

iterative procedure is taken as 

● Calculate 𝐽(𝑥𝑘) and 𝐹(𝑥𝑘); 

● Obtain 𝑠𝑘 as the solution to the linear system of equations 𝐽(𝑥𝑘) ⋅ 𝑠𝑘 = −𝐹(𝑥𝑘); 

● Update the solution as 𝑥𝑘+1 = 𝑥𝑘 + 𝑠𝑘; 

● If √
∑(𝑠𝑘)²

∑(𝑥𝑘)²
< 𝜂, then 𝑥𝑘+1 is the solution; else, 𝑘 = 𝑘 + 1 and repeat. 

The adopted convergence criterium is connected to the change in nodal displacements in 

each iteration. According to Kassimali [7], this criterion usually renders precise results for 

structures whose stiffness decrease with an increasing load. 

6  Validation 

The package DAALGPY was validated by applying it in a program for the structural 

analysis of trusses and plane frames, developed in Python, both for linear elastic and 

geometrically nonlinear elastic analysis, and its results were compared to benchmarks available 

on the literature. 

The analyses were carried using an incremental and iterative process with load steps, thus 

obtaining more expressive results for the structural behavior. For each load step, the code uses 

Newton-Raphson’s method to solve the system of equations, either linear or nonlinear. As the 

iterative procedure require an initial guess, the nodal displacements for the last converged load 

step is used as initial guess for the following. If the previous load step did not converge, a linear 

analysis around the undeformed state is taken as predictor. 

It is necessary for as input parameters: the nodal coordinates, the applied loads, the 

structure’s support conditions and nodal connectivity, area, moment of inertia and Young’s 

modulus for each element. Optional parameters are the maximum number of iterations in a load 

step and convergence tolerance. 

Automatic differentiation was used in both steps needed for this analysis. The strain energy 
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function is given as described by Eqs. (12) and (13) and its derivatives renders the internal force 

vector for the structure. By its turn, the derivative of the internal force vector gives the tangent 

stiffness matrix, used as the Jacobian in Newton-Raphson’s method. 

For the frame implementation, it was necessary to make use of numerical integration, using 

Gauss quadrature to evaluate the strain energy function, thus also for the derived internal force 

vector and tangent matrix. A quadrature with 3 points was used as it suffices for both linear and 

nonlinear versions of the strain field. 

The stiffness matrices generated with the AD package were compared with 

implementations by Kassimali [7] and Zermiani [8]. The results for nodal displacements and 

internal forces were also compared as a general indicator for the solution process. 

7  Results and discussion 

7.1 Plane truss of 5 rods – linear and nonlinear analysis 

This example proposed by Segnini [9] consists of a plane truss buit out of five bars, all 

made of a linear elastic material with Young’s modulus 𝐸 = 20⁡𝐺𝑃𝑎 and cross-sectional area 

of 𝐴 = 0,001⁡𝑚2. The structure is subject to a concentrated downward load 𝑃𝑙 = 180⁡𝑘𝑁 at 

node 1. Figure 10 below presents a schematic drawing of the truss. 

 

Figure 10 – Five bar truss.  

The analysis was carried accounting for geometrical nonlinearity. Ten load steps were used 

with a displacement tolerance of 𝜂 = 0,001. The results were compared with the nonlinear 

analysis in Segnini [9]. Table 1 below shows the final displacements for the single degree of 

freedom for each load step. 
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 Table 1 – Vertical displacement for the five-bar truss 

P/Pl 
Vertical displacement of node 1 (cm) 

% 
Segnini [9] AD 

0,1 -0,001380 -0,001380 0,00% 

0,2 -0,002760 -0,002760 0,00% 

0,3 -0,004139 -0,004139 0,00% 

0,4 -0,005518 -0,005518 0,00% 

0,5 -0,006897 -0,006897 0,00% 

0,6 -0,008275 -0,008275 0,00% 

0,7 -0,009653 -0,009653 0,00% 

0,8 -0,011031 -0,011031 0,00% 

0,9 -0,012409 -0,012409 0,00% 

1,0 -0,013786 -0,013786 0,00% 

It can be noticed that convergency was achieved for every value. Besides the vertical 

displacement, the tangent stiffness matrix analytically developed by Kassimali [7] is compared 

to the one derived algorithmically by DAALGPY, as is shown in Fig. 11 for beam 2 in the last 

iteration of the last load step. 

 

Figure 11 – Comparison of the tangent stiffness matrices for rod 2.  

For this example, the divergency between the stiffness matrices was found in the 13th 

decimal, possibly unnoticeable within Python’s float point arithmetic system. 

The verify the computations for the internal force vector, a comparison was carried to the 

results in Sales [1] for a linear analysis of the structure. Equation (15) was used for the linear 

approximation of the strain energy, so that a linear system of equations was obtained. 
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Table 2 – Comparison of axial forces. 

Bar 
Axial force (kN) 

Difference % 
Sales [1] AD 

1 27,4436 27,4481 0,02% 

2 46,8386 46,8690 0,06% 

3 61,2728 61,3347 0,10% 

4 46,8386 46,8690 0,06% 

5 27,4436 27,4481 0,02% 

The results for displacements and axial forces agree with the literature, corroborating to 

validate this implementation. 

7.2 Single beam truss – nonlinear analysis 

This example proposed by Segnini [9] consists of a plane truss with a single rod (as to 

simulate a symmetrical triangular configuration). The rod is mad of elastic linear material with 

elasticity modulus 𝐸 = 20500⁡𝐾𝑁/𝑐𝑚² and cross-section area of 𝐴 = ⁡6.526⁡𝑐𝑚². The 

structure is subject to a concentrated downward load 𝑃𝑙 = 10⁡𝑘𝑁 at node 2. Figure 12 below 

presentes a schematic drawing for the truss. 

 

Figure 12 – Single rod truss. 

Equilibrium was imposed by the minimization of the strain energy function taking into 

account geometrical nonlinearity. Ten load steps were used with a tolerance of 𝜂 = 0.001. 

Results were compared to those obtained by Segnini [9] and Sales [1] also for nonlinear 

analysis. Table 3 contains the final displacements for the vertical displacement of node 2. 
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Table 3 – Results for single rod truss. 

Load (kN) 
Vertical displacement of node 2 (cm) 

AD Segnini[9] Difference % Sales[1] Difference % 

1 -0,264 -0,264 0,00% -0,264 0,00% 

2 -0,553 -0,553 0,00% -0,553 0,00% 

3 -0,872 -0,872 0,00% -0,872 0,00% 

4 -1,234 -1,234 0,00% -1,234 0,00% 

5 -1,658 -1,658 0,00% -1,658 0,00% 

6 -2,187 -2,187 0,00% -2,187 0,00% 

7 -2,957 -2,957 0,00% -2,957 0,00% 

8 -21,619 -2,902 644,97% -21,619 0,00% 

9 -21,783 -21,783 0,00% -21,783 0,00% 

10 -21,941 -21,941 0,00% -21,941 0,00% 

For this example, a large discrepancy was found for the load of 8⁡𝐾𝑁. The value of 

−21,619⁡𝑐𝑚 was found in the present work with AD as well as by Sales [1] with the stiffness 

matrix obtained analytically, both with a large number of iterations. The value of −2,902⁡𝑐𝑚 

obtained by Segnini [9] can be reproduced ignoring convergency and limiting the Newton-

Raphson process to 25 iterations (as described by the author). Thus, it is possible to admit that 

the correct value is close to −21,619⁡𝑐𝑚 and that the present application is satisfactory for 

geometrically linear and nonlinear trusses. 

7.3 Column under eccentric compression 

This example proposed by Zermiani [8] consists of a balance column made of elastic linear 
material with Young’s modulus 𝐸 = 943⁡𝐾𝑁/𝑐𝑚², cross-section area 𝐴 = ⁡225,00⁡𝑐𝑚² and 
moment of inertia 𝐼 = 4218,75⁡𝑐𝑚4. The structure is subject to a concentrated downward load 
𝑃𝑙⁡ = ⁡39,24⁡𝑘𝑁 and a couple 𝑀𝑙⁡ = ⁡−220,43⁡𝑘𝑁𝑐𝑚. Three meshes were used: 2, 3 and 11 
nodes. Figure 12 below shows a schematic representation of the problem. 

 

Figure 12 – Column under eccentric load. 

The column was analyzed with a nonlinear implementation and later with the linear 

formulation for comparison. The nonlinear approach used ten load steps and convergence 

tolerance of 𝜂 = 0,001. Results were compared for the displacement on the top of the column 
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and the moment on the bottom.  

