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Abstract. This work presents the Topology Optimization Method where the objective is to minimize 

compliance with lateral and volume constraints of a rib from aircraft wings profile leading edge.  The 

problem is solved by a Topology Optimization Method technique, formulated as finding the best 

material distribution into the domain. The static problem is solved with the Finite Element Method were 

the structural response is given as nodal displacements. The Optimality criteria are based in the power-

law approach, also known as Solid Isotropic Material with Penalization that uses a “fictitious” density 

to represent the material distribution into each finite element that defines the elastic properties of 

isotropic porous material. The solution is implemented with a didactic algorithm. No linear 

programming is used and a heuristic updating scheme is used as standard optimality criteria. Besides, 

sensitivity and densities filters are used to minimize the occurrence of numerical instabilities: 

checkerboards, mesh-dependencies, and local minima. The results are evaluated in three criteria:  first, 

the occurrence of these instabilities and filter performance, second the convergence and implementation 

time and the last one a brief comparison with the literature and a general analysis of the results. 
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1  Introduction 

The Topological Optimization Method (TOM) is a category of structural optimization, which 

originated from layout optimization and parametric and shape optimizations, respectively. The first steps 

of structural optimization were introduced in the late 19th century, with Maxwell's work in 1872 in 

which he sought the smallest volume for uniaxial structures subjected to loading. In 1904 Michel 

continued Maxwell's work with its structures that are still cited in modern Topological Optimization 

theory. Michel designed lattice structures in search of the smallest volume, observing the tensions in the 

bars for each load case [1]. 

In the mid-1980s, the results of shape and parametric optimizations began to be questioned as they 

presented major problems when changing the topology. With the need to improve shape optimization, 

topology optimization (OT), Bendsøe, and Kikuchi emerged in the late 1990s. material represents, for 

each iteration, the solution of equilibrium equations [1]. 

Therefore, according to Porto and Pavanello [2] the idea is that topological optimization is used 

initially and then employed one of the classical methods of shape or parametric optimization. This 

second step will be performed faster and more efficiently, since it is already part of an optimal topology 

and is already very close to the exact one. Or as approached by Simonetti [1]: Olhoff in 1991 used 

topology as a “preprocessor” of shape and parametric optimizations giving these much better end results. 

Topological optimization is already widespread today and is used in many commercial software. 

Among the present models, according to Simonetti [1] the OT can be classified as: the MOT from a 

discrete medium and from a continuous medium. In this work topological optimization is employed with 

the discretization of a continuous element with the use of finite elements to determine the optimal 

topology of a leading-edge rib profile of an aircraft in order to minimize flexibility considering 

prescribed volumes. 

2   Topological Optimization Method 

TOM is defined as the search for material distribution within a fixed domain, in which an objective 

function is minimized while a set of constraints is satisfied. The formulation of the problem begins by 

defining a parameterized artificial composite material and obtaining a relationship between these 

parameters and the constitutive properties of artificial microstructures for the solution of the optimal 

problem [2]. Artificial density loses its physical properties during iterations and becomes a mathematical 

variable used purely to obtain the solution. 

The distribution of this porous material characterizes the SIMP (Simple Isotropic Material with 

Penalization) method shown in Equation (1) is based on the works of Sigmund [3], Andreassen and 

Clausen et al. [4] 

 Ek(xk)=Emin+xk

η(E0-Emin), xk ∈ [0,1] (1) 

Where Ek and E0 are Young’s modulus of the element and material respectively. Emin is a minimum 

value for Young's modulus used to avoid singularities in the stiffness matrix, xk is the density of the 

element and η the penalty exponent. 

2.1 Numerical Instabilities 

Checkboard instability 
The application of the SIMP method together with the Finite Element Method (FEM) discretization 

leads to the occurrence of numerical instabilities, a theme that has been well studied in the optimization 

area. The very common case in TOM is the checkboard or chess board instability is characterized by the 

presence of rapidly alternating regions between voids and solids, which resembles a chess board as 

shown in Figure 1 [2]. 
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Figure 1. Checkboard instabilities [2]. 

According to Simonetti [1], the chessboard is the result of discretization made by the FEM. The 

board has greater stiffness than fully solid regions so this setting remains in the final result as a possible 

“optimum”. However, this result is not consistent with reality, the stiffness is the result of the numerical 

instability [1] [5]. One of the ways to avoid this phenomenon is precisely the use of filters that prevent 

the sudden change of density in the results by evaluating the neighborhood of the elements, usually in 

this work represented by rmin. 

 

Mesh dependency 

According to Guilherme [6], mesh dependence is the problem of not qualitatively obtaining the 

same result for different mesh sizes or domain discretization. Figure 2 illustrates the mesh dependency. 

