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Abstract. Risers are essential components of offshore oil and gas production systems since they are 
responsible for transport these fluids to/from the wells from/to the floating facilities. Thus, structural 
analysis of marine risers has been an active research field in the last decades.  Currently, there are 
many reliable analysis programs for riser analysis based on the Finite Element Method (FEM). 
However, this approach incurs in high computational costs due to its complexity and alternatives that 
are more efficient have been sought. Risers are subjected to static and dynamic loads, but it is known 
that in the earlier steps of riser design it is very important to evaluate the riser behavior under static 
loads, as self-weight, buoyancy, