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Abstract. In topology optimization of structures, the objective is to establish the best material 

distribution inside of an analysis domain given an objective function, as compliance minimization, and 

mechanical restriction to the problem. Normally, in the gradient-based topology optimization 

algorithms, there are some problems related to numerical instabilities, such as checkerboard pattern, 

mesh dependence and local minima. The checkerboard effect is directly related to the assumptions of 

the finite element method, as the satisfaction of equilibrium equations and continuity conditions 

through the nodes. On the other hand, the finite volume theory satisfies the equilibrium equations at 

the subvolume level, and the static and kinematic continuities are established through adjacent 

subvolumes interfaces, as expected from the continuum mechanics point of view. To solve the 

problems related to the checkerboard and mesh dependence in the finite element method, it is often 

recommended the use of sensitivity or perimeter control filters. For the finite volume theory, the 

sensitivity filter is employed with the purpose to control better the mesh dependence and length scale 

numerical issues. Comparisons of the optimum topologies and computational performances of the 

analyzed approaches are presented, demonstrating the influence of the adopted numerical method on 

the obtaining optimal solution when a filtering technique is employed. 

Keywords: Finite Volume Theory, Topology Optimization, Sensitivity Filters, Continuum Elastic 

Structures, Compliance Minimization. 
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1  Introduction 

In the design of structure, there is a need to find the best project that attends all restrictions and 

optimizes the material distribution in the given domain. Normally, this “optimal project” is 

accomplished taking advantage of engineer experience, which causes a dependence of their work. As a 

result, structural optimization techniques have been developed to help engineers finding the optimal 

configuration for structures, with no need to base their projects only on past experiences. 

In general, the structural optimization methods are divided in two prime categories: material 

optimization and material distribution optimization. The first category pretends to find the best 

material properties, while the second seeks to find the best material distribution in the analysis 

domain. These methods can be divided in three subcategories: sizing optimization, which seeks to find 

optimal size of the structures, in terms of length, thickness and highness; shape optimization, which 

introduces shape changes to obtain the optimum design; and topology optimization, which seeks to 

find the best material distribution inside a given domain attaining the objective function and problem 

constraints. 

Topology optimization is a method proposed initially by Michell [1], who derived the Optimality 

Criteria (OC) method for the least weight layout of trusses. This method is typically used for 

compliance minimization or stiffness maximization problems. According to Bendsøe and Sigmund 

[2], the interest of topology optimization is to define which points of the domain must be material or 

void, generating what is called “black and white” design. In this case, there is a binary “0-1” problem, 

where the optimal solution is given by the union of each element with the value 1, leading to problems 

of discrete optimization. 

The actual material distribution is described in terms of a continuum function, which defines the 

material relative density and assumes any real value between approximately 0, indicating void, and 1 

indicating solid. To penalize the intermediate values, it can be applied the SIMP (Solid Isotropic 

Material with Penalization) method. In this case, the material properties are assumed as constants 

inside each element of the discretized analysis domain, and the design variables are element relative 

density. Therefore, the properties are modeled by the material relative density power a designated 

exponent with the objective to penalize the intermediate values. 

The topology optimization is a powerful and robust method to the design of structures, however 

there are some difficulties related to numerical instabilities. According to Sigmund and Petersson [3], 

there are three categories of numerical problems: checkerboard pattern, which refers to the formation 

of regions that alternate solid element and void elements ordered as a checkerboard; mesh 

dependency, which refers to the problem of qualitatively different solutions to different structure 

discretizations; and local minima, which refers to the problem of different solutions to the same 

discretization problem when different initial parameters are adopted. Therefore, it is undesirable to 

have any of these numerical instabilities. 

To solve these numerical instabilities usually, it is proposed the adoption of higher order elements 

Sigmund and Peterson [3] and Díaz and Sigmund [4], or filtering techniques based on image 

processing Sigmund [5]. In the image filter, the sensitivity of each element depends on the weight 

average of the neighboring elements. This procedure can help to solve the problems associated with 

checkerboard and mesh dependence problems, as suggested by Sigmund and Petersson [3]. 

Another numerical issue is the local minima, which is related to the fact that the gradient-based 

algorithms can encounter problems to find the global minimum, once small changes in the simulation 

parameters can lead to local minimum instead of a global minimum solution, Christensen and 

Klarbring [6]. Basically, this occurs due to the loss of convexity when a value bigger than one is 

applied as the density penalty factor. To solve this mentioned problem, Christensen and Klarbring [6] 

suggested the adoption of the continued penalization scheme, where a gradually increase of the density 

penalty factor is employed during the optimization process. However, this does not guarantee that the 

solution found is a global minimum, but, with it, the solution is unique, that is, the optimum solution 

does not vary with the starting point, Christensen and Klarbring [6]. 

Numerical methods for topology optimization have been extensively investigated since 1980s, 
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Rozvany [7], basically, it may be highlighted the landmark paper of Bendsøe and Kikuchi [8]. 

Certainly, the finite element method is the most common technique for numerical analysis in topology 

optimization. As a result, its advantages and disadvantages are well known. Basically, this method 

subdivides the analysis domain in smaller subdomains that have simpler geometric shape. Therefore, 

the differential equilibrium equations can be solved by a linear system of equations that describes the 

linear behavior of the discretized domain. 

An alternative technique to the finite element method is the finite volume theory, proposed 

initially by Bansal and Pindera [9]. According to Cavalcante [10], this technique uses the volumetric 

means of the fields that define the material behavior, and imposes the boundary and continuity 

conditions in an average sense, related to tractions and displacements. This technique has shown to be 

a method adequate to the elastic analysis of tensions, comparison results using this theory with 

analytic solutions and the finite element analysis demonstrated the efficiency of this method, see 

Cavalcante et al. [11,12,13] and Cavalcante and Pindera [14,15]. 

Actually, the numerical instabilities, presented previously, are directly related to the topology 

optimization problem, specifically the mesh dependency and the local minima. However, the 

checkerboard topology optimization numerical problem is directly associated with the assumptions of 

the finite element method, employed during the optimization process. Basically, it forces the 

satisfaction of equilibrium equations and compatibility conditions only in the nodes of each finite 

element of the discretized domain. In addition, the equilibrium equations are not satisfied at element 

level, being satisfied only when a sufficiently fine mesh is employed. 

On the other hand, the finite volume theory satisfies the equilibrium equations at the subvolume 

level and the compatibility conditions are stablished through the subvolume interfaces. Therefore, in 

the finite volume theory the connections between adjacent subvolumes occurs through its interfaces, 

which is more likely from the continuum mechanics point of view. At the same time, in the finite 

element method the connections between neighboring elements occur through the nodes, leading to 

optimum topologies with the presence of checkerboard regions. 

