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Abstract. Risers are among the most expensive and complex components of an offshore production 

system, because they suffer the action of a series of dynamic and environmental loads when connecting 

the seabed to the floating unit. An optimal design of such structures can bring more security and cost 

savings, which can be achieved by optimization techniques. In this context, this work presents the 

development and implementation of Artificial Neural Network (ANN) in optimization procedures of 

Lazy Wave flexible riser configuration as an alternative to Finite Element simulations, which has a high 

computational cost. For the network selection, a parametric analysis has been done considering the mean 

square error, accuracy of two different types of training algorithms and different amounts of neurons 

layers. A case study is presented comparing the results of the ANN optimization process with a 

simulation by the Finite Element Method (FEM). The results indicate a significant reduction of the 

computational cost of all optimization process was achieved using ANN, which was able to predict with 

accuracy the magnitudes involved in this type of problem.  
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1  Introduction 

Oil and gas production have migrated to deep and ultra-deep waters over the years, reaching water 

depths of more than 2000 meters, as in the Brazilian Pre-Salt fields. This type of production requires a 

series of complex equipment and new technologies to deal with the challenges of Floating Units, which 

are mostly FPSO’s (Floating Production Storage and Offloading) and Semi-submersible platforms 

which are connected to the seabed by mooring lines (responsible for supporting the efforts and 

movements of the platform, usually caused by environmental loads) and a number of flexible lines 

designed for transferring oil, gases and other essential chemical products, risers. These lines need to be 

resistant and watertight, without compromising its flexibility. Therefore, risers are designed in 

independent layers of different materials. Each layer has a different purpose, such as reducing friction 

wear and resistance to high temperatures, stresses and corrosion. This number of requirements makes 

the riser one of the most expensive and complex equipment of an offshore system. 

 Because of great water depths in recent offshore production systems, the structural behavior, 

integrity and configuration of the riser has become important issues. In this context they are subject to 

heavier loads, due to factors such as a bigger water depth, floating unit movements, type and number of 

lines and location. With the need to balance cost and safety, optimization methods become useful for 

setting the parameters that define this configuration.  

Previous works have studied the application of optimization techniques for the design of offshore 

oil production risers. In [1], the authors used Particle Swarm Optimization (PSO) method, tailoring the 

algorithm to the problem. In [2], an assessment of enhanced variants of three different groups of bio-

inspired methodologies genetic algorithms, particle swarm optimization, and artificial immune system, 

was presented. A study to automate the design of compliant vertical access risers by applying Elitist 

non-dominated sorting genetic algorithm together with a design of experiments (DOE) was made by [3]. 

The outputs of these optimizations are usually obtained by Finite Element Method with high 

computational cost. 

This motivates the studies of Artificial Neural Networks for optimization procedures in order to 

reduce this cost without losing a significant amount of precision on these parameters. In addition, 

Particle Swarm Optimization was chosen as optimization method to explore the search space. Previous 

works [4] have demonstrated that the application of ANN and other meta-models in mooring lines and 

risers presenting high levels of accuracy and low computational time, giving room for our research and 

application. 

2  Problem Modeling 

2.1 Lazy wave Riser Configuration  

Since we are working in a context of ultra-deep waters, there is a need for more structured risers 

(comparing with smaller depths), causing a great submerged weight. Lazy wave configuration act to 

decrease the tensions at the riser bottom and top, using the buoys to generate buoyancy in the 

intermediate section of the line. Figure 1 presents a schematic model with some of the parameters that 

are important for a riser evaluation: Length of top riser segment (L1), Length of segments with 

distributed floaters (L2), Length of lower segment of the riser (L3), Buoy diameter (DFLUT), Buoy 

length (DLFLUT) and Spacing between buoys (ESPFLUT). 
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Figure 1. Lazy wave riser configuration and its measures 

Any candidate solution must attend other constraints, parameters and limits previously defined [4] 

related to the riser structural response. These parameters are: value of maximum top angle variation 

(angle between the top riser segment axis and a vertical direction at the riser connection); tension limit 

on the riser top and bottom; maximum von Mises stress on riser sections. 

By respecting these parameters and applying them to generate a dataset used to train the Artificial 

Neural Network, the optimizer guarantees the structural integrity of the riser. 

2.2 Fitness Function 

In order to relate the 6 riser variables and compare each evaluated solution, an unconstrained fitness 

function is calculated as follows: 

 𝐹 =  
𝐶𝑚𝑖𝑛

(∑ 𝐶𝐼i ∙ 𝐿i
n
i=1 )+(𝐶𝐼buoy ∙𝑉buoy)

 (1) 

Where, 𝐶𝑚𝑖𝑛 is the lowest possible cost, used to normalize 𝐹 in the interval [0,1]; 𝑖 = 1 … 𝑛 

represents the index of the riser segment; 𝐶𝐼𝑖 is a cost associated to each segment; 𝐿𝑖 is the segment 

length (L1, L2 or L3); 𝑉𝑏𝑢𝑜𝑦 is the buoy volume (calculated with DFLUT and DLFLUT) and 𝐶𝐼𝑏𝑢𝑜𝑦 is 

a cost associated to 𝑉𝑏𝑢𝑜𝑦 [4]. 

