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Abstract. Risers play an important role in offshore production systems by conveying oil, gas and other 

fluids from subsea wells to floating production units (FPU) or vice versa. Free hanging (catenary) risers 

using flexible pipes have been the most conventional configuration in Brazilian production assets, but 

the participation of steel catenary risers has long been fostered by oil companies and their technological 

partners. The most challenging sections of free hanging risers are the vicinity of their top end and the 

touchdown zone (TDZ). This investigation focuses on the latter section, by examining the static 

interaction between riser and seabed, which is described by Skempton’s backbone curve. Besides the 

external pressure and possible wall compression, the curvatures often impose the strongest constraints 

to the riser design space. Parametric studies using finite element methods, non-dimensional analysis and 

statistics seem to be promising route to assess the riser response. The results documented herein are 

limited to static response with no marine current or wave loads, focusing on the maximum curvature 

along the TDZ, and they supply zero-order approximations to studies which aim at describing the 

dynamic response using asymptotic approximation techniques. 
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1  Introduction 

The interaction between marine risers and seabed is matter of great interest in ocean engineering. Risers 

are long pipes which provide hydraulic connection between subsea equipment and floating production 

units (FPUs), distinguished from flowlines because the former yield noticeable change of elevation to 

the flow, whereas the latter lay on the seabed. Risers may have several configurations and they can be 

made of different materials. The choice of the most suitable riser system depends on parameters such as 

water depth, FPU motions and its interfacing facilities, installation and pipelay resources, diameter, etc. 

Free-hanging risers, mostly made of flexible pipes, has been used in offshore Brazil. The oil companies 

have also encouraged the design and the use of steel catenary risers (SCRs), even though their 

engineering and installation have a number of challenging concerns, because SCRs may reduce overall 

costs and they are easier to manufacture, which may increase the competitiveness in bids. 

Free-hanging risers undergo static loads derived from self-weight, buoyance, internal fluid weight and 

drag effects from waves, wind and currents; their configuration is also ruled by physical constraints such 

as the top-end stiffness, the seabed geometry, its stiffness and frictional properties. These risers usually 

undergo dynamic loads, which are ruled by top motion, inertia/vibrational effects and damping, although 

other components may exist (e.g. VIV).  

The comparative dominance of loads or physical constraints at different riser sections makes convenient, 

for engineering design purposes, to divide the free-hanging riser into three sections: (i) top end and 

interface with FPU; (ii) intermediate section; (iii) touchdown zone (TDZ) and instantaneous touchdown 

point (TDP). By segmenting the riser thus, the bending edge effects (see [1]) can be disregarded in 

intermediate section and the classic catenary theory can be used to predict the static riser configuration 

and static tension at any point therein. Because the dynamic response of free hanging risers is intricate, 

the usual method to predict it is numerical (finite element analysis). Nonetheless, some interesting 

studies (see [2]) have suggested that approximation techniques based on asymptotic expansions, in 

which zero-order solution is simply the static configuration, may yield reasonable estimates of the 

dynamic riser response. 

In general, acknowledging that the combination of curvature and high tension would drive the riser 

structural integrity to hazardous states, the engineering design aims at minimizing the local curvature 

near the top end, either by stiffening (use of stress joints and bend stiffeners), by releasing the rotations 

(flex-joints) or by using special supporting devices (e.g.: stingers in pipelaying vessels). If these 

engineering means were not employed, the top angle and vessel motions would have to be limited in a 

way that may be unfeasible. 

With regard to the touchdown zone, the designers have depended on the riser configuration (i.e.: top 

angle, TDP tension) and pipe properties (i.e.: weight, stiffness) to limit the curvature. Since it neglects 

the pipe stiffness, the catenary theory cannot provide any rough estimate of the TDP curvature. Indeed, 

the local curvature is ruled either by “catenary parameters”, pipe stiffness and soil stiffness, as shown 

by several studies using analytical techniques. PESCE (1997) develops asymptotic solutions for the riser 

equilibrium in TDZ supposing linear soil deformability and parametric studies in order to examine its 

effects. CROLL (2000) proposes an interactive process, which is both analytical and numerical, to assess 

the TDP curvature. PALMER (2008) proposes a simplified solution for soil indentation (which rules the 

local pipe curvature), as a function of the distributed reaction force exerted by the soil onto the riser. A 

trend towards better description of the seabed stiffness is noteworthy after the findings of STRIDE and 

CARISIMA JIPs (see THETHIS and MOROS, 2001[4]; [5]). As the consideration of nonlinear soil 

attributes such as plasticity and degradation make general numerical techniques (e.g. finite elements) 

more suitable than analytical methods, the latter have recently reduced their participation in the state of 

the art. 