This paper addresses a new approach for topology optimization based on the standard finite 

volume theory for compliance minimization problems and employing a sensitivity filtering, pretending 

to overcome numerical problems as checkerboard pattern and mesh dependence. Comparison results 

obtained by the topology optimization approach based on the finite volume theory with the same 

approach based on the finite element method proves the efficiency of the proposed approach. In 

addition, the results, for some examples, show that the optimum topologies obtained by the finite 

volume theory are stiffer than the ones obtained by the finite element method, which demonstrates its 

efficiency. 

2  Finite volume theory 

The finite volume method is a well-known numerical method for the solution of boundary values 

problems in the fluid mechanics, Versteeg and Malalasekera [16]. The satisfaction of the governing 

filed equations within subvolumes of the discretized domain of interest in an integral sense is a key 

feature of the finite volume method which distinguishes it from the variational technique such as the 

finite element method, Cavalcante et al. [17]. The simplicity and demonstrated stability of finite 

volume method in the solution of problems in fluid mechanics have motivated the application of this 

technique in solid mechanic problems. Therefore, there are three versions of this technique in the 

analysis of solid mechanic problems. The first two have been developed to lead with homogeneous 

materials and structures, while the third version evolved independently and nearly in parallel for 

applications involving heterogeneous materials. 

The finite volume theory, denomination originally suggested by Bansal [18] and Cavalcante [10], 

has its roots in the so-called higher-order theory for functionally graded materials, which was 

developed in a sequence of papers during the 1990’s and summarized in Aboudi et al. [19]. According 

to Bansal and Pindera [9], the prime changes involve the simplification of the domain discretization 

and the substitution of the volumetric average of the displacement and stress field for average 

quantities associated to each cell interface. Therefore, this theory presents some similarities with the 
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finite volume method, usually applied for fluid mechanics, for this reason was suggested the 

adaptation for its denomination for finite volume theory. 

The first to work to suggest this simplification to the higher-order theory was Bansal and Pindera 

[9], followed by Cavalcante [10] and Cavalcante et al. [11,12] that contributed with a bidimensional 

parametric formulation more appropriated for thermal-mechanic analysis of curved structures. After 

this, Gattu et al. [20] and Khatam and Pindera [21,22] followed Cavalcante et al. [11,12], introducing a 

parametric mapping to the homogenized version of the finite volume theory, known as FVDAM (finite 

volume direct averaging micromechanics). A generalization for homogenized version of the finite 

volume theory for periodic materials subject to finite deformations was presented by Cavalcante and 

Pindera [23,24]. On the same way, Cavalcante and Pindera [14,15] presented the generalized finite 

volume theory, incorporating besides average displacements, rotations and curvatures to the 

mechanical formulation for elastic analysis of solids. 

Basically, this technique employs the volume average of the different fields that define the 

material behavior and imposes boundary and continuity conditions between adjacent subvolumes in an 

average-sense. In addition, the equilibrium equations are satisfied in an averaged-sense in the 

subvolume, and the displacement filed in the subvolume is modeled by second-order polynomials 

defined by local coordinates. 

2.1 Standard formulation of the finite volume theory 

The formulation presented here has its bases in the zeroth order Cartesian formulation for 

bidimensional structures of the finite volume theory presented by Calcante and Pindera [14]. Figure 1 

presents the adopted reference domain, in this case, it is considered a rectangular domain occupying 

the plane 𝑥1 − 𝑥2. This actual domain is discretized in 𝑁𝛽  horizontal subvolumes and 𝑁𝛾  vertical 

subvolumes, designated by the (𝛽, 𝛾) ordinated par, as shown in Figure 1. The dimensions of each 

subvolume can be expressed by 𝑙𝛽  and ℎ𝛾 (for 𝛽 = 1, … , 𝑁𝛽 and 𝛾 = 1,… ,𝑁𝛾) at the axis 𝑥1 and 𝑥2, 

respectively. Each subvolume can be designated by an unique integer value given by 𝑞 = 𝛽 +
(𝛾 − 1) ∙ 𝑁𝛽 , which gives a total number of rectangular subvolumes for the discretized structures of 

𝑁𝑞 = 𝑁𝛽 ∙ 𝑁𝛾 . 

 

Figure 1. Discretized structure in rectangular subvolumes and local system of a generic subvolume. 

The displacement field of a subvolume (𝛽, 𝛾) at the plane 𝑥1 − 𝑥2 can be approximated by a 

second-order polynomials expressed as a function of the local coordinates inside each subvolume, 

Cavalcante and Pindera [14]. Therefore, these polynomials can be written as 

 𝑢𝑖
(𝑞)

= 𝑊𝑖(00)
(𝑞)

+ 𝑥1
(𝑞)
𝑊𝑖(10)

(𝑞)
+ 𝑥2

(𝑞)
𝑊𝑖(01)

(𝑞)
+
1

2
(3 (𝑥1

(𝑞)
)
2
−
𝑙𝑞
2

4
)𝑊𝑖(20)

(𝑞)
+
1

2
(3 (𝑥2

(𝑞)
)
2
−
ℎ𝑞
2

4
)𝑊𝑖(02)

(𝑞)
(1) 
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where 𝑖 = 1,2 and 𝑊𝑖(𝑚𝑛)
(𝑞)

 are unknown coefficients of the displacement field.  

2.2 Local stiffness matrix 

On this formulation, we need to calculate the surface-averaged values of the displacement field 

components, which are given by 

 𝑢̅𝑖
(𝑞,𝑝)

=
1

𝑙𝑞
∫ 𝑢𝑖

(𝑞)
(𝑥1

(𝑞)
, ∓ ℎ𝑞 2⁄ )

+𝑙𝑞 2⁄

−𝑙𝑞 2⁄
𝑑𝑥1

(𝑞)
,  for  𝑝 = 1, 3. (2) 

 𝑢̅𝑖
(𝑞,𝑝)

=
1

ℎ𝑞
∫ u𝑖

(𝑞)
(± 𝑙𝑞 2⁄ , 𝑥2

(𝑞)
)

+ℎ𝑞 2⁄

−ℎ𝑞 2⁄
𝑑𝑥2

(𝑞)
,  for  𝑝 = 2, 4. (3) 

where 𝑢̅𝑖
(𝑞,𝑝)

 are the surface-averaged displacements of a generic subvolume 𝑞, Figure 2(a). 

 

Figure 2. Surface averaged kinematic and static quantities for a generic subvolume 𝒒: (a) surface-

averaged displacements and (b) surface-averaged tractions. 