It is important to note that this optimization problem consists of minimizing the fitness function if 

FEM procedure is used to compute the above parameters. In this work, a dataset is used to train a 

metamodel to return the fitness value making possible the use of any optimization algorithm even 

considering maximization characteristics. 

2.3 Artificial Neural Network 

Artificial Neural Networks are computational models based on mathematical regression capable to 

predict outputs, given a certain input. It relates inputs to outputs by changing parameters and function 

weights of each of its neurons. ANN neurons are key parts of the algorithm, formed by mathematical 

functions that receive one or more inputs and return an output, which may be the input of other neurons. 

These are organized in layers, where each layer has the same connections on its neurons and the same 

type of output. Figure 2 represents an artificial model of a neuron [5]. On the shaping of a neural 

network, the number of layers and neurons on these layers affects the quality and precision of the output. 
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Figure 2. McCulloch-Pitts neuron  

As shown in the Figure 2, the neuron calculates a linear combination of the inputs with their 

respective weights, forming the new scalar 𝑧, and uses 𝑧 as the new input for the activation function 

𝑓(𝑧):  

 𝑦 = 𝑓(𝑧) =
1

1+𝑒−𝑥 (2) 

When the output of a neuron can be received by other neurons without restrictions, recurrent 

networks are formed. Moreover, when only the next layer neuron on the network can receive the output, 

a feed-forward neural network, is formed as illustrated in Figure 3 [6]. 

Figure 3. General structure of a two layers feed-forward artificial neural network 

Many types of activation functions can be applied, depending on the purpose of each network. In 

this work, as implemented in MATLAB©, the sigmoid function, Eq. (2), is used to take the network 

outputs to values from 0 to 1 in the hidden layer of the network. However, in the output layer, responsible 

for returning the network output vector, a linear transfer function is used for the new function 

approximation. Therefore, this optimization works with a one hidden layer feed-forward network with 

sigmoid hidden neurons and linear output neurons. 

The ability to learn correctly comes from a training process using a significant amount of data: 

examples of inputs. This learning can occur in two ways: Supervised and Unsupervised. Unsupervised 

learning requires only the inputs of a problem to train the neural network and it is usually used for cases 

where the network must learn to identify patterns in the data, often not identified by users, such as 

clustering problems [7]. Supervised learning requires both the desired inputs and outputs of the problem 

[8]. In this case, training of the network has the objective of mapping and finding relations between the 

inputs and outputs of the problem so that, when presenting a new input, the network can produce the 

desired output type. 

Training an ANN on supervised learning is essentially the process of changing the weights related 

to each input that enters each neuron. Back-propagation method, the most common for multilayer neural 

networks, consists on repeating two steps: analyzing the errors of the network outputs and change the 

weights, from the end to the beginning of the network. These steps are repeated until the errors are 



A. Benete, B. Monteiro, C.Albrecht, B.Jacob 

CILAMCE 2019 

Proceedings of the XLIbero-LatinAmerican Congress on Computational Methods in Engineering, ABMEC, 

Natal/RN, Brazil, November 11-14, 2019 

within an acceptable range, previously defined, according to the purpose of the network [4]. 

MATLAB© provides three different algorithms for fitting optimization: Levenberg-Marquardt, 

Bayesian Regularization, Scaled Conjugate Gradient, which are analyzed and compared in the Case 

Study (3) (together with the number of neurons in the inner layer of the network) in relation to the Mean 

Squared Error between the network outputs and targets. 

2.4 Particle Swarm Optimization 

PSO, that was developed by Kennedy and Eberhardt in 1995 [9], consists in a computational 

method bio-inspired by the social behavior of some animals, for example, a flock of birds, where the 

information acquired by an individual about the search space influences the analysis of the entire 

population.  

This method maintains a swarm of candidate solutions, called particles, starting with an initial 

population randomly generated. Throughout the evolution process, each particle remembers the best 

position it has found, and the best position found by all particles. This algorithm has a few parameters 

to be adjusted, population size, inertia coefficient, individual and social terms. Trelea [10] parameters 

that have been shown to present good results for general applications were used as constants of the 

problem. 

Figure 4 presents the steps of the basic PSO. Equations and more details about PSO method can be 

found in [9]. 

 

Figure 4. Pseudo-code of standard PSO 

2.5 Latin Hypercube Sampling 

The key for a successful Artificial Neural Network is the dataset chosen for the training process. 