It can be seen that increasing the number of elements for a simple beam problem that has the effect of a 

point load has made the result increasingly complex: initially the presence of board instability, after that 

non-smooth contours in the voids and finally a complex geometry.  

 

Figure 2. Mesh dependency [6]. 

2.2  Filters 

Filters are heuristic methods used to solve numerical instability problems, used to ensure the 

existence of the solution and to avoid chessboard formations and mesh dependence [7]. 

The two filters used in this work are sensitivity and density filters. The first acts on the derivative 

of flexibility and the second directly on density. The sensitivity filter transforms the density derivative 

according to Equation (2) [4]. 

 
∂c

∂xk

̂
=

1

max(γ,xk) ∑ HkiiϵNk

∑ HkixiiϵNk

∂c

∂xi
  (2) 

Where γ is a positive constant used to avoid possible divisions by zero, Nk is the number of elements 

in the vicinity of the k elements. Hkiis the weight factor that is determined by Equation (3). 

 Hki= max(0,rmin-Δ(k,i))  (3) 

Where rmin  is the filter range, Δ(k, i) is the distance between the k elements and the neighboring 

element i. This neighborhood scan with the weighing of the elements within a minimum radius is done 

to avoid sudden changes in density, as presented in the section on numerical instability problems. The 

density filter transforms the original density 𝑥𝑘 according to Equation (4). 

 x̃k=( 1 ∑ Hki
 
iϵNk 

⁄ ) ∑ Hkixi
 
iϵNk

  (4) 

Checkboard instability 
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3  Materials and methods 

3.1 Objective function and optimal problem 

In this work the objective function c is defined as the flexibility of the structure, that is, the inverse 

of stiffness. Flexibility is defined in the Equation (5). 

 c(x)=FTU  (5) 

 F and U are the global force and displacement vectors respectively. As with an element, 

equilibrium conditions in a global analysis are presented in Equation (6). 

 KU=F (6) 

K is the global stiffness matrix. Thus, substituting Equation (6) in equation (5) flexibility can be 

defined as a function of the stiffness matrix and displacements only, as presented in Equation (7), which 

is precisely the objective function under analysis. 

 c(x)=UTKU  (7) 

The optimal problem can be determined by considering the equilibrium conditions, lateral density 

constraints (values between 0 and 1), as the prescribed volume as can be observed in Equation (8) which 

presents optimization problem. based on Andreassen and Clausen et al. [4].  

 

min
x c(x)=UTKU= ∑ Ek(xk)uTkuN

k=1

st. fr(x)=V(x)/V0

 KU=F

 0≤x≤1

 (8) 

Where, in addition to the variables already presented in this section, u and k are the local 

displacement vector and the stiffness matrix, respectively, Ek Young's modulus of the element, fr is the   

prescribed fraction, V is the constraint volume,  V  is the current volume, V0 is the initial volume, x the 

density and N the number of elements. 

3.2 Boundary Conditions 

The profile under review is an USA35-B common in an Unmanned Aerial Vehicle (UAV) sized 

and staffed by AeroDesign competitions [8]. Loading conditions were determined by the Profili 2.22a 

software. The input parameter, in addition to the profile, was the Reynolds number at 383000 standard 

value for an aircraft intended to participate in the SAE (Society of Automotive Engineers) competition. 

The program provided the data that was used to determine the wing pressure distribution as well as the 

lowest and highest support angles. 

Figure 3 shows the pressure distribution at 0º, case (a), lower lift configuration and at 9.5º, case (b), 

higher lift, chosen for analysis, in both cases the wind gust considered is vertical. 

  

(a) (b) 

Figure 3. Pressure distribution at (a) 0º and (b) 9.5º 

 



Higo L. S. Nascimento, Rafael B. E. Araújo 

CILAMCE 2019 

Proceedings of the XLIbero-LatinAmerican Congress on Computational Methods in Engineering, ABMEC, 

Natal/RN, Brazil, November 11-14, 2019 

The most heavily loaded region is just at the wing edge, as shown in Figure 3. Therefore, this is the 

region of interest for the application of the MOT. The leading-edge region of the wing profile with the 

highest loading is defined as 1/4 of the chord (total profile length), because it is in this region that the 

aerodynamic center is considered to be located. The aerodynamic center is an idealized point where the 

resulting forces and moments acting on the wing are located [9]. Therefore, the boundary conditions can 

be determined. according to the study by Xinxing, Wenjie et al. (2014) [10], Figure 4. 

 

Figure 4. Wing edge profile [10] adapted. 