Using the components of the displacement field, presented in Eq. (1), in Eqs. (2) and (3), eight 

expressions can be obtained for the surface-averaged displacement as a function of the displacement 

field coefficients. Therefore, these expressions can be organized in matrix notation as follows: 

 𝒖̅(𝑞) = 𝑨(8×8)
(𝑞)

𝑾(𝑞) + 𝒂(8×2)
(𝑞)

𝑾(00)
(𝑞)

 (4) 

where 𝐮̅(𝑞) = [𝑢̅1
(𝑞,1)

, 𝑢̅2
(𝑞,1)

, 𝑢̅1
(𝑞,2)

, 𝑢̅2
(𝑞,2)

, 𝑢̅1
(𝑞,3)

, 𝑢̅2
(𝑞,3)

, 𝑢̅1
(𝑞,4)

, 𝑢̅2
(𝑞,4)

]
𝑇

 is the surface-averaged 

displacement vector, 𝐖(𝑞) = [𝑊1(10)
(𝑞)

,𝑊1(01)
(𝑞)

,𝑊1(20)
(𝑞)

,𝑊1(02)
(𝑞)

, … ,𝑊2(02)
(𝑞)

]
𝑇

 is the vector containing the 

first and second order coefficients of the displacement field and 𝐖(00)
(𝑞)

= [𝑊1(00)
(𝑞)

,𝑊2(00)
(𝑞)

]
𝑇
 is the 

vector containing the zeroth order coefficients of the displacement field. The matrices 𝑨(8×8)
(𝑞)

 and 

𝒂(8×2)
(𝑞)

 depend on the geometric features of the subvolume and are defined on the Appendix. Thus, the 

vector 𝑾(𝑞) can be evaluated as function of 𝒖̅(𝑞) and 𝑾(00)
(𝑞)

 as shown below 

 𝑾(𝑞) = (𝑨(8×8)
(𝑞)

)
−1
𝒖̅(𝑞) − (𝑨(8×8)

(𝑞)
)
−1
𝒂(8×2)
(𝑞)

𝑾(00)
(𝑞)

 (5) 

Based on the aspects of the linear elasticity theory and modeling isotropic and homogeneous 

materials, the components of the traction vector can be acting on the faces of a generic subvolume 𝑞 

can be defined as 

 𝑡𝑖̅
(𝑞,𝑝)

= ∓
1

𝑙𝑞
∫ 𝜎2𝑖 (𝑥1

(𝑞)
, ∓ ℎ𝑞 2⁄ )

+𝑙𝑞 2⁄

−𝑙𝑞 2⁄
𝑑𝑥1

(𝑞)
,  for  𝑝 = 1, 3 (6) 
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  (2) 
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where 
 
are the surface-averaged displacements of a generic subvolume , Figure 2(a). 

  
(a) (b) 

Figure 2. Surface-averaged kinematic and static quantities for a generic subvolume : (a) surface-

averaged displacements and (b) surface-averaged tractions. 

Using the components of the displacement field, Eq. (1), in Eq. (2) and (3), eight expressions are 

obtained for the surface-averaged displacements as a function of the displacement field 
coefficients. Such expressions can be organized in matrix notation as follows: 

 (4) 

where  is the surface-averaged 

displacement vector,  is the vector containing 

the first and second order unknown coefficients and  is the vector 

containing the zeroth order unknown coefficients. Matrices  and  are defined in the 

Appendix. Therefore, the vector  can be evaluated as a function of  and  as 

follows:  

  (5) 

Based on linear elastic stress analysis, the components of the traction vectors, acting in an 

averaged-sense on the faces of a generic subvolume , can be expressed as shown: 

  (6) 

  (7) 



Standard Finite Volume Theory Applied to Topology Optimization for Compliance Minimization of Continuum Elastic 

Structures 

CILAMCE 2019 

Proceedings of the XL Ibero-Latin American Congress on Computational Methods in Engineering, ABMEC, 

Natal/RN, Brazil, November 11-14, 2019 

 𝑡𝑖̅
(𝑞,𝑝)

= ±
1

ℎ𝑞
∫ 𝜎1𝑖 (± 𝑙𝑞 2⁄ , 𝑥2

(𝑞)
)

+ℎ𝑞 2⁄

−ℎ𝑞 2⁄
𝑑𝑥2

(𝑞)
,  for  𝑝 = 2, 4 (7) 

Taking advantage of the elasticity theory for isotropic and homogeneous materials and 

substituting Eq. (1) in Eqs. (6) and (7), eight expressions are found, which can be organized in matrix 

notation as follows: 

 𝒕̅(𝑞) = 𝑩(8×8)
(𝑞)

𝑾(𝑞) (8) 

where 𝐭̅(𝑞) = [𝑡1
(𝑞,1)

, 𝑡2
(𝑞,1)

, 𝑡1
(𝑞,2)

, 𝑡2
(𝑞,2)

, 𝑡1
(𝑞,3)

, 𝑡2
(𝑞,3)

, 𝑡1
(𝑞,4)

, 𝑡2
(𝑞,4)

]
𝑇

 is the surface-averaged traction 

vector for a generic subvolume 𝑞, Figure 2(b). The matrix 𝑩(8×8)
(𝑞)

 is defined in the Appendix. 

Substituting Eq. (5) in Eq. (8), the traction vector 𝒕̅(𝑞) can be written as function of the surface-

averaged displacement 𝒖̅(𝑞) as expressed below 

 𝒕̅(𝑞) = 𝑩(8×8)
(𝑞)

(𝑨(8×8)
(𝑞)

)
−1
𝒖̅(𝑞) − 𝑩(8×8)

(𝑞)
(𝑨(8×8)

(𝑞)
)
−1
𝒂(8×2)
(𝑞)

𝑾(00)
(𝑞)

 (9) 

Once in each face acts two different degrees of freedom for the zeroth order formulation, Eq. (9) 

can be rearranged as shown below 

 {

𝒕̅(𝑞,1)

𝒕̅(𝑞,2)

𝒕̅(𝑞,3)

𝒕̅(𝑞,4)

} =

[
 
 
 
 
 𝑩(2×8)

(𝑞,1)

𝑩(2×8)
(𝑞,2)

𝑩(2×8)
(𝑞,3)

𝑩(2×8)
(𝑞,4)

]
 
 
 
 
 

(𝑨(8×8)
(𝑞)

)
−1
𝒖̅(𝑞) −

[
 
 
 
 
 𝑩(2×8)

(𝑞,1)

𝑩(2×8)
(𝑞,2)

𝑩(2×8)
(𝑞,3)

𝑩(2×8)
(𝑞,4)

]
 
 
 
 
 

(𝑨(8×8)
(𝑞)

)
−1
𝒂(8×2)
(𝑞)

𝑾(00)
(𝑞)

 (10) 

or 

 𝒕̅(𝑞,𝑝) = 𝑩(2×8)
(𝑞,𝑝)

(𝑨(8×8)
(𝑞)

)
−1
𝒖̅(𝑞) − 𝑩(2×8)

(𝑞,𝑝)
(𝑨(8×8)

(𝑞)
)
−1
𝒂(8×2)
(𝑞)

𝑾(00)
(𝑞)

 (11) 

where the superscript 𝑝 indicates the face number inside the subvolume 𝑞. 