Table 4 – Results for the column under eccentric load – nonlinear analysis. 

Mesh 

Horizontal displacement 

(𝑐𝑚) 
Difference 

% 

Reaction moment 

(𝑘𝑁𝑐𝑚) 
Difference 

% 
Zermiani AD Zermiani AD 

2 2,323334 2,323334 0,00% 311,5974 311,5976 0,00% 

3 2,324826 2,324824 0,00% 311,6566 311,6561 0,00% 

11 2,324733 2,324926 0,01% 311,6391 311,6601 0,01% 

The difference between the analyses is neglectable, so the results can be regarded as valid. 

As for the trusses, also the local stiffness matrix was compared to the one Zermiani [8] derives 

analytically. Figure 13 compares the local stiffness matrix for element 10 in its last iteration, 

obtained by AD and analytically. Once again, the difference in results are inside the precision 

for Python’s float point arithmetic. 
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Figure 13 – Local stiffness matrices for elemento 10 in nonlinear analysis. 

For the linear analysis, the results are summarized in Table 5. 

Table 5 – Results for the column under eccentric load – linear analysis.  

Mesh 

Horizontal 

Displacement (cm) Difference % 

Moment at support 

(kNcm) Difference % 

Zermiani AD Zermiani AD 

2 1,73151 1,73151 0,00% 220,4299 220,4300 0,00% 

3 1,73151 1,73151 0,00% 220,4301 220,4300 0,00% 

11 1,73143 1,73151 0,00% 220,4298 220,4300 0,00% 

The small fluctuations on the results are also probably to numerical accuracy, as those 

agree also with hand calculations. The linear stiffness matrix is shown in Fig. 14. 
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Figure 14 – Linear stiffness matrix for element 10.  

7.4 Plane frame for a building 

This example, proposed by Banki [10] and studied by Junges, La Rovere e Loriggio [11], 

consists of a frame used as bracing structure for a small building, subject to vertical and 

horizontal loads. The geometrical characteristics of the frame are: columns and beams made of 

linear elastic material with Young’s modulus 𝐸 = 27⁡000⁡𝑀𝑃𝑎, beams cross-sections of 

13 × 35⁡𝑐𝑚 and columns 30 × 20⁡𝑐𝑚. A mesh of 12 beam elements was used for the analysis. 

Figure 15 presents a schematic drawing with the proposed load. 
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Figure 15 – Frame for a small building 

A geometrically nonlinear analysis was made, with 10 load steps and a convergency 

tolerance of 𝜂 = 0.001. The results are compared to the bibliography for the horizontal 

displacement at the top of the frame and are shown in Table 6. 

Tabela 6 – Results for the small building 

Horizontal displacement (cm) 

AD Banki  Difference % 
Junges et. al 

(SAP 2000)  
Difference % 

4.868 4.866 0.04% 4.872 0.08 

Later, the loads were amplified as to subject the structure to its limit load, obtaining the 

following curve of stress as function of the displacement: 
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Figure 16 – Load – displacement analysis for the frame 

It can be noticed from Fig. 16 that the frame’s displacements are subject to nonlinear 

effects. The ultimate load for global buckling of the frame is approximately 6 times larger than 

the load in Fig. 15. 

8  Conclusion 

The results shown in section 7 display the structural responses obtained using the 

DAALGPY automatic differentiation package are satisfactory when compared with numerical 

results in the literature. The only discrepancy was found in section 7.2 but is most likely not 

related to the differentiation algorithm. 

It was noticed that the values found for the local stiffness matrices for frames and trusses 

show small differences with the analytical expressions by the order of 10−16. As stated before, 

this difference is most likely due to the float point arithmetic system, as the functions obtained 

by AD usually have many more operations than the simplified analytical expressions, thus are 

more susceptible to computational limitations. 

An interesting point using the AD algorithm was the possibility to chance between linear 

and nonlinear analysis by a simple change on the expression for the strain energy function. This 

flexibility made possible to run different analysis inside the same computer code, each taking 

different considerations for the structural kinematics, generating simple but flexible programs. 

The implementation can easily be extended to use more complex formulations for 

geometrically exact nonlinear formulations of frame structures, taking into account large 

deformations, physical nonlinearity for trusses and frames, application to topology optimization 

among others.  
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