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Abstract. This research aims to formulate and implement a continuous-discontinuous approach for 

failure of quasi-brittle materials. This approach is based on a damage evolution law using only 

physical parameters, which can be obtained through fracture and resistance tests without the need of 

further calibration. Comparison with experimental results were performed to assess the accuracy and 

efficiency. The tests simulated with the model were the three-point bending in a single edge notch 

beam. The results obtained herein confirmed the efficiency and accuracy of the model in predicting 

rupture behavior. Moreover, the model can provide results with equivalent accuracy to others in the 

literature using fewer elements in the mesh. 
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1  Introduction 

In quasi-brittle fracture, the Fracture Process Zone (FPZ) ahead of the macrocrack is large when 

compared to the size of the crack and to the characteristic size of the structure [1, 2, 3, 4]. Most of this 

zone is characterized by a nonlinear behavior caused mainly by inelastic deformations and coalescence 

of microcracks, which is studied in the literature by Continuum Mechanics and Fracture Mechanics [5, 

6, 7, 8, 9, 10]. Continuum Mechanics has been used to describe the dissipation behavior of materials 

induced by the initiation and development of microcracks around a macrocrack. One approach is the 

Continuum Damage Mechanics (CDM), which considers state variable to describe the irreversible 

processes, such as the state of damaging and softening [11, 12]. Fracture Mechanics deals with 

discontinuities caused by the formation and growth of a macrocrack. A very common idealization in 

Fracture Mechanics is the Cohesive Zone Models (CZM), initially introduced by Barenblatt [13, 14] 

and Dugdale [15], to overcome some limitations of the Linear Elastic Fracture Mechanism (LEFM) 

and to address the crack tip singularities. 

Thus comes an idea of an integrated continuous/discontinuous failure description in which the 

degradation occurs initially in the FPZ described by a CDM and then the discontinuity growth 

described by Fracture Mechanics, when the damage reaches a limit value in order to demand the 

localization of a crack. Wells et al. [16], Simone et al. [17], de Borst et al. [18], Comi et al. [19], 

Cuvilliez et al. [20], Tejchman and Bobinski [21], Roth et al. [22] and Li and Chen [23] have 

successfully combined continuous-discontinuous approaches to model crack damage and propagation 

in two-dimensional domains. Some of these articles make use of the advantages of recently developed 

methods for crack propagation that use the Partition of Unit, such as the XFEM. 

This article formulated and implemented a model that couples a continuous approach, through the 

damage mechanic and fracture laws, and a discontinuous approach, through the Generalized Finite 

Element Methods (GFEM), for the prediction of failures in quasi-brittle structures. Its main 

contribution is the development of a model able to simulate the resistance of structural members with 

mesh objectivity and crack propagations mesh independent. The novelty is a model based on a law of 

damage evolution with only physical parameters obtained in resistance and fracture tests without the 

need for additional calibration or curve fitting for the sample response curve, which allows the 

transition from the continuous to discontinuous with a compatible energy balance. 

2  Damage model formulation 

The proposed damage model is applied to the quasi-brittle materials under loading conditions that 

result in mode I or mixed (I+II) of crack propagation. The fundamental hypotheses which define the 

capacity and limitations of the model consider that: the material in process of damage evolution is 

considered an elastic medium and plastic and inelastic deformations are not considered; the damage is 

represented by a scalar variable 𝐷(0 ≤ 𝐷 ≤ 1), therefore, an isotropic damage condition is assumed 

for the material. 

2.1 Control variable and activation criterion of damage 

The damage is controlled by a state variable that is related to the strain tensor by an equivalent 

strain, 𝜀𝑒𝑞. For cases where there is a predominance of hydrostatic deformations and the local shear 

strain are negligible (mode I cracking), the equivalent strain presented by Mazars [24], here called 

𝜀𝑒𝑞
𝑀𝐴, is suggested by literature as a simple and efficient measurement ( [24, 25, 26, 17, 27, 4, 28]: 

𝜀𝑒𝑞
𝑀𝐴 = √∑(⟨𝜀𝑖⟩+

)
2

3

𝑖=1

 (1) 
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with ⟨𝜀𝑖⟩
+

= (𝜀𝑖 + |𝜀𝑖|)/2 and 𝜀𝑖 the principal strain in the 𝑖 direction. 