In the absence of body forces, the satisfaction of the equilibrium conditions is achieved by the 

sum of the surface forces acting on the subvolume equal zero, as shown by 

 𝐑(𝑞) = ∫ 𝐭(𝑞) 𝑑𝑆𝑞𝑆𝑞
= 𝟎(2×1) (12) 

On this present formulation, the equilibrium equation for a generic subvolume can be expressed 

in terms of the surface-averaged traction vectors. Therefore, Eq. (12) can be converted by 

 𝒕̅(𝑞,1)𝑙𝑞 + 𝒕̅
(𝑞,2)ℎ𝑞 + 𝒕̅

(𝑞,3)𝑙𝑞 + 𝒕̅
(𝑞,4)ℎ𝑞 = 𝟎(2×1) (13) 

or 

 ∑ 𝒕̅(𝑞,𝑝)𝐿𝑝
(𝑞)4

𝑝=1 = 𝟎(2×1). (14) 

where 𝐿1
(𝑞)

= 𝑙𝑞, 𝐿2
(𝑞)

= ℎ𝑞, 𝐿3
(𝑞)

= 𝑙𝑞 and 𝐿4
(𝑞)

= ℎ𝑞 are the face lengths of a subvolume. 

Substituting Eq. (12) in Eq. (14), we arrive in the following equilibrium equation: 

 (∑ 𝑩(2×8)
(𝑞,𝑝)

𝐿𝑝
(𝑞)4

𝑝=1 )(𝑨(8×8)
(𝑞)

)
−1
𝒖̅(𝑞) − (∑ 𝑩(2×8)

(𝑞,𝑝)
𝐿𝑝
(𝑞)4

𝑝=1 )(𝑨(8×8)
(𝑞)

)
−1
𝒂(8×2)
(𝑞)

𝑾(00)
(𝑞)

= 𝟎(2×1) (15) 

From Eq. (15), the vector 𝑾(00)
(𝑞)

 can be written as 

 𝑾(00)
(𝑞)

= 𝒂̅(2×8)
(𝑞)

𝒖̅(𝑞) (16) 

where  

 𝐚̅(2×8)
(𝑞)

= [(∑ 𝐁(2×8)
(𝑞,𝑝)

𝐿𝑝
(𝑞)4

𝑝=1 ) (𝐀(8×8)
(𝑞)

)
−1
𝐚(8×2)
(𝑞)

]
−1

(∑ 𝐁(2×8)
(𝑞,𝑝)

𝐿𝑝
(𝑞)4

𝑝=1 ) (𝐀(8×8)
(𝑞)

)
−1

 (17) 
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Combining Eqs. (5) and (16), we can find the following expression 

 𝑾(𝑞) = 𝑨̅(8×8)
(𝑞)

𝒖̅(𝑞) (18) 

where 𝐀̅(8×8)
(𝑞)

= (𝐀(8×8)
(𝑞)

)
−1
− (𝐀(8×8)

(𝑞)
)
−1
𝐚(8×2)
(𝑞)

𝐚̅(2×8)
(𝑞)

. Finally, replacing Eqs. (16) and (18) in Eq. 

(8), we find the local system of equations for a generic subvolume as 

 𝒕̅(𝑞) = 𝑲(8×8)
(𝑞)

𝒖̅(𝑞) (19) 

where 𝐊(8×8)
(𝑞)

= 𝐁(8×8)
(𝑞)

𝐀̅(8×8)
(𝑞)

 is the local stiffness matrix for a generic subvolume 𝑞. 

2.3 Global stiffness matrix assemblage 

Following Araujo et al. [25], the global stiffness matrix of a structure, discretized by the zeroth 

order finite volume theory, is assembled considering the individual contribution of each subvolume 

and the global system of equations can be written as 

 𝑻(𝑛𝑑𝑜𝑓×1) = 𝑲(𝑛𝑑𝑜𝑓×𝑛𝑑𝑜𝑓)𝑼(𝑛𝑑𝑜𝑓×1) (20) 

where 𝑛𝑑𝑜𝑓 = 2𝑁𝛽(𝑁𝛾 + 1) + 2(𝑁𝛽 + 1)𝑁𝛾  is the total number of degrees of freedom for the 

structure, 𝑼(𝑛𝑑𝑜𝑓×1) and 𝑻(𝑛𝑑𝑜𝑓×1) are global surface-averaged displacement vector and the global 

surface-averaged traction vector, respectively. Thus, the global stiffness matrix of the structure can be 

obtained by the following expression: 

 𝑲(𝑛𝑑𝑜𝑓×𝑛𝑑𝑜𝑓) = ∑ [(𝑳(8×𝑛𝑑𝑜𝑓)
(𝑞)

)
𝑇
𝑲(8×8)
(𝑞)

𝑳(8×𝑛𝑑𝑜𝑓)
(𝑞)

]
𝑁𝑞
𝑞=1  (21) 

where 𝑳(8×𝑛𝑑𝑜𝑓)
(𝑞)

 is the structural kinematic compatibility matrix. 

3  Topology optimization problem 

The topology optimization problem consists on finding a subdomain Ω𝑜𝑝𝑡, with a limited volume 

𝑉̅, inside a pre-defined analysis domain Ω that optimizes a given objective function 𝑔0, which is often 

defined as compliance minimization or stiffness maximization. Introducing a density function defined 

in Ω that assumes the value 1 in Ω𝑜𝑝𝑡 and 0 in Ω − Ω ∩ Ω𝑜𝑝𝑡, therefore, the optimization problem can 

be written as 

 

Min
𝜌
𝑔0(𝜌)

subject to:                                                    

∫ 𝜌 𝑑Ω
Ω

≤ 𝑉̅

𝜌(𝒙) = 0 ou 1, ∀𝒙 ∈ Ω

 (22) 

In general, the topology optimization problem is treated by the discretization of the problem 

presented in Eq. (22), which is divided in 𝑁 finite elements or subdomains. Taking 𝜌 as constant 

function inside each finite element, so the problem shown in Eq. (22) can be written as 

 

Min
𝛒
𝑔0(𝛒)

subject to:                                                   

𝑉 = ∑ 𝜌𝑒𝑣𝑒
𝑁
𝑒=1 ≤ 𝑉̅

𝜌𝑒 = 0 ou 1, 𝑒 = 1, … , 𝑁

 (23) 

where 𝜌𝑒 and 𝑣𝑒 are the relative densities and volumes of the finite elements, respectively, and 𝑉 is the 

final structure volume, Sigmund and Petersson [3]. 

The topology optimization is formulated as problem that searches for the best distribution of a 

given material quantity inside a reference domain. Since the work done by Bendsøe and Kikuchi [8], a 
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great part of the advances in topology optimization has been obtained through methodologies based on 

total strain energy minimization, which is directly related to the work done by external forces, Collet 

et al. [26]. Usually, this problem is denominated as structural compliance minimization, whose 

concepts are well-stablished, as presented by Collet et al. [26], Eschenauer and Olhoff [27], Rozvany 

[28] and Bendsøe and Sigmund [2]. 