 The USA-35B profile was introduced into the algorithm by its coordinates in a 121x90 element 

domain with the insertion of voids as presented by Andreassen and Clausen et al. [4]. The coordinates 

used are from the database of the University of Illinois Aerospace Engineering Department [11]. 

Figure 5 shows the wing profile and the region of interest for determining rib geometry that is up 

to a quarter of the chord [9]. Excel software was used for plotting graphs. 

Note that the vertical coordinates have negative real values, however the mesh numbering is done 

by positive integers. Therefore, it is necessary to perform a transformation in the field of coordinates. 

The transformation of the coordinates was performed so that the final mesh had 121 elements in x 

and 90 elements in y, values chosen to maintain the proportionality of the profile. Therefore, the axes 

values of Figure 6 were transformed by the relationships shown in Equations (9) and (10), which were 

obtained by proportionality, direct to the horizontal axis, since the original values are on a unit scale, 

and a scale increased by 10 times for the vertical axis.  

 

 Figure 5. USA-35B Profile Coordinates  [11] adapted  

 X= (
nelx

(
nely

3
)
) (x*nelx+1) (9) 

 Y=(y*10)(nely+1) (10) 

Where X and Y are the horizontal and vertical coordinates after transformation, respectively, x and 

Aerodynamic loading 

Domain 

c/4 
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y are the old coordinates. nelx and nely are the number of horizontal and vertical elements respectively. 

  

 

Figure 6. USA-35B Profile Coordinate Transformation. 

Thus, with this transformation it is possible to determine the boundary conditions for the application 

in the algorithm. Distributed loading, for simplicity, is entered based on the approximation functions, 

see Figure 7 case (a). The start and end of each distributed load region is determined by Figure 7 case 

(b). The values of the forces were normalized as the largest load being the unit, the other values were 

reduced based on the approximation function. 

  

 

 

(a) (b) 

Figure 7. Profile coordinates of the rope under 1/4, (a) approximation by two exponential functions and (b) load 

distribution. 

3.3 Algorithm 

The algorithm was implemented in the Matlab software, the same used by the models developed 

by Sigmund (2001) [3], Andreassen and Clausen et al. (2010) [4]. 

According to Andreassen and Clausen et al. (2010) [4], Matlab is an advanced programming 

language capable of solving numerous problems with simple code. However, compared to other 

languages such as C ++ and Fortran, it has a lower computational capacity mainly due to inadequate 

allocation and software tolerance for poor programming practices such as variable and vector 

misallocation. Therefore, the previous memory allocation is used, which is characterized by the sparse 

function. 

 

Mesh and imput 

The algorithm employed is the work of Andreassen and Clausen et al. (2010) [4] a didactic code 

that is based on the Sigmund [3] 99 line algorithm. Both models have the same implementation base, 

but the most current model enables the use of new filters, other solution methods, and better overall 
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performance. The calling function for the code is expressed in Equation (11). 

 top88(nelx, nely, fr, penal, rmin, ft) (11) 

Where nelx and nely are the horizontal and vertical element numbers respectively, fr is the volume 

fraction, penal is the penalty exponent, rmin is the filter for the minimum radius of filter neighborhood 

rating and "ft" specifies which filter: sensitivity (ft = 1) or density (ft = 2). 

The model used for the domain are quadrilateral elements as shown in Figure 8 nodes are numbered 

relative to the left-to-right column of degrees of freedom in the order of "2n-1" where "2n" represents 

horizontal and vertical displacement. of node "n" respectively. This high mesh regularity can be 

harnessed in many ways to reduce the computational effort in looping. 

 
Figure 8. Model domain with 12 elements [4]. 

4  Results 

The mesh used in the code was an 121x90 elements, prescribed volume ranges from 60% to 15% 

for optimal topology characterization, penalty exponent equal to 3 and rmin equal to 4% of the nelx, then 

equal to 5. Minimum radius and penalty exponent were determined based on the literature [3] [4]. 

The results shown in Figure 9 and Figure 10 represent only the wing edge profile support element, 

without the outer contour where the ribs (supports) are attached. 

Figure 9 presents six results with the sensitivity filter. Results (a) and (b) show mesh dependence 

from the constraint and number of elements used. This effect is eliminated from case (c) with a 

prescribed volume of 40%. Convergence was relatively fast compared to the other examples. Just the 

case (f) which has a number of clashing interactions, which was caused because the constraint reached 

a limit of 15% and it can be seen that the inclined truss was not fully defined. 