Two of the main advantages of analytical methods in riser analysis are the computational speed and 

easier cognition of the parameter-response relationships, which may be either obtained by fully 

analytical (e.g. deduction of partial derivatives) or partially numerical (parametric studies). The 

developed cognition of the parameter-response relationships has been a chief skill for riser designers, 

because of its value in discarding troublesome solutions (i.e. solutions whose drawbacks would be found 

by costly analyses) in early engineering phases and in accelerating the convergence to optimum solutions 
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(despite optimization algorithms have progressively replaced the human role in design improvement). 

As analytical methods are abandoned due to their limitations in dealing with sophisticated soil models, 

more costly studies have to be used to map the parameter-response relationships that rule the riser 

mechanics. 

Such mapping is the proposal of this research. It is performed by a few steps: (1) to run numerical 

simulations with different design parameters; (2) to find convenient ways to normalize the input data 

and the results (e.g. by using non-dimensional groups); (3) to identify trends and to look transformations 

(e.g. principal component analysis) that reinforce or reduce the relationships among groups of 

parameters or results; (4) to propose heuristic methods to predict key response parameters. 

2  Systems and models  

The systems under study consist of free-hanging risers whose top angle ranges from 1 to 37° at water 

depths ranging from 250 to 3200 m. Although more universal approach was tried out (in order to depict 

flexible pipes), each riser is made of steel pipe, with constant diameter and thickness throughout its 

length. Apart from the quasi-static lifting of the riser end, no motion exists. No current or wave loads 

exist. Every riser is full of water. The seabed is flat; the soil is non-degradable. 

The software ABAQUS/Standard is used to build and solve models, which are in-plane (2D). The risers 

are modelled with 2-node Euler-Bernoulli beams, which achieved good computational performance. 3-

node quadratic beam elements might allow the mesh to be coarser, but they were shown to hinder the 

performance of the contact algorithm. Hybrid formulation is not seen to be important for tensioned 

beams. The model length is defined to let the integral of the soil friction along the pipes section laid on 

the seabed balance the TDP tension. The mesh consists of 5000 elements, distributed in a way to be 

coarse in the section laid on the seabed and refined at the most curved sections. 

The seabed was modelled with a flat analytical line, which is not rigid. The vertical soil stiffness is 

provided by defining the nonlinear tabular function of penetration displacement as a function of 

distributed contact force. Its values define Skempton’s backbone curve, whose main parameter is the 

soil shear strength. Besides such vertical interaction, Coulomb-Amonton friction model with prescribed 

coefficients was employed to interaction in axial direction. 

The riser is initially laid on the seabed. The first edge (“top node”) is free to rotate and their vertical 

displacement is prescribed, whereas an encastre eliminates the degrees of freedom of the opposite end. 

The analysis is fully static. Distributed forces corresponding to self-weight, buoyancy and internal fluid 

weight are applied in the first step. Prescribed lifting displacement and horizontal component of tension 

are progressively applied in the second step. As the top end moves upwards and the horizontal 

component of tension increases, each intermediate solution is stored, since it describes a valid free-

hanging configuration in equilibrium. 

Despite exact solutions for the Clebsch-Kirchhoff’s equations in 2D space are feasible only for simple 

and particular cases, approximate solutions can be obtained for static catenary risers in the vicinity of 

TDP. Depending on the proposed assumptions, the equation in the derivative of bending moment can 

be developed until the derivative of maximum curvature can be written as function of terms like   𝑠 
𝑤
𝐸𝐼   

and 𝑘0
𝑇0

𝐸𝐼
 ,    which give clues for the mutual dependencies among parameters. 