In a continuum mechanics approach based on the finite element method, the compliance function 

represents twice the total strain energy. In addition, the design variables for the formulated problem is 

considered as the artificial material density of each element, which defines a volumetric faction of a 

porous material and directly affects the constitutive material tensor, following the Voigt model, 

𝐶𝑖𝑗𝑘𝑙(𝒙) = 𝜌(𝒙)𝐶𝑖𝑗𝑘𝑙
0 (𝒙), which overestimates the effective material stiffness, once it assumes the 

uniformity of the strain tensor, Dvorak [29]. Therefore, the Voigt model defines the superior limit for 

the stiffness tensor of a composite material. Finally, considering an approach based on the 

micromechanics analysis of composite materials, the problem presented in Eq. (23) can be updated by 

the following formulation: 

 

min 𝑐(𝝆) = 𝐝𝑇𝐊(𝛒)𝐝
subject to:                                                                   

𝑉(𝝆)

𝑉
= 𝑓

𝜌𝑒 = 0 ou 1, 𝑒 = 1, … , 𝑁

 (24) 

where 𝑐(𝝆) is the structural compliance function, 𝐝 is the global vector of nodal displacements, 𝑉(𝝆) 
and 𝑉̅ are the material volume and the reference domain volume, respectively, 𝑓 is the prescribed 

volume fraction. 

3.1 Solid Isotropic Material with Penalization (SIMP) 

The optimization problem presented in Eq. (24) has a high complexity, so to find the solution 

algorithm we can modify the problem in two steps: relaxation and penalization of intermediate density 

values. First, the relaxation consists on increasing the design set, thus, the relative density, which in 

the original problem could assume only the values 0 or 1 according to presence of material, now can 

assume any real value between the interval 0 and 1 (0 < 𝜌 ≤ 1), resulting in a design with different 

gray scales. Usually, we assume a minimum value for the relative density (𝜌𝑚𝑖𝑛), once the relative 

density must be different of 0 to avoid singularity in the stiffness matrix. 

Second, according to Sigmund and Petersson [3], there are two different reasons to penalize the 

relative density intermediate values. The first reason refers to the post-processing of relaxation 

problem and the second point is to avoid the application of integer programming techniques in the 

solution of the optimization problem. The most popular method of penalization is the SIMP, which 

penalizes the intermediate densities with the purpose to avoid their presences in the optimal design. In 

this method, the material properties are assumed as constant inside each element and the design 

variables are the element relative density, which can be interpreted by volumetric fractions of porous 

materials that fill the element. Therefore, the effective stiffness tensor of each element is evaluated by 

the relative density raised by a certain power and multiplied by the solid material stiffness tensor. 

Differently of the problem presented in Eq. (24), which uses the Voigt model in the evaluation of the 

effective material stiffness tensor, Dvorak [29], in the SIMP method the effective constitutive tensor is 

evaluated by 

 𝐶𝑖𝑗𝑘𝑙(𝜌) = 𝜌
𝑝𝐶𝑖𝑗𝑘𝑙

0  (25) 

where 𝐶𝑖𝑗𝑘𝑙
0  is the solid material constitutive tensor and 𝑝 is the penalization factor. 

For the interpolation presented in Eq. (25), it is observed that 𝐶𝑖𝑗𝑘𝑙(0) = 0 and 𝐶𝑖𝑗𝑘𝑙(1) = 𝐶𝑖𝑗𝑘𝑙
0 , 

which means that the final solution tends to present zero or one densities in all elements, inside a 

context of penalized intermediate values of relative density, resulting in a black and white design. 

According to Bendsøe and Sigmund [30], to topology optimization problems with volume constraint, 

the penalization factor must higher enough, normally 𝑝 ≥ 3, to have a black and white design. On this 

paper, it is suggested the adoption of the continued scheme of penalization, where the penalty factor 
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increases gradually from 1 to 4 avoiding the occurrence of local minima and obtaining black and white 

designs. 

The optimization problem can be defined as 

 

𝑚𝑖𝑛 𝑐(𝝆) = ∑ (𝜌𝑒)
𝑝 ∙ 𝒅𝒆

𝑻 ∙ 𝒌𝒆
𝟎 ∙ 𝒅𝒆

𝑁
𝑒=1

subject to:                                                                   
𝑉(𝝆)

𝑉
= 𝑓

0 < 𝜌𝑚𝑖𝑛 ≤ 𝜌𝑒 ≤ 1

 (26) 

where 𝒅𝒆 is the local displacement vector, 𝒌𝒆
𝟎 is the stiffness matrix for an element with an unit 

density and 𝜌𝑚𝑖𝑛 is the minimum relative density (different of zero to avoid singularity). 

3.2 Optimality Criteria (OC) method 

A classical approach to the solution of structural optimization problem with a discretized domain 

is the OC method. Therefore, the OC method is a process often used to update iteratively the design 

variables and the Lagrange multipliers. Following the scheme suggested by Bendsøe and Sigmund [2], 

the heuristic update for the design variables can be stated as 

 𝜌𝑒
𝑘+1 =

{
  
 

  
 
𝑚𝑎𝑥(𝜌𝑚𝑖𝑛 , 𝜌𝑒 −𝑚),                                                             

if 𝜌𝑒
𝑘𝐵𝑒

𝜂
≤ 𝑚𝑎𝑥(𝜌𝑚𝑖𝑛, 𝜌𝑒 −𝑚),                                    

𝜌𝑒
𝑘𝐵𝑒

𝜂
,                                                                                       

if 𝑚𝑎𝑥(𝜌𝑚𝑖𝑛 , 𝜌𝑒 −𝑚) < 𝜌𝑒
𝑘𝐵𝑒

𝜂
≤ 𝑚𝑖𝑛(1, 𝜌𝑒 +𝑚),

𝑚𝑖𝑛(1, 𝜌𝑒 +𝑚),                                                                    

if 𝑚𝑖𝑛(1, 𝜌𝑒 +𝑚) ≤ 𝜌𝑒
𝑘𝐵𝑒

𝜂
                                           

 (27) 

where 𝑘 represents the iteration index, 𝑚 is a positive moving limit, 𝜂 is the damping factor and 𝐵𝑒 

can be expressed as 

 𝐵𝑒 =
−
𝜕𝑐

𝜕𝜌𝑒

𝜆
𝜕𝑓

𝜕𝜌𝑒

 (28) 

where 𝜆 is the Lagrangian multiplier for volume constrained and is determined by a bisection method. 

In the OC method, the damping factor performs an important role in the optimization process. A 

higher value of 𝜂 can accelerate the convergence process to the optimal solution, however, this can 

cause oscillation during the optimization process. These difficulties during the convergence process 

are normally caused by displacements oscillations in the nodes that are in the low density regions of 

the structure during the iterative step, He et al. [31]. On the contrary, the adoption of lower values of 𝜂 

can avoid the divergence in the optimization algorithm, however, this can lead to small changes in the 

design variables, which can become the optimization process slow. Basically, the experience shows 

that this parameter should be kept as closer as possible from the optimal value of 1 2⁄ . 

3.3 Evaluation of the compliance function for the standard finite volume theory 

The concepts related to the topology optimization problem based on the compliance minimization 

are well established and there are several results that show its success, Collet et al. [26], as can be seen 

in Eschenauer and Olhoff [27], Rozvany [28] and Bendsøe and Sigmund [2]. In fact, the compliance 

function can be evaluated as twice the total strain energy caused by a displacement field 𝐮, as follows 

 𝑐(𝒖, 𝝆) = 2𝑈(𝒖, 𝝆) =∭ 𝜎𝑖𝑗(𝒖, 𝝆)𝜀𝑖𝑗(𝒖)𝑑𝛺𝛺
=∭

1

2
𝐶𝑖𝑗𝑘𝑙(𝝆)𝜀𝑘𝑙(𝒖)𝜀𝑖𝑗(𝒖)𝑑𝛺𝛺

 (29) 

where 𝜎𝑖𝑗(𝒖, 𝝆) is the stress tensor, 𝜀𝑖𝑗(𝒖) is the strain tensor, 𝐶𝑖𝑗𝑘𝑙(𝝆) is the stiffness tensor and Ω is 

the analysis domain. 

The equivalence between the total strain energy of a structure and the work done by external is 

satisfied only for the standard finite volume theory, once the differential equilibrium equations are 
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satisfied point-wise inside the subvolume. As a result, the compliance function can be rewritten as 

 𝑐(𝒖, 𝝆) = 2𝑈(𝒖, 𝝆) = 2𝑊(𝒖, 𝝆) = ∬ 𝑡𝑖𝑢𝑖 𝑑𝑆𝑆𝜎
 (30) 

where 𝑊(𝒖, 𝝆) is the work done by external forces, 𝑡𝑖 is the traction vector acting on the boundary, 𝑢𝑖 
is the displacement vector and 𝑆𝜎 is the external surface where the external loadings are prescribed. 

The compliance function for the standard formulation of the finite-volume, considering a 

structure discretized in 𝑁𝑞 subvolumes, can be written as 

 𝑐(𝒖, 𝝆) = ∑ 2𝑈𝑞(𝒖̅
(𝑞), 𝜌𝑞)

𝑁𝑞
𝑞=1 = ∑ 2𝑊𝑞(𝒖̅

(𝑞), 𝜌𝑞)
𝑁𝑞
𝑞=1 = ∑ ∑ ∬ 𝑡𝑖

(𝑞,𝑝)
𝑢𝑖
(𝑞,𝑝)

𝑑𝑆𝑝
(𝑞)

𝑆𝑝
(𝑞)

4
𝑝=1

𝑁𝑞
𝑞=1  (31) 

where 𝑈𝑞(𝒖̅
(𝑞), 𝜌𝑞) and 𝑊𝑞(𝒖̅

(𝑞), 𝜌𝑞) are the local strain energy and the local work done, respectively, 

and 𝜌𝑞 is the relative density of a generic subvolume 𝑞. Considering that the traction vector is constant 

in the subvolume faces and equals to the surface-averaged tractions acting on the faces, so, 

 𝑐(𝒖, 𝝆) = ∑ ∑ 𝑡𝑖̅
(𝑞,𝑝)

∬ 𝑢𝑖
(𝑞,𝑝)

𝑑𝑆𝑝
(𝑞)

𝑆𝑝
(𝑞)

4
𝑝=1

𝑁𝑞
𝑞=1 = ∑ ∑ 𝑡𝑖̅

(𝑞,𝑝)
𝑢̅𝑖
(𝑞,𝑝)

𝐿𝑝
(𝑞)4

𝑝=1
𝑁𝑞
𝑞=1 = ∑ [𝑳(𝑞)𝒕̅(𝑞)]

𝑇
𝒖̅(𝑞)

𝑁𝑞
𝑞=1 =

∑ (𝜌𝑞)
𝑝
[𝑳(𝑞)𝑲(8×8)

(𝑞)
𝒖̅(𝑞)]

𝑇
𝒖̅(𝑞)

𝑁𝑞
𝑞=1   (32) 

where 𝑝 is the penalty factor and 𝑳(𝑞) is a matrix containing the subvolume face lengths, which can be 

expressed as 

 𝑳(𝑞) =

[
 
 
 
 
 𝑳(1)
(𝑞)

𝟎 𝟎 𝟎

𝟎 𝑳(2)
(𝑞)

𝟎 𝟎

𝟎 𝟎 𝑳(3)
(𝑞)

𝟎

𝟎 𝟎 𝟎 𝑳(4)
(𝑞)
]
 
 
 
 
 

, 𝑓𝑜𝑟  𝑳(𝑝)
(𝑞)

= [
𝐿𝑝
(𝑞)

0

0 𝐿𝑝
(𝑞)
]  (33) 

3.4 Mesh-independency filter 

In order to avoid the occurrence of the numerical issues associated to the checkerboard pattern 

and the mesh dependency, especially in the approaches based on finite element method, it is used a 

filtering technique. It must be emphasized that this filter does not guarantee the existence of solution, 

however several numerical applications have shown that it can produce mesh-independent designs in 

practice, Sigmund [32]. This filtering technique modifies the elements or subvolumes sensitivities as 

follows 

 
𝜕𝑐

𝜕𝜌𝑒
=

1

𝜌𝑒∑ 𝐻̂𝑓
𝑁
𝑓=1

∑ 𝐻̂𝑓 ∙ 𝜌𝑓 ∙
𝜕𝑐

𝜕𝜌𝑓

𝑁
𝑓=1  (34) 

where 𝐻̂𝑓 is the convolution operator (weighting function) given as 

 𝐻̂𝑓 = 𝑟𝑚𝑖𝑛 − dist(𝑒, 𝑓) , {𝑓 ∈ 𝑁|dist(𝑒, 𝑓) ≤ 𝑟𝑚𝑖𝑛}, 𝑒 = 1,… ,𝑁 (35) 

where dist(𝑒, 𝑓) is the distance between the center of element or subvolume 𝑒 and the center of 

element or subvolume 𝑓, Sigmund [32]. 

4  Numerical results 

On this section, three examples are analyzed to compare the efficiency of the new topology 

optimization approach based on the standard finite volume theory with the ones based on the finite 

element method analysis, employing the Q4 and Q8 elements. The studied examples are a cantilever 

beam subject to a concentrated load, a Messerschmitt-Bölkow-Blom (MBB) beam and a Michell 

structure. Through these examples, the numerical stability and efficiency of the finite volume theory 

are investigated. Besides, numerical aspects are investigated, such as number of iterations, processing 



M. V. O. Araujo, E. N. Lages, M. A. A. Cavalcante 

CILAMCE 2019 

Proceedings of the XL Ibero-Latin American Congress on Computational Methods in Engineering, ABMEC, 

Natal/RN, Brazil, November 11-14, 2019 

time and relative compliance. In order to avoid possible problems related to the local minima issue, the 

continued scheme of penalization is adopted, where the penalty factor increases gradually (∆𝑝 = 0.5) 

from 1 to 4, as suggested by Talischi et al. [33]. Furthermore, a sensitivity filtering based on Eq. (34) 

is employed with the purpose to avoid mesh dependency, in the context of the finite volume theory, 

and checkerboard pattern, in the context of the finite element method, once Araujo et al. [25], Araujo 

[34] and Araujo et al. [35] have demonstrated the checkerboard free property of the finite volume 

theory. 

