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Abstract.  

The continuum mechanics deals with the interaction between two bodies in order to analyze the 
stresses in the domain due to the contact load. In this way, to compute the stresses, it is considered 
each body as a semi-infinite in extent and having a plane surface. The Boundary Element Method 
(BEM) appears as a numerical technique for evaluating this type of problem. Using this technique, the 
boundary is discretized and the stresses are computed in the body domain. This paper consists of the 
multiscale analysis via Dual Boundary Element Method (DBEM) of fatigue life of aircraft fuselage 
plate. The macro analysis is evaluated through the stress field in the plate due to continuum 
mechanics. With this stress field, a micro element, composed by different distribution of cracks, is 
subjected to fatigue and analyzed by Dual Boundary Element Method (DBEM). This is accomplished 
using the software BemCracker2D obtaining fatigue life data in each crack increment. For this, 
advanced computational techniques were developed to evaluate the fracture mechanics behavior with 
the purpose of ensuring the integrity and the good functioning of the fuselage during its design 
lifespan. 
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1  Introduction and Theory 

From the technical point of view, it is sought to develop structures that are subject to combinations of 
external loads in a way that works in the usual situation and does not reach the respective Ultimate and 
Service Limit States [1]. For this, the knowledge of the stress field is a necessary condition to predict 
the behavior of these elements to avoid combinations that provoke a Limit State.  
 
This paper analyzes the growth of aircraft fuselage subjected to external loads evaluated from the 
continuum mechanics [2]. In this way, a macro analysis of stresses in a fuselage plate is realized from 
the theory of the continuum, and after it is analyzed the behavior of the advance of the crack in this 
plate to evaluate fatigue, residual strength, Stress Intensity Factors, crack path and the deformations at 
every crack increase. The main objective is to evaluate from the continuum mechanics, cracked 
fuselage plates when subjected to continuum stresses. And, as specific objectives define crack 
propagation to obtain fracture mechanics parameters at each increment, such as: Stress Intensity 
Factors, number of loading cycles (fatigue), deformations and residual strength [3-12].  
 
Fatigue is characterized by a cyclic loading process that causes progressive internal cumulative 
structural damage. After a certain number of cycles, the cracks can reach critical lengths that can make 
the structure unstable and, in some cases, lead to collapse. Admitting an elastic half-space body shown 
in Figure 1. External loads p(x) and q(x) act on the surface over the region from x = -a to x = b while 
the remainder of the body is free from loads. The stress components σx, σy, τxy at all points through the 
solid are computed according to [13, 14] shown in Equations 1, 2 and 3. 
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2  Methodology 

To achieve the objectives a routine was developed in Matlab to automate the stress field derived from 
continuum mechanics based on [13, 14] and showed in Eqs. 1, 2 and 3. From the stress field, it is 
analyzed the crack propagation in an infinitesimal element through Dual Boundary Element Method 
(DBEM) using BemCracker2D [15, 16] to obtain the required parameters. The DBEM has several 
advantages over other methods, mainly due to the simplified modelling of the cracked area, direct SIF 
calculation, reduced run times and accurate crack growth simulation [17-19]. 

2.1 Macro element analysis  

Figure 2 shows the model of the continuum problem to be analyzed. P and Q are normal and shear 
loads (MPa), respectively, and they can be non-uniform with lengths a and b (cm). With automation, 
loads P, Q (MPa) and a, b (cm) will assume the values in Table 1. 
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Figure 1: Model of the continuum mechanics Figure 2: Macro element analysis 

 

Table 1: Loading Series 
 P Q a b 

Loading Series 1 1000 0 -10 10 
Loading Series 2 1000 0 -10 0 
Loading Series 3 1000 1000 -10 10 
Loading Series 4 1000 1000 -10 0 
Loading Series 5 0 1000 -10 10 
Loading Series 6 0 1000 -10 0 

 

2.2 Micro element analysis  

From the applied external load, the micro element is subject to stress in the directions x (𝜎𝜎𝑥𝑥), y (𝜎𝜎𝑦𝑦), 
and shear (𝜏𝜏), according to Figure 3. The value is obtained directly from the stress field of Eqs. 1, 2 
and 3 considering a square of 1 cm of side located in the origin of the axis (x, y) of Figure 2. The pre-
established crack has initial size of 0.1 cm. 