Dataset should have a considerable level of randomness (within the limits of each parameter) to cover 

as many cases as possible. Latin hypercube sampling method [11], usually used for multidimensional 

problems, can guarantee such randomness. 

This method started with two dimensions (the Latin square), organizing the sample space formed 

by two variables in a square / "chessboard" 𝑛𝑥𝑛 and selecting points from this square so that two points 

are not in the same row or column , Figure 5.  

Randomly initialize population 

For each particle, calculate “fitness” from objective function 

Set personal best = fitness  

Compute global best 

Repeat 

Compute new velocities of each particle 

Update positions 

Calculate fitness  

Update personal best and global best 

Until stopping criterion reached (usually sufficiently good fitness or fitness evaluations) 
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Figure 5. Latin square general example 

Latin hypercube is the generalization of this method to a greater number of variables. In our 

particular problem, each one of the 6 variables (see section 2.1) are divided, within their limits, as can 

be seen in Table 3 on the next section, in 𝑛 individuals (given a sample of size 𝑛) and a point is chosen 

at each of these intervals. This process generates the final sample of 𝑛 vectors of 6 dimensions.  

3  Case Study 

3.1 Model Description 

The riser example that we use to model the problem and to optimize the design is installed in a 

Lazy-Wave configuration between a floating unit and the seabed at 2,400 meters. Tables 1 and 2 show 

the geometrical and physical properties of this riser.  

Table 1. Riser geometrical properties 

Property Value  

Internal Diameter 0.3048m 

External Diameter 0.4064m 

Floater external diameter 0.5588m 

Floater weight 2.0 kN/m 

Floater buoyancy 8 kN/m 

Thickness 0.0508m 

 

Table 2. Riser physical properties 

Property Value 

Elastic Modulus 203,851.8 MPa 

Yield stress 413.0 MPa 

Allowable stress 330.4 MPa 

Density 7,800 kg/m3 

Specific weight 77 kN/m3 

 

Table 3 presents the free variables of the optimization process. 
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Table 3. Limits of the free variables of the problem 

Free Variables Max [m] Min [m] 

L1 1,200 2,000 

L2 500 1,500 

L3 2,000 3,000 

DFLUT 1.5 3.5 

DLFLUT 1.5 3.5 

ESPFLUT 1.0 3.5 

 

It is worth remembering that in the calculation of the Fitness Function (Eq. Error! Bookmark not 

defined., described in section 2.2), the 𝐹 value of segments with Floats (L2) are worth twice as many 

standard segments (L1 and L3), as already mentioned in previous studies that used the same riser model 

[4]. 

The data used to train the Artificial Neural Network was generated from Finite Element analysis 

provided by the SITUA-PROSIM, a non-commercial software used for the analysis of offshore systems 

[12]. It returns as output the result of the Fitness Function. By using the supervised learning method, the 

network is trained with both the inputs and outputs from FEM analyzes. 

3.2 Parametric studies of the ANN Training 

This section presents the parametric studies performed to choose the main parameters that directly 

influence the training time and Mean Square Error (MSE) on ANN. Such parameters are training 

algorithm, number of neurons and dataset size. In order to find the best network, some variations of 

these characteristics using MATLAB© ANN toolbox was compared. 

First comparisons were made between training algorithms Levenberg Marquardt and Bayesian 

Regularization well as well the number of neurons. For each configuration, 10 independent networks 

were trained, the average of their MSEs and time (in minutes) was presented in Table 4. These rounds 

were performed with a large sample number (89,058) to avoid errors and deviations possibly caused by 

the dataset. The uneven number of samples is caused by corrections and filtering that were made in the 

file released by SITUA, excluding some nonconverging individuals from the sample. This study was 

done using a notebook with Intel Pentium processor with 2.16 GHz and 4GB of memory. For these two 

reasons (large sample number and PC configuration), the training time of the networks in this study is 

higher than the following comparisons. 

In addition, all networks of this work were trained in the following proportion: 80% of data for 

training, 15% for validation and 5% for test. These proportions have been chosen to ensure the learning 

of as many examples as possible. 

Table 4: Parametric studies of the ANN training algorithm and number of neurons 

Name Algorithm  Neurons Average MSE  Average Time [min] 

LM10 Levenberg Marquardt  10 2.3766E-07 8 

LM30 Levenberg Marquardt  30 1.9216E-07 30 

LM50 Levenberg Marquardt  50 1.8154E-07 79 

B10 Bayesian regularization  10 2.5069E-07 7 

B30 Bayesian regularization  30 1.9711E-07 24 

B50 Bayesian regularization  50 1.9485E-07 52 

 

Although LM50 configuration has lower MSE, the LM30 configuration was chosen, because it 

presents the MSE in the same order of magnitude as LM50 and it has a significantly shorter training 

time. Therefore, the configuration selected was: A network trained by the Levenberg Marquardt 

algorithm with 30 neurons in its layer.  
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Despite having already trained ANN with a low error in the previous study, it was decided to do 

one more study to identify the smallest dataset size where the ANN could be satisfactorily trained to 

achieve a shorter training time. From this parametric study to the following results, the analysis and 

training were done on a PC with Intel i7 processor with 3.40 GHz and 8 GB of memory. 