3  Automation and sampling 

Python scripts guesses the parameters, build the models in ABAQUS, submit jobs, monitor their 

execution and get the key results just after each job is complete. The statistical study initially planned 

was huge, since it comprised an investigation with the variation of 10 design parameters. However, its 

feasibility depended on how fast is the simulation and the intended speed was not achieved 

unfortunately. Using the current procedure in ABAQUS/Standard, each model run in time between 60 

to 4400 s (1018 s on average) in common dual-core notebook, during which about 15 catenary solutions 

are recorded. The post-processing script avoids recording solutions which are too close. Because of the 
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rough performance, the sampling strategy was limited to 6 parameters and the other parameters were 

defined by the assumption that the pipe is made of steel and it is full of water. Therefore, in the current 

version, the sampling is defined by 6 nested loops of tabular core values for the parameters, to which 

random values are summed. These parameters are: (1) D/t ratio; (2) external diameter; (3) Coulomb 

friction coefficient; (4) water depth; (5) top angle; (6) soil shear strength.   

 

for aD/t in (25.0, 20.0, 15.0, 12.5, 10.0, 8.0): 

  for aDe in (0.20, 0.25, 0.30, 0.35): 

    for af_atr in (0.08, 0.13, 0.20): 

      for aLDA in (300, 500, 900, 1300, 1800, 2300, 3000): 

        for aAngTDegree in (2, 5, 7, 9.5, 12, 15, 20, 27, 35): 

          for aSu0 in (500.0, 1000.0, 2000.0, 3000.0, 4000.0): 

            Su0=aSu0+random.uniform(-0.1*aSu0, 0.2*aSu0) 

            f_atr = af_atr + random.uniform(-0.02,0.03) 

            AngTGraus= aAngTDegree +random.uniform(-1.0,2.) 

            AngT = AngTGraus/57.3  

            LDA = aLDA + random.uniform(-50.0, 200) 

            D/t = aD/t + random.uniform(-0.8,0.8) 

            De = aDe + random.uniform(-0.2,0.2) 

            t = De/D/t  

            caso = (De, t, f_atr, LDA, AngT, Su0) 

 

The following results are acquired at intermediate and final simulation times: (1) coordinates of top 

node; (2) top angle; (3) TDP position or length laid on the seabed; (4) TDP tension; (5) TDP shear force; 

(6) TDP curvature; (7) top tension; (8) top shear force; (9) maximum curvature; (10) position of 

maximum curvature. 

4  Pre-processing of simulation results  

Normalization by creating non-dimensional groups is tried out in order to (1) determine the phenomena 

that are scalable; (2) reduce the number of variables (parameters) required to interpret the results. Indeed, 

the use of dimensionless group alone does not guarantee the easy cognition of physical laws in the riser 

response, because it may be ruled by a superposition of phenomena (i.e. beam bending, soil penetration, 

dissipation of energy, etc), which may be unsymmetrically affected by changes in scale. Nonetheless, 

some pathways can be examined.  

Firstly, local bending is deemed to be a strong phenomenon with regard to the TDZ curvature. The 

“boundary layer” in which the bending effects are relevant is known to be proportional to a length given 

by 𝑙𝑓 ≡ √𝐸𝐼/𝑇0, hence the dimensional analysis will hereinafter use it as characteristic size scale. Other 

characteristic scales are defined by the distributed weight force w, with units of mass per square of time, 

and, if necessary, the acceleration of gravity g, with units of length per square of time.  

The following formulae define a first set of dimensionless numbers and the general rules for the 

composition of other dimensionless parameters: 

 

𝑠̃ ≡ 𝑠/𝑙𝑓, 𝐿̃𝑠 ≡ 𝐿𝑠/𝑙𝑓,  𝑦̃𝑡 ≡ 𝑦𝑡/𝑙𝑓,  𝐷̃ ≡ 𝐷/𝑙𝑓,   𝜅̃ ≡ 𝜅 ⋅ 𝑙𝑓, 

  𝑇̃0 ≡ 𝑇0/(𝑤 ⋅ 𝑙𝑓),  𝑤̃ ≡ 1,  𝐸𝐼̃ ≡ 𝐸𝐼/(𝑤 ⋅ 𝑙𝑏
3), 𝐸𝐴̃ ≡ 𝐸𝐴/(𝑤 ⋅ 𝑙𝑏),                             (1) 

𝑆̃𝑢 ≡ 𝑆𝑢 ⋅ 𝑙𝑓/𝑤,  𝑄̃𝑢 ≡ 𝑄𝑢/𝑤 

 

… where 𝑠= arc length position; 𝐿𝑠= suspended length; 𝑦𝑡= elevation of top node; 𝐷= pipe external 

diameter; 𝜅= maximum curvature; 𝑇0= TDP tension; 𝑤= distributed weight; 𝑆𝑢= undrained shear soil  

resistance; 𝑄𝑢= soil load capacity;𝐸𝐼= pipe bending stiffness; 𝐸𝐴= pipe axial stiffness. Other relevant 

dimensionless parameters are 𝜇= riser-seabed friction coefficient; 𝜆𝑡 ≡𝑡𝑎𝑛 𝜃𝑡= tangent of top angle (and 
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its inverse 1/𝜆𝑡, which is the non-dimensional curvature predicted by catenary equation as 𝑠 → 0) and 

the diameter to thickness ratio 𝐷/𝑡. 

Despite the aforementioned features and expectations, the use of dimensionless numbers brought a 

didactic drawback to the statistical processing of the results of experiments. The method by which the 

sampling is performed (by means of nested loops) ensures that those six original parameters are mutually 

independent (correlation between any of them is close to zero as shown in  Table 3. , except to the effects 

of the removal of improper combinations of angle and water depth, which increase the correlation 

thereof). If three of them are replaced with their dimensionless versions, they will share characteristic 

scales, i.e. they will be multiplied or divided by the same factors (or combination thereof) and the 

correlation between them will not be zero any more (Table 2).  It is said that they are not orthogonal. In 

order to mitigate it, the nested loops should have used dimensionless numbers instead; however, this 

pitfall was noticed too late. 

 

Table 1. Correlation matrix of input parameters using their own dimension. 

 𝐷𝑒𝑥𝑡 𝑦𝑙𝑑𝑎 𝜃𝑡 𝜇 𝑆𝑢0 

𝐷𝑒𝑥𝑡 1 -0.12871368 0.1178929 0.07192681 -0.12836268 

𝑦𝑙𝑑𝑎 -0.12871368 1 -0.3881992 -0.01041626 -0.04081163 

𝜃𝑡  0.1178929 -0.3881992 1 0.08854680 0.13279087 

𝜇 0.07192681 -0.01041626 0.08854680 1 -0.04786095 

𝑆𝑢0 -0.12836268 -0.04081163 0.13279087 -0.04786095 1 

 
Table 2. Correlation matrix of useful parameters in dimensionless form. 

 𝐷̃𝑒𝑥𝑡 𝑦̃ λt ≡ tan 𝜃𝑡 𝜇 𝑆̃𝑢0 

𝐷̃𝑒𝑥𝑡 1 0.67386168 0.58528062 0.11604512 -0.12727949 

𝑦̃ 0.67386168 1 0.38194409 -0.02024184 0.39800335 

λt ≡ tan 𝜃𝑡 0.58528062 0.38194409 1 0.04305231 -0.09303051 

𝜇 0.11604512 -0.02024184 0.04305231 1 -0.02167299 

𝑆̃𝑢0 -0.12727949 0.39800335 -0.09303051 -0.02167299 1 

 

 

In reality, there is not any golden rule in data science enforcing the researchers to use the exact set 

containing 𝐷/𝑡 ratio, non-dimensional diameter 𝐷̃𝑒𝑥𝑡, Coulomb friction coefficient 𝜇; non-dimensional 

elevation of top end 𝑦̃; tangent of top angle 𝜆𝑡 and non-dimensional soil shear strength  𝑆̃𝑢0 as 

“independent variables” in the interpretation of simulation results. Other composite parameters may 

should be used. For instance, the non-dimensional soil load capacity 𝑄̃𝑢 or stiffness 𝑘̃𝑠 may be a 

parameter better than the non-dimensional soil shear strength; the non-dimensional horizontal 

component of tension 𝑇̃0 may replace 𝐷/𝑡 ratio. Such quest for the best parameters is a step in the job.  

The lack of orthogonality in the set of parameters taken as “independent variables” may hinder the 

composition of heuristical laws to approximate the dependent parameters (i.e. the simulation results). 

Techniques such as principal component analysis (PCA) may be helpful to create alternative parameters, 

built from linear combinations among the original dimensionless parameters, in order that the “new” 

parameters form a basis closer to orthogonality condition. 
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By applying PCA, one may find that 99% of data variability that matters in the results can be retained 

in two linear functions of dimensionless horizontal tension  𝑇̃0, dimensionless soil stiffness  𝑘̃𝑠  and 

dimensionless maximum curvature 𝜅̃𝑠 after these parameters are centered (mean value shifted to zero) 

and scaled (standard deviation set to one). Their governing power is thus shown. Coherently, the 

dimensionless horizontal tension 𝑇̃0 and the dimensionless soil stiffness 𝑘̃𝑠  are taken as the most 

prospective candidates for independent variables. 

5   Correlations between independent variables and simulation results  

The correlation between two variables can be quantified by the Pearson product-moment correlation 

coefficient 𝑟𝑥𝑦, which measures a linear relation between them:  

𝑟𝑥𝑦 =
∑ (𝑥̅ − 𝑥𝑖)(𝑦̅ − 𝑦𝑖)𝑁

𝑖=1

√∑ (𝑥̅ − 𝑥𝑖)2𝑁
𝑖=1 √∑ (𝑦̅ − 𝑦𝑖)2𝑁

𝑖=1

 

 

Figure 1 illustrates one of the methods used in search of the pairs of variables which get the strongest 

correlations. Although other values such as shear forces, instantaneous TDP curvatures, suspended 

lengths, first and second integrals (moments) of curvature over length were acquired in the simulations, 

the maximum curvature is ranked as the most important one in this investigation, because of its influence 

in riser design.  

Different scales for length were tried out as characteristic lengths while making dimensionless groups. 

The suspended length 𝑙𝑠 is shown to be the most suitable characteristic length to describe mutual 

relations between catenary parameters and more global results thereof, whereas the dimensionless 

groups focusing on the curvature at TDP have better representativeness if the characteristic bending 

length  𝑙𝑓 ≡ √𝐸𝐼/𝑇0  is used instead.  

 

 

 

 

 

Figure 1.  Correlation between local dimensionless maximum curvature 

and all local dimensionaless paratemeters 
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The classic catenary formulations are known to be useless in estimation of the curvature at TDP, because 

it is ruled by local bending. According to that theory, the declination (referenced to vertical axis) of the 

cable (riser) can be assessed by tan 𝜃(𝑠) = 𝑇𝑥 𝑇𝑦⁄ = 𝜆𝑡 ∙ 𝑙𝑠/𝑠.  If one insisted on calculating the 

curvature at TDP therefrom, he would try using: 

𝜅(0) =
𝜕𝜃

𝜕𝑠
|

𝑠→0
= −

1

𝜆𝑡 ∙ 𝑙𝑠
 

… where  𝜆𝑡= tangent of top angle; 𝑙𝑠= suspended length.  The correlation between curvatures and the 

inverse of tangent of top angle is thus a candidate for investigation. However, the correlation between 

maximum dimensionless curvature κ̃𝑚𝑎𝑥 and 𝜆𝑡 is found to be very low, as shown in figure 2. 

 

 

For each pair of parameters whose Pearson product-moment correlation coefficient exceeds 0.70, their 

XY-plots were examined. Because that correlation coefficient is limited to linear combinations, it cannot 

examine the goodness of relationships like inverse, power, trigonometric functions and so on. Therefore, 

composite variables which may better describe the riser response have to be built by hand and often by 

intuition. After a number of composite functions are conceived, the verification of the correlation 

coefficient can be performed. The reciprocal of the maximum curvature is one of these composite 

variables, which is named “minimum bending radius” (MBR for short).  

The soil model and its parameters were expected to be relevant to the curvature at TDP. Many works 

such as PESCE 1997 and other have suggested that the local curvature is much affected thereby. 

Nonetheless, the correlation coefficient between maximum dimensionless curvature κ̃𝑚𝑎𝑥 and the 

dimensionless soil stiffness 𝑘̃𝑠 is low, the correlation coefficient between dimensionless minimum 

bending radius 𝑀𝐵𝑅̃ ≡ 1/κ̃𝑚𝑎𝑥 and that stiffness (or other soil parameters) is better though.  

If no processing is performed, some relationships will go hidden among the results found in finite 

element analysis. Figure 3 show the plot of minimum bending radius in meter and tension at TDP in kN. 

No clear relationship is intuitive.  