The adopted convergence criterion is based on the maximum difference between successive steps 

of the relative material density function, thus, the loop finalizes when the following criteria is 

satisfied: 

 max(|𝝆𝑘+1 − 𝝆𝑘|) < TOL (36) 

where 𝝆𝑘 is the relative material densities vector of the previous step and 𝝆𝑘+1 is the material relative 

densities vector of the current step. The adopted values for the numerical parameters of the model are: 

TOL = 0.01, 𝜌𝑚𝑖𝑛 = 0.001 and 𝑚 = 0.5. To avoid divergence during the optimization process, the 

damping factor is adopted as closer as possible of 1/2, since the non-convergence is avoided due to 

the oscillatory phenomenon. The employed computational environment, in terms of programming 

language and computer, can be described as: MatLab R2016a (64-bits)/Intel CoreTM i7 CPU 2.93 

GHz/16.0 GB RAM/64-bits. 

4.1 Cantilever beam 

The first analyzed example is a cantilever beam fixed in the left border and with a concentrated 

load in the middle of the right border, as shown in Figure 3. The proposed optimization problem 

consists on finding the minimum value for the structural compliance function, whose analysis domain 

and boundary conditions are given on Figure 3. In addition, the objective of this problem is to find the 

stiffest structure with a given volume of 40% of the total volume. In the model conception, consistent 

units for the physical and geometric parameters are adopted. 

 

Figure 3. Cantilever beam. 

In the scenario of the application of a sensitivity filter, the optimum topologies obtained by the 

finite volume theory and the finite element method are checkerboard free, as shown in Figure 4 and 

expected by Christensen and Klarbring [6]. Therefore, the applied sensitivity filter is able to avoid the 

occurrence of checkerboard regions in the optimum topology. From Figure 4, it can be also observed 

that the employed filtering technique can control better the solution dependency between different 

mesh sizes, however, it is registered a lower dependence when the finite element Q8 and finite volume 

theory are employed. On the contrary, when the finite element Q4 is employed, it is observed a higher 

dependence on the mesh size for the cantilever beam example. 

Table 1 presents the results obtained for the overall convergence analysis employing the standard 

finite volume theory and the Q4 and Q8 elements of the finite element method. Basically, the number 

of iterations does not change substantially when the elements Q4 and Q8 are compared with the finite 

volume theory. On the other hand, the processing time varies depending on the approach, for instance, 
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the computational cost for the gradient-based optimization algorithm employing the finite element Q8, 

for the finest mesh, is 2.7 times higher than the same analysis employing the standard finite volume 

theory. At the same time, the analysis employing the finite element Q4 is approximately 1.6 times 

faster than the model that employs the zeroth order finite volume theory. The number of degrees of 

freedom (NDOF) explains a great part of the computational efficiency of the approaches based on the 

finite element Q4 and on the finite volume theory, once it defines the size of the global system of 

equations. 

 Mesh 42x21 Mesh 82x41 Mesh 162x81 

FEM*

-Q4 

   

FEM-

Q8 

   

FVT† 

   

Figure 4. Optimum topologies for the cantilever beam analysis applying a sensitivity filtering. 

Table 1. Convergence study for the cantilever beam applying a sensitivity filter. 

Analysis Mesh NDOF Number of Iterations Processing Time (sec) Relative Compliance 

FEM-Q4 

42x21 1892 117 21.58 1.0020 

82x41 6972 223 412.40 1.0008 

162x81 26732 298 7868.36 1.0121 

FEM-Q8 

42x21 5546 116 57.73 1.0000 

82x41 20666 167 1371.54 1.0000 

162x81 79706 312 34337.14 1.0000 

FVT 

42x21 3654 136 28.19 0.6654 

82x41 13694 194 487.68 0.8268 

162x81 52974 311 12744.41 0.8762 

 

The relative compliance, shown in Table 1, can be calculated as follows 

 Relative Compliance =
[𝑐(𝝆)]FVT-Q8

[𝑐(𝝆)]Q8
 (37) 

where [𝑐(𝝆)]FVT-Q8 is the compliance function value of the optimum topology obtained by the 

approach based on the finite volume theory recalculated using the element Q8 and [𝑐(𝝆)]Q8 is the 

compliance function value obtained by the approach based on the element Q8 of the finite element 

method, or 

 Relative Compliance =
[𝑐(𝝆)]Q4-Q8

[𝑐(𝝆)]Q8
 (38) 

where [𝑐(𝝆)]Q4-Q8 is the compliance function value of the optimum topology obtained by the 

 
* Finite element method. 
† Finite volume theory. 
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optimization algorithm employing the element Q4 recalculated using the element Q8. 

The values obtained for the relative compliance indicate that the optimum structure obtained by 

the finite volume theory approach is stiffer than the approaches employing the finite element method, 

once the values obtained for FVT is lower than 1. Since the purpose of the topology optimization 

algorithm is to find the best material distribution inside a given domain and boundary conditions that 

maximizes the structural stiffness or minimizes the structural compliance, the optimum topologies 

obtained by the finite volume theory for the cantilever beam reveal to be better than the ones obtained 

by the finite element method. 

4.2 Messerschmitt-Bölkow-Blom (MBB) beam 

The Messerschmitt-Bölkow-Blom (MBB) beam is shown in Figure 5, where consistent units for 

the physical and geometric parameters are adopted. Taking advantage of the symmetry, just half of the 

design domain is analyzed, employing boundary conditions that reflect this symmetry. In this case, the 

optimization problem consists on finding the minimum value for the structural compliance 

minimization subject to a volume constraint of 50% of the total structure volume. 

 

Figure 5. Messerschmitt-Bölkow-Blom (MBB) beam. 

Figure 6 shows the optimum topologies obtained for the mesh sizes of 120x20, 240x40 and 

360x60 for the analysis employing the elements Q4 and Q8 of the finite element method and the 

standard version of the finite volume theory. Basically, the optimum topologies, presented in Figure 6, 

are very similar for the three different approaches studied. Therefore, in the scenario of the sensitivity 

filter, the three different employed approaches are able to produce checkerboard free topologies with 

controlled mesh-dependency. However, as discussed previously, the approach based on the finite 

volume theory has checkerboard free property even when no filtering technique is employed, as shown 

by Araujo et al. [25], Araujo [34] and Araujo et al. [35]. On Table 2, the values obtained for the 

relative compliance show that basically there is any substantial change in the optimum topologies 

obtained for the three different employed approaches. 

 Mesh 120x20 Mesh 240x40 Mesh 360x60 

FEM

-Q4    

FEM

-Q8    

FVT 
   

Figure 6. Optimum topologies for the MBB beam analysis applying a sensitivity filtering. 