Also, for these comparisons, 10 independent networks were trained for each dataset size, already 

using the previously defined configurations. Table 5 shows the average MSE of these 10 runs for each 

dataset size, average training time (in seconds) and the MSE for the best run. 

Table 5: Parametric studies of the dataset size 

Dataset size Average MSE Average Time [s] Best Run MSE 

200 4.12E-05 0 1.64E-05 

500 5.60E-05 0.4 2.68E-07 

1000 3.14E-07 1.8 2.36E-07 

3000 2.45E-07 5.6 2.07E-07 

5000 2.28E-07 10.7 2.07E-07 

7000 2.19E-07 18.0 1.90E-07 

10000 2.20E-07 22.0 2.06E-07 

Analyzing the average MSE and comparing with those found in the parametric study of the 

algorithms, it is noticed that when increasing the dataset, above 3,000 samples, MSE tends to converge 

to values close to 2E-07, even though still varying around the core value, caused by random neural 

network responses in a few individuals. The same convergence process still happens with large datasets 

such as more than 80,000 samples. This shows that in this range of training samples, all networks will 

have outputs with similar accuracies. Therefore, the best network of the dataset size of 7,000 samples 

was used. Table 6 shows the configuration of the artificial neural network used in the optimization and 

the data division applied in training process: 

Table 6: Artificial Neural Network final configuration 

Algorithm Levenberg Marquardt 

Neurons 30 

Dataset size  7,000 

Training set (80%) 5,600 

Validation set (15%) 1,050 

Test set (5%) 350 

3.3 Results: Optimization with the trained Artificial Neural Network. 

In the optimization process, fitness value of each candidate solution is computed by the previously 

trained ANN. PSO algorithm was performed with a population size of 30 individuals along 100 

generations. PSO coefficients were chosen according to Trelea [10], type 1, 𝜔 = 0.6 and 𝐶1 = 𝐶2 =
1.7. 

Figure 6 shows the optimization process evolution using ANN to return the fitness value. One can 

notice that the objective of this process consists in minimize the fitness value, as explained in section 

2.2. 

We can see that the algorithm converged around 2,500 function evaluations, which indicates that 

the number of evaluations (3000) was more than satisfactory. 
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Figure 6: Evolution of the PSO algorithm 

3.4 Results: Assessment of ANN 

In order to assess the accuracy of the fitness calculation by ANN instead of the analysis by FEM, 

all individuals generated during the optimization process (by the PSO algorithm) were saved and 

subsequently calculated via FEM, so that we could obtain the correlation between the data. Figure 7 

shows this correlation between ANN and FEM. 

 

Figure 7: FEM Output and ANN Estimate 

The maximum error between ANN and FEM data was 2.6E-02. This shows good accuracy of the 

trained ANN and that the replacement of the FEM analysis by the ANN was successful. 

It can be observed that the region with lower fitness values is the one with greater error. This is due 

to the fitness function at this location is probably influenced by the constraints of the problem. 

Another important comparison is about the total time in optimization process. Using ANN, the 

optimizer spent only 6.7s to complete the whole process while using FEM the optimizer spent 6240s or 

1h 44min to perform the complete process using static analyses. This computational cost reduction may 

favor several other studies such as comparing other optimization algorithms, for instance. 
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4  Conclusion 

This study aimed to apply Artificial Neural Network in the optimization process of configuration 

of Lazy-Wave risers installed in deep waters, being able to replace analyzes made by Finite Elements, 

reducing the computational costs. Finite Element analysis data were used to train the network and verify 

its outputs. These data are composed of the parameters of the riser and the result of the calculation of 

the fitness function. Besides showing the use of the networks in the optimization, parametric studies 

were done to define the characteristics of this network and the dataset used to improve its performance 

and its training time. The neural network used in the optimization process had as training mean error 

2.19E-07, taking 18 seconds to be trained. 

From the results, in the parametric studies, Levenberg Marquardt training algorithm with 30 

neurons in its layer presented better performance. In addition, it can be noted that the replacement of 

FEM analysis by ANN throughout the optimization process was satisfactorily achieved. 

Regarding computational cost, the optimization process with ANN spent only 6.7s while using 

FEM to compute the objective function spent 6240s considering static analyses. 

In future works, the parametric studies elaborated in this research can be used to apply this type of 

ANN within optimization programs training it during the optimization processes, with new datasets in 

each iteration. 
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