In situations where shear stresses are not negligible in the definition of the strain state (mixed 

mode crack), the modified von Mises equivalent strain,  𝜀𝑒𝑞
𝑉𝑀, is a good alternative for the damage 

control variable [29, 25, 17, 30, 4, 28]: 

𝜀𝑒𝑞
𝑉𝑀 =

𝑘 − 1

2𝑘(1 − 2𝜐)
𝐼𝜀1 +

1

2𝑘
√

(𝑘 − 1)2

(1 − 2𝜐)2
𝐼𝜀1

2 +
6𝑘

(1 + 𝜐)2
𝐽𝜀2 (2) 

where 𝐼𝜀1 is the fisrt invariant of the strain tensor, 𝐽𝜀2 is the second invariant of the deviatoric strain 

tensor, 𝑘 is the ratio between compressive strength (𝑓𝑐), and tensile strength (𝑓𝑡) and 𝜐 is Poisson ratio. 

2.2 Damage evolution law 

The proposed model establishes that the specific energy (Φ𝐹) can be related to the fracture energy 

(𝐺𝐹) by means of a characteristic length (𝑙𝑐,) as initially proposed by Oliver [31]. Following this 

equivalence, the ratio 𝜎-𝜀 for the softening curve for the proposed continuum damage model is related 

to a finite-width region, i.e., 𝑙𝑐. Consequently, the scalar damage variable for the traction material is 

formulated based on a mode I cohesive fracture law, i.e., 𝐷(𝜎-𝑤) = 𝐷(𝜎-𝜀𝑒𝑞) with 𝑤 = 𝜀𝑒𝑞𝑙𝑐 and 𝑙𝑐 

being a characteristic length of element. 

A softening law for the pure tension softening region can be described by a bilinear softening curve 

for conventional cementitious quasi-brittle materials (PCC), as suggested by Roesler et al. [32] and 

Evangelista Jr. et al. [33]. The fracture process zone can be described by a softening traction-

displacement relation (𝜎-𝑤) with its equivalence in 𝜎-𝜀𝑒𝑞. being shown in Fig. 1. 

 

Fig. 1. Traction strain (𝜎-𝜀𝑒𝑞) curve for damage evolution (adapted from Evangelista Jr. et al. [33]). 

The parameters 𝜀𝑘 , 𝜀1,  𝜀2 and Ψ that define the damage law are solely based on material 

properties from fracture and resistance tests measured in laboratory, these parameters are 𝐺𝑓 ,  𝐺𝐹 ,

𝐶𝑇𝑂𝐷𝑐 and 𝑓𝑡 as defined in Wittman et al. [34], Bažant [35], Roesler et al. [32, 36], Park et al. [37] 

and Evangelista Jr. et al. [33]. 

3  Generalized Finite Element Method 

The Generalized Finite Element Method (GFEM) was pioneered in the works of Babuška et al. 

[38], Duarte and Oden [39], Melenk and Babuška [40] and Oden et al. [41]. This method is based on 

the principle of Partition of Unity and consists in enhancing the traditional shape functions of finite 

elements with other so-called enrichment functions that better represent the local behavior of the 

solution. For the case of discontinuity, the enrichment function can be found from the kinematics of 
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the displacement jump. The displacement field (𝒖) for an element can be interpolated by Eq. (3a), with 

𝓗𝛤𝑑
 being the Heaveside function centered at discontinuity 𝛤𝑑, and the displacement jump (⟦𝒖⟧) in 𝛤𝑑 

given by Eq. (3b). 

𝒖 = 𝑵𝒂 + 𝓗𝛤𝑑
𝑵𝒃 

(3a,b) 
⟦𝒖⟧ = 𝑵𝒃|𝛤𝑑

 

where 𝒂 and 𝒃 are the regular and enhanced degrees of freedom, respectively. 

For the constitutive relations, the tractions for the continuous domain are expressed in terms of 

the nodal displacements and the discontinuity stresses are expressed in terms of the additional nodal 

displacements, according to Eq. (4a-b), respectively: 

𝝈 = (1 − D)𝑫0𝜺 = (1 − D)𝑫0(𝑩𝒂 + 𝓗𝑩𝒃) 
(4a,b) 

𝒕 = 𝑻⟦𝒖⟧ = 𝑻𝑵𝒃 

where 𝑩 is a matrix containing derivatives of shape functions, 𝓗 is the Heaviside function, 𝒂 and 𝒃 

are, respectively, the standard and enriched degree of freedom vectors and 𝑻 relates traction and 

displacements at the crack. In cohesive zone models, the relation 𝑻⟦𝒖⟧ is described by a constitutive 

model expressed in a traction versus crack opening curve that allows the simulation of the process 

zone by applying tractions to the opening plane depending on the crack opening value. 