Table 2 shows the numerical results obtained for the convergence analysis of the MBB beam, 

employing the elements Q4 and Q8 of finite element method and the standard finite volume theory, 

respectively. The number of iterations varies highly in the case of the element Q4, which is almost half 

than the observed for the element Q8 and the finite volume theory, for finest mesh. In fact, this has 

contributed to the noticeable difference in the processing time, where the computational cost for the 
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finest mesh employing the element Q8 is 10.5 times higher than the same analysis employing the 

element Q4. At the same time, the approach based on the finite volume theory is 3.2 times slower than 

the same analysis employing the element Q4, for the finest mesh. The number of degrees of freedom 

and lower number of iterations for element Q4-based approach explains partially those differences in 

the computational cost. 

Table 2. Convergence study for the MBB beam applying a sensitivity filter. 

Analysis Mesh NDOF Number of Iterations Processing Time (sec) Relative Compliance 

FEM-Q4 

60x20 2562 194 19.10 0.9989 

120x40 9922 267 530.38 1.0032 

180x60 22082 352 4845.16 1.0036 

FEM-Q8 

60x20 7522 172 107.38 1.0000 

120x40 29442 251 4065.47 1.0000 

180x60 65762 670 50714.64 1.0000 

FVT 

60x20 4960 165 19.91 1.0098 

120x40 19520 476 1623.34 1.0027 

180x60 43680 698 15289.46 1.0005 

4.3 Michell structure 

Figure 7 illustrates the analysis domain and the boundary conditions for the Michell structure 

employed in the analysis. In the model construction, it is adopted consistent units for the geometric 

and physical parameters. Considering the structure symmetry, only half of the reference domain is 

analyzed, thus, it is employed boundary conditions that reflect this symmetry. In this case, the 

optimization problem seeks to minimize the structural compliance function given a restriction of 40% 

of the total structure volume. 

 

Figure 7. Michell structure. 

Figure 8 presents the optimum topologies obtained for the meshes 60x30, 120x60 and 240x120, 

respectively, and employing the Q4 and Q8 elements of the finite element method and the standard 

finite volume theory. In the scenario of the application of the mesh-independent filtering, it is 

observed the absence of checkerboard regions and dependence on mesh size for all employed 

approaches. The optimum topologies obtained does not change substantially, only the optimum 

topology obtained for the finite volume theory employing a mesh size of 60x30 varies from the same 

employing the finite element method. However, the results for relative compliance, presented on Table 

3, show that they are qualitatively almost the same. 

The numerical results obtained for the convergence analysis of the Michell structure are presented 

on Table 3, which are obtained for the approaches based on the Q4 and Q8 elements of the finite 

element method and the standard finite volume theory, respectively. In this example, the number of 

iterations has an atypical behavior to the models employing the finite volume theory for mesh sizes of 
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30x30 and 120x120. In those cases, the number of iterations is higher than what is normally registered, 

which is basically the same for the three approaches studied, as obtained in Araujo et al. [25], Araujo 

[34] and Araujo et al. [35]. The adoption of a damping factor of 1 2⁄  can explain partially these little 

instabilities registered for those specific two meshes, since the topology optimization algorithm 

applying the standard finite volume theory registers a great behavior when it is used a damping factor 

of 1 2.6⁄ , Araujo [34] and Araujo et al. [35]. 

 

 Mesh 60x30 Mesh 120x60 Mesh 240x120 

FEM

-Q4 

   

FEM

-Q8 

   

FVT 

   

Figure 8. Optimum topologies for the Michell structure analysis applying a sensitivity filtering. 

Table 3. Convergence study for the Michell structure applying a sensitivity filter. 

Analysis Mesh NDOF Number of Iterations Processing Time (sec) Relative Compliance 

FEM-Q4 

30x30 1922 129 10.87 0.9968 

60x60 7442 86 117.70 0.9989 

120x120 29282 253 6643.10 1.0014 

FEM-Q8 

30x30 5642 110 35.68 1.0000 

60x60 22082 87 715.77 1.0000 

120x120 87362 237 29685.74 1.0000 

FVT 

30x30 3720 171 22.22 1.0136 

60x60 14640 82 176.50 1.0019 

120x120 58080 373 15837.38 0.9974 

 

The processing time, shown in Table 3, varies substantially depending on the employed approach. 

The computational cost for the Q8 element approach is 1.9 times higher than the observed for the 

finite volume theory. In addition, the Q4 element approach is 2.4 times faster than the same approach 

employing the finite volume theory. As in the previous examples, the number of degrees of freedom 

and iterations can explain a great part of those differences in the computational cost, since the NDOF 

defines the global system of equations and the number of iterations defines the length of time that the 

optimization process could take. 

5  Conclusions 

The topology optimization algorithm based on the standard finite volume theory has 

demonstrated to be efficient for the analyzed examples, especially in the case of the analyzed 

cantilever beam. In addition, the absence of numerical instabilities, such as the checkerboard pattern, 
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mesh dependence and local minima, shows the efficiency of the new numerical technique in the 

context of topology optimization of continuum elastic structures. A great part of its efficiency comes 

from the fact that this technique satisfies the kinematic and static continuity conditions in a surface-

averaged sense through common faces between adjacent subvolumes, which means that the 

connections among subvolumes occur through edges instead nodes, as in finite element method. As a 

result, this induces the topology optimization algorithm based on the finite volume theory to have an 

intrinsic checkerboard free property. 

The continued scheme of penalization, where the penalty factor is increased gradually from 1 to 4 

with increments of 0.5, guarantees a gradual convergence for the overall optimization process and 

avoids the loss of uniqueness of the solution. In addition, the mesh-independent filtering is employed 

to solve problems related to the mesh-dependence and the length scale issues. Basically, the optimum 

topologies obtained by the proposed approach have presented less paths and larger lengths, especially 

in the case of the cantilever beam, which are desired features for manufacturing. 

The damping factor of OC method is adjusted, depending on the adopted approach or the mesh 

size, with the intention to avoid possible divergences during the optimization process caused 

undesirable oscillations on the displacement field at the low density regions. The values adopted for 

the damping factor are as closer as possible of 1 2⁄ , the need for changing this value is just observed 

for the coarsest meshes being more common in the Q8 element approach. The basic values instead of 

1 2⁄  are 1 2.2⁄  and 1 2.4⁄ . 

In general, the optimum topologies obtained for the finite volume theory showed to be well-

behaved, presenting topologies with great sharpness and clear material distribution. The 

implementation of a continued scheme of penalization guaranteed a gradual convergence for the 

overall process of optimization. The artificial microstructure of the SIMP approach allowed the 

penalization of low density regions, which made possible obtaining well-defined black and white 

designs. Finally, the results obtained justify the continuation of the investigation by exploring the 

different aspects of the finite volume theory, such as the local satisfaction of equilibrium equations and 

the kinematic and static continuity conditions being established in a surface-averaged sense. 
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where 𝐶𝑖𝑗
(𝑞)

 are the components of the constitutive matrix. 