3  Results 

For the 1 x 1 cm micro element located at the axis origin shown in Figure 2 with a preexisting crack of 
0.1 cm size subjected to the loading series 1, 2 and 3 presents the following stress fields indicated in 
Table 2. Applying these stress fields, the crack growth path and deformation results are shown in 
Figures 4, 5, 6, 7 and 8 for each loading series, respectively. The objective results of this work are 
shown in Tables 3, 4, 5, 6, 7 and 8 for each increment of crack of size 0.05 cm. 
 

Table 2: Stress field in the micro element (MPa) 

Loads (MPa) σx σy τ 
Loading Series 1 999.87 1000.00 0.00 
Loading Series 2 499.94 500.00 318.31 
Loading Series 3 999.87 1000.00 999.87 
Loading Series 4 0.00 818.31 818.25 
Loading Series 5 0.00 0.00 999.87 
Loading Series 6 0.00 318.31 499.94 

    
Figure 3: Micro element stress field 
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(a) Crack growth (b) Deformed mesh 

Figure 4: Fuselage behaviour Loading Series 1 

  
(a) Crack growth (b) Deformed mesh 

Figure 5: Fuselage behaviour Loading Series 2 
 

  
(a) Crack growth (b) Deformed mesh 

Figure 6: Fuselage behaviour Loading Series 3 
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(a) Crack growth (b) Deformed mesh 

Figure 7: Fuselage behaviour Loading Series 4 
 

  
(a) Crack growth (b) Deformed mesh 

Figure 8: Fuselage behaviour Loading Series 5 
 

  
(a) Crack growth (b) Deformed mesh 

Figure 9: Fuselage behaviour Loading Series 6 

Table 3: Results for Loading Series 1 
Crack 

increment Residual Strength Load Cycles SIF I 
(MPa√m) 

SIF II 
(MPa√m) 

SIF-EQ 
(MPa√m) 

0 0 0 72.0622 -1.99E-12 1 
1 0.755681 52.49072 95.3607 3.87E-12 1.32331 
2 0.599116 74.93781 120.281 5.71E-12 1.66913 
3 0.488826 85.94768 147.419 3.49E-12 2.04572 
4 0.407959 91.83705 176.641 5.77E-12 2.45122 
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5 0.347234 95.2159 207.532 9.02E-12 2.8799 
6 0.300915 97.27797 239.477 1.13E-11 3.3232 
7 0.265304 98.61077 271.621 1.43E-11 3.76926 
8 0.237991 99.52177 302.793 1.37E-11 4.20183 
9 0.217433 100.1813 331.422 1.50E-11 4.59911 
10 0.202717 100.6895 355.482 1.77E-11 0 

Table 4: Results for Loading Series 2 
Crack 

increment Residual Strength Load cycles SIF I 
(MPa√m) 

SIF II 
(MPa√m) 

SIF-EQ 
(MPa√m) 

0 0 0 36.0315 -18.1037 1 
1 0.632296 213.5569 73.2124 -0.84049 1.58154 
2 0.462899 262.0393 99.9985 -1.30234 2.1603 
3 0.352915 280.5802 131.166 -1.60581 2.83354 
4 0.269149 288.3648 171.998 -1.84885 3.71541 
5 0.200498 291.5654 230.901 -2.1395 4.98759 
6 0.143529 292.7709 322.502 -4.36119 6.96725 
7 0.097036 293.167 477.023 -6.43715 10.3055 
8 0.060193 293.2741 769.099 -7.71436 16.6134 
9 0.032617 293.2959 1419.23 -16.9419 30.6589 

10 0.015239 293.2988 3037.89 -30.1767 0 

Table 5: Results for Loading Series 3 
Crack 

increment Residual Strength Load cycles SIF I 
(MPa√m) 

SIF II 
(MPa√m) 

SIF-EQ 
(MPa√m) 

0 0 0 72.0622 -56.8669 1 
1 0.625724 12.19713 180.323 -2.97177 1.59815 
2 0.457403 14.90175 246.723 -3.10891 2.18626 
3 0.349803 15.9353 322.623 -3.83444 2.85875 
4 0.267462 16.37333 421.986 -3.77599 3.73886 
5 0.199112 16.55436 566.807 6.25634 5.02231 
6 0.14179 16.62216 795.865 -11.0773 7.05268 
7 0.094871 16.644 1189.55 -14.2971 10.5406 
8 0.057789 16.6497 1953 -19.7375 17.3044 
9 0.030269 16.65079 3728.16 -50.1163 33.037 