4  Numerical implementation 

In the crack propagation process, when an element is cut by a crack, its nodes are than enriched. 

However, since there is a condition that the displacement jump at the crack tip must be zero, the nodes 

belonging to the element ahead of the crack tip are not enriched, even if their nodes belong to other 

elements that are crossed by the discontinuity. This strategy was successfully adopted in Wells and 

Sluys [42] and Simone [43]. In the discrete equation system of GFEM, the integration of some terms 

of stiffness matrix and force vector occurs only on a part of element domain. A special integration 

scheme is required to ensure that shape functions remain linearly independent. In the paper of Moës et 

al. [44], Wells and Sluys [42] and Pereira et al. [45] it is proposed that the elements crossed by a 

discontinuity have their domains 𝛺+ and 𝛺− divided into subdomains. In each subdomain, the Gauss 

quadrature belonging to the adopted element is applied. 

The propagation criterion is based on the value of the damage at the integration points of element 

ahead of the crack tip, so that at the end of a displacement increment, a discontinuity is inserted when 

the damage value at any integration point is close to one. Discontinuity is introduced as straight line 

within element. 

For the propagation direction is used the direction of maximum accumulation of the non-local 

damage in a V-shaped window ahead of a discontinuity tip, similar to that proposed by Simone et al. 

[17].  

A vector 𝒓𝚪𝒅
 in the direction of the crack propagation is calculated by: 

𝒓𝚪𝒅
= ∑ 𝐷𝑖𝑤𝑖

𝒓𝒊

‖𝒓𝒊‖
𝑖𝜖𝑆

 (5) 

where 𝑆 is the set of integration points 𝑖 located within the region limited by the V-shaped, 𝐷𝑖 is the 

value of damage at point 𝑖, 𝒓𝒊 is the position vector in the direction of point 𝑖 and 𝑤𝑖 is a weight 

associated with the point 𝑖. 
It is important to note the assumed equivalence for the dissipation of the fracture energy along 𝑙𝑐 

[31, 28]. However, in a context of finite element analysis, the mesh may have elements smaller or 

larger than the characteristic length. Therefore, a regularization procedure should be established in 

order to adapt the fracture energy of the characteristic length to the size of the mesh elements. This can 

be done by considering that 𝑙𝑐 is equal to ℎ𝑒 of the finite element mesh, with its value given by 𝐿𝑒, 

√𝐴𝑒2
 or √𝑉𝑒3

, with 𝐿𝑒, 𝐴𝑒 and 𝑉𝑒 being respectively the length, area and volume of finite element. 
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5  Numerical simulations 

Roesler et al. [32] performed three-point bending tests on small-scale concrete beams to 

determine fracture parameters and interpret the size effect on concrete. Fig. 2 shows the geometry of 

the test with the geometric data of one of the beams tests 𝐻 = 150𝑚𝑚, 𝑆 = 600𝑚𝑚, 𝐿 = 700𝑚𝑚 

and 𝑎0 = 50𝑚𝑚. The same fracture parameters adopted by Gaedicke and Roesler [46] and Roesler et 

al. [32] were used, their values were 𝐺𝐹 = 164.0 𝑁/𝑚, 𝐺𝑓 = 56.7 𝑁/𝑚 and 𝐶𝑇𝑂𝐷C = 0.0186 𝑚𝑚. 

The material data were 𝐸 = 32 𝐺𝑃𝑎, 𝜐 = 0.20,  𝑓𝑐 = 58.3 𝑀𝑃𝑎 and  𝑓𝑡 = 4.15 𝑀𝑃𝑎. The simulation 

is done considering the plane stress state. The test control is performed by means of displacement 

increments at the point of force application (P), according to the experimental test. Simulations were 

performed with the continuous (C) and continuous-discontinuous (C-D) models with 𝜀𝑒𝑞
𝑀𝐴 and 𝜀𝑒𝑞

𝑉𝑀. 

The finite element mesh used is shown in Fig. 2. The thickness was 80 𝑚𝑚 and width of the notch 

adopted was two millimeters. 

 

Fig. 2. Geometry and boundary conditions of TPB test. Finite element meshes with 581 elements. 

Fig. 3 presents the experimental and numerical results and the respective comparisons of the 

curves relative to the applied force as a function of Crack Mouth Opening Displacement (CMOD). 