 
  

(a) (b)  (c) 

 

 

 

(d) (e)  (f) 

Figure 9. Results for with sensitivity filter, fr equal to (a) 60%, (b) 50%, (c) 40%, (d) 30%, (e) 20% e (f) 15%. 
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In the following tables (1) and (2) variables such as flexibility, c, and minimum radius (rmin) do not 

present units since the adopted model of the literature [4] applies a normalization dependent on the 

average and on the number of mesh elements. The same is true for the density which is treated as a pixel 

in the result figures and the material loads and properties normalized to unit values. This method of 

normalizing parameters is used to decrease the sensitivity of functions to variations in input parameters. 

Table 1. Results with Sensitivity Filter. 

Results nelx×nely rmin fr ni c ch t (s) TI (s) 

(a) 121x90 5 60% 36 45.2563 0.010 19.693 0.547 

(b) 121x90 5 50% 24 45.4878 0.009 13.087 0.545 

(c) 121x90 5 40% 20 45.8674 0.009 12.716 0.636 

(d) 121x90 5 30% 23 47.5662 0.009 13.129 0.571 

(e) 121x90 5 20% 31 50.3360 0.009 16.383 0.528 

(f) 121x90 5 15% 169 57.0130 0.010 82.382 0.487 

Horizontal and vertical mesh elements, respectively, rmin is the neighborhood scan radius used in 

the filters, ni is the number of iterations, c is the flexibility, ch the condition of stop, t the convergence 

time and IT the convergence time by iteration. 

It is noteworthy that the variation of the rmin not affect the result of the final topology, but because 

it results in a larger scan area in the vicinity of the elements considerably affects the convergence of the 

algorithm, so that from this section The minimum radius value is preset to 4% "nelx" as recommended 

by Andreassen and Clausen, et al. [4]. 

Figure 10 presents the results for the density filter which are similar as already noted in the previous 

examples. For the rib, the filter was more stable without mesh dependence for cases (a) and (b) and 

lower occurrence of gray regions. The result with 15% volume fraction, case (f), is also better defined 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 10.  Results with density filter, fr equal to (a) 60%, (b) 50%, (c) 40%, (d) 30%, (e) 20% e (f) 15% 
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Table 2. Results with density filter. 

Results nelx×nely rmin fr ni c ch t (s) TI (s) 

(a) 121x90 5 60% 187 51,2636 0,010 121,870 0,651 

(b) 121x90 5 50% 171 51,5240 0,008 115,969 0,678 

(c) 121x90 5 40% 213 51,9413 0,008 142,822 0,671 

(d) 121x90 5 30% 256 52,7409   0,006 235,948 0,922 

(e) 121x90 5 20% 509 54,9361 0,009 388,069 0,762 

(f) 121x90 5 15% 474 58,3318 0,006 340,007 0,717 

The reduction in rib volume represents a significant optimization in the UAV, as total weight is an 

extremely important variable in its development. While reducing the volume of a naturally light element 

may seem unnecessary, a close to 85% reduction in a structure that is distributed across the wing results 

in an interesting mass reduction for a UAV design, even more so. models subject to aerodesign 

competitions as is the case analyzed in this paper. 

Moreover, as already evaluated, this mass reduction improves important parameters such as lift, 

fuel consumption, engine choice, aerodynamic balance. Finally, the final geometry of the inner rib 

together with the wing bark at ¼ of the rope does not differ much from the model found in the literature 

[9] as seen in Figure 11. 

Figure 11 shows the comparison of the wing leading edge profile tip. In case (b) in case (b) the 

result of Figure 10 case (d) as a 40% volume fraction. The contour of Figure 11 case (b) is used to 

represent the full profile, that is, the shell and the inner rib.  

 

 

(a) (b) 

Figure 11. Comparison between rib profile (a) literature (RODRIGUES, 2009) [8] adapted and (b) algorithm 

result for 20% of volume fraction with density filter.  

5  Conclusions 

The Topological Optimization Method (MOT) is a versatile and sophisticated optimization process 

determine an optimum. In this work the USA-35B profile was used because it is typical of small aircraft 

with a large wing area. The optimization result presented a topology similar to the model found in the 

literature. Furthermore, the validity of the application of MOT to light structures was discussed and it 

was concluded that the mass of a UAV, especially the subjects subjected to AeroDesign competitions, 

is an extremely important parameter, so the reduction of rib volume is a great desired because the overall 

weight of the structure is crucial in flight efficiency, glide height, lift, engine specification, fuel 

consumption and therefore the overall UAV price. 

The filters used to determine the optimal topology significantly altered the results. It was concluded 

that the filter acting directly on the density presented a longer convergence time, but did not have mesh 

dependencies or chess boards for any case. The derivative filter (sensitivity) was faster in convergence 

in most cases and presented lower values for flexibility, on the other hand presented numerical 

instabilities such as mesh dependencies and undefined regions, gray. 
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