10 0.014518 16.65092 7772.58 -112.564 0 

Table 6: Results for Loading Series 4 
Crack 

increment Residual Strength Load cycles SIF I 
(MPa√m) 

SIF II 
(MPa√m) 

SIF-EQ 
(MPa√m) 

0 0 0 -1.03274 -46.5369 1 
1 0.462376 58.17771 114.887 -3.02649 2.16274 
2 0.295878 68.5422 179.651 -2.94942 3.37977 
3 0.204239 71.15631 260.284 -3.69231 4.89622 
4 0.13787 71.94176 385.551 -6.18795 7.25323 
5 0.067592 72.13344 786.415 -12.7495 14.7947 
6 0.023467 72.15182 2241.98 -190.739 0 

Table 7: Results for Loading Series 5 
Crack 

increment Residual Strength Load cycles SIF I 
(MPa√m) 

SIF II 
(MPa√m) 

SIF-EQ 
(MPa√m) 

0 0 0 5.26E-12 -56.8669 1 
1 0.70775 42.85735 92.7189 -1.92455 1.41293 
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2 0.533504 66.2019 123.024 -2.15511 1.8744 
3 0.41769 76.00086 157.148 -2.50916 2.39412 
4 0.323276 80.4276 203.06 2.88698 3.09333 
5 0.241713 82.31484 271.616 -2.89937 4.13714 
6 0.172536 83.03004 380.51 4.25847 5.79588 
7 0.116098 83.26259 565.396 -8.58928 8.61339 
8 0.071527 83.32451 917.885 -9.54093 13.9807 
9 0.038275 83.33682 1715.07 -24.0966 26.1266 

10 0.018188 83.33842 3609.64 -40.1977 0 

Table 8: Results for Loading Series 6 
Crack 

increment Residual Strength Load cycles SIF I 
(MPa√m) 

SIF II 
(MPa√m) 

SIF-EQ 
(MPa√m) 

0 0 0.00E+00 -0.40058 -28.4337 1 
1 0.535001 304.8075 60.9072 -1.49791 1.86915 
2 0.364999 387.2771 89.3236 -1.39278 2.73973 
3 0.271768 413.3057 119.968 -1.84095 3.67961 
4 0.20842 423.7156 156.436 -2.29929 4.79799 
5 0.158883 428.1429 205.199 3.25889 6.29394 
6 0.115122 429.9184 283.155 -5.37929 8.68646 
7 0.074583 430.5016 437.111 -7.33041 13.4078 
8 0.040978 430.6351 795.669 11.3547 24.4033 
9 0.018362 430.6535 1775.73 -25.0611 54.4615 

10 0.011113 430.6551 2045.23 -1348.8 0 

4  Conclusion 

The crack paths follow the stress field presented in Table 2. Loading Series 1 result in a linear crack 
path due to the symmetrical stress field without shear stress. The crack growth in Loading Series 2 is 
similar to Loading Series 3 since the stress field is almost half of each other. Loading Series 4 and 6 
represent a mixture of high and low magnitude of y-normal and shear stress, respectively. In the first 
case (LS4) the crack is deflected up. In Loading Series 5 there is the crack growth for pure shear 
stress.  
 
Now, analyzing the numerical results of residual strength and load cycles in Tables 3 to 8 varying the 
size of application (LS1, LS3 and LS5 a=b=10 cm ; to LS2, LS4 and LS6 a=0 cm and b=10 cm), 
comparing the Loading Series 1 and 2 (Tables 3 and 4, respectively) with pure external normal stress 
(P=1000 MPa), neglecting the external shear load. The residual strength reduces and the number of 
load cycles increases since the micro stress field reduces. For Loading Series 3 and 4 there is a mixture 
of normal and shear loads (P=1000 MPa and Q=1000 MPa), in these case the residual strength reduces 
and the number of load cycles increases, again, since the micro stress field reduces.  For Loading 
Series 5 and 6 with pure external shear load (Q=1000 MPa) residual strength reduces and the number 
of load cycles increases, again, since the micro stress field reduces.  
 
Analyzing the results of Stress Intensity Factors (SIF), there is a mixed mode fracture and higher 
values of 𝜎𝜎𝑥𝑥, 𝜎𝜎𝑦𝑦 and 𝜏𝜏 increases SIF I and SIF II  depending on the crack direction. For Loading Series 
1, SIF I increases and SIF II is zero for each crack propagation. In all other Loading Series both SIF I 
and SIF II increase for each crack increment. 
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