The results show that both proposed models were able to estimate with very good accuracy (maximum 

relative error of 5%), the maximum load (𝑃𝑚𝑎𝑥) of the beam. It is important to note that the model 

achieved practically the same accuracy as the discontinuous model using a cohesive zone with 

interface elements of Gaedicke and Roesler [46], but with a very small number of elements (581 rather 

than 6285 used by Gaedicke and Roesler [46]). Comparing the curves obtained with 𝜀𝑒𝑞
𝑀𝐴 and 𝜀𝑒𝑞

𝑉𝑀 for 

the C case, it is seen that 𝜀𝑒𝑞
𝑀𝐴 shows 𝑃𝑚𝑎𝑥 slightly larger than 𝜀𝑒𝑞

𝑉𝑀. In the C-D case the propagation 

only occurs after 𝑃𝑚𝑎𝑥, so there is no difference for the estimates observed between the C and C-D 

models up to this point of the curve. 

  
(a) (b) 

Fig. 3. Comparison of experimental (Roesler et al. [32]) and numerical (Gaedicke and Roesler [46]) P-CMOD 

curves with results obtained for (a) 𝜀𝑒𝑞
𝑀𝐴 and (b) 𝜀𝑒𝑞

𝑉𝑀. 

It is observed that the bilinear law using 𝜀𝑒𝑞
𝑉𝑀 presents slightly higher values for the post peak 

proposed model with softening curve in comparison to 𝜀𝑒𝑞
𝑀𝐴. It is important to note that although 𝜀𝑒𝑞

𝑉𝑀 

is defined for mixed-mode cases, it was also able to estimate the mode I cases. With respect to the C-D 
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model, a decrease in the load capacity of the beam softening region is observed. This is because, in 

addition to the penalty of the mechanical properties of the material due to the damage model, the 

element has discontinuous displacements directly due to the presence of the crack by GFEM.  

The damage distribution and crack propagation for the performed simulations are also shown in 

Fig. 3. As can be seen, the damaging zone using 𝜀𝑒𝑞
𝑉𝑀 is slightly the one larger than 𝜀𝑒𝑞

𝑀𝐴. This is likely 

due to the calculation of 𝜀𝑒𝑞
𝑉𝑀 is done using the strain tensor, and this takes into account the shear 

stress, the deformation criterion is reached in elements that would not be affected by the 𝜀𝑒𝑞
𝑀𝐴. It should 

be noted that although the distribution of damage is different, the overall response of structure is the 

same in mode I. 

In order to show the mesh objective, it was performed simulations with three different mesh 

refinement. The simulations were carried out with the C model and 𝜀𝑒𝑞
𝑉𝑀 equivalent strain. Fig. 4 

shows P-CMOD curves and damage distributions for these three meshes containing 269, 581 and 917 

elements. As observed, the two most refined meshes present better results than the coarser mesh. This 

is due to better approximation of strain-stress field provided by the most refined mesh. However, the 

results show that the C model with regularization adopted which establishes the dissipation of fracture 

energy proportional to the characteristic length of the FE produces mesh objectivity, this is 

emphasized by the convergence of both 𝑃𝑚𝑎𝑥 and softening curve between the meshes with 581 and 

917 elements. With the proposed regularization for the C model, we noticed that even the results of 

very coarse meshes (269 elements) are fairly similar to the more accurate results provided by the 

refinement of the mesh for both 𝑃𝑚𝑎𝑥 and softening curve. 

 
Fig. 4. Mesh objectivity: P-CMOD curve and damage distribution for different mesh refinement. 

6  Conclusions 

This work has formulated and implemented a continuous model, based on Damage Mechanics 

and fracture laws for damage evolution, and a continuous-discontinuous model (transition to fracture), 

which adds the XFEM/GFEM strategy to the previous model cited, for prediction of failures in 

structures of quasi-brittle materials. The models were validated by comparison with experimental 

results of the three-point bending in a single edge notch beam. The results obtained prove the 

efficiency and accuracy of the models in predicting with mesh objectivity the behavior of rupture of 

structure submitted to failure. The mode I predictions of 𝑃𝑚𝑎𝑥 and the softening behavior using the 

𝜀𝑒𝑞
𝑉𝑀 are as good as the predictions with the 𝜀𝑒𝑞

𝑀𝐴 that is idealized specifically for this failure mode. 

The continuous model can achieve practically the same accuracy of results as other models found 

in the literature, even with a very small number of elements in the mesh. In addition, it uses only 

properties of small scale tests commonly performed in laboratory, without the need for any calibration 

of material properties and/or computational simulations. The continuous-discontinuous model and 

strategy with the use of GFEM confirmed the literature's observation that the prediction of the 

softening estimated by these models, although reasonably compared with the experiments, results in a 

decrease of load capacity in the softening region due to the presence of the finite element 

discontinuity. 
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