 

 

 

Figure 2.  Plot of inverse tangent of top angle in maximum dimensionless curvature. 
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Indeed, after the due treatment is carried out to find dimensionless groups, the dimensionless curvature 

scaled by local bending length is evidenced to be very much affected by dimensionless tension at TDP.  

Table 3 shows the correlation coefficient of some selected parameters and results. 

 𝑇̃0 𝑘̃𝑠 𝐷̃𝑒𝑥𝑡 𝐿̃𝑠 𝐷/𝑡 𝜆𝑡 𝜇 

κ̃𝑚𝑎𝑥 -0.183107 -0.101714 0.67046 0.562981 0.134678 -0.337774 -0.000309 

𝑀𝐵𝑅̃ 0.999982 0.543048 0.27149 0.805664 -0.022229 0.182927 -0.055734 

 

The strong correlation between the dimensionless minimum bending radius and dimensionless 

horizontal tension, shown in figure 4, exceeds initial expectations, since it is much higher than any other 

parameter including the soil stiffness, the soil friction and the soil stiffness. It suggests that the concerns 

on the riser-soil interaction, with respect to the curvature alone, may be exaggerated, because the 

curvature is ruled by tension more than any other parameter.  

Nonetheless, precaution is recommended before any generalization, because the sample is not 

representative of the entire population of marine risers, it stand for those made of steel and full of water 

in absence of horizontal loads, within certain ranges of diameter, thickness and soil shear strength. In 

order to examine the dominance of tension in depth, the sample is split into set based on the BR values, 

and the correlations are revised, as shown in Table 4. 

 
Table 4. Correlation matrix of dimensionless BR in different subintervals. 

𝑀𝐵𝑅̃ intervals Number of 

samples 
𝑇̃0 𝑘̃𝑠 𝐷̃𝑒𝑥𝑡 

0.916 < BR ≤ 1.2 65 0.9937322 -0.9721980 -0.9766317 

1.2 < BR ≤ 1.8 332 0.9955386 0.4640620 0.1627906 

1.8 < BR ≤ 5.0 1683  0.99937108 -0.0986709 0.7031990 

5.0 < BR ≤ 2492 8326 0.9999816 0.5446593 0.2488220 

Table 3. Correlation matrix of input parameters, curvature and minimum bending radius in 

dimensionless form. 

Figure 3. Relation between MBR and tension at TDP 
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The dominance of tension on dimensionless MBR is maintained throughout the sample, but 

contributions of soil stiffness and pipe section are significant for small MBR. It has reasonable 

explanation, because TDZs with moderate curvatures yield smooth transitions at TDP and such 

smoothness does not require the soil parameters (other than geometry) to have any ruling role in local 

curvature. Typical steel catenary risers (SCRs) have dimensionless bending radii exceeding 2, whereas 

flexible pipes – which are not depicted in current sample – may easily have dimensionless BR as low as 

1. 

 

 

Figure 4. Relation between minimum bending radius and tension in 

TDP 
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The following regressions are good estimators for minimum bending radius: 

 

 .             𝑀𝐵𝑅̃ ≡
1

𝑘̃𝑚𝑎𝑥
= 1.107 + 0.9956 𝑇̃0 , with  r² = 1, for 𝑀𝐵𝑅̃ > 1.2                 (2)      

                 𝑀𝐵𝑅̃ = 0.7131 + 1.719 𝑇̃0 − 3.077 × 10−4 𝑘̃𝑠 , with  r² = 0.9954, for 𝑀𝐵𝑅̃ ≤ 1.2    

 

6  Concluding remarks. 

By running extensive numerical simulations and systematic application of statistical methods, this study 

examined the relationships between curvatures at TDP and many parameters, and it found thus that the 

reciprocal of curvature is parameter much better to be used in estimators (regressions). The minimum 

bending radii for practical SCR cases simulated herein are much more ruled by tension than any other 

parameters, although this conclusion may have limited range of validity. The soil stiffness is shown to 

gain relevance as the curvature increases, along with the bending stiffness.  
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Figure 5.  Relationship between bending radius and tension at TDP for BR<1.2. 



Edgar Stonyo B. Micolo, Anderson Barata Custódio 

CILAMCE 2019 

Proceedings of the XL Ibero-LatinAmerican Congress on Computational Methods in Engineering, ABMEC, 

Natal/RN, Brazil, November 11-14, 2019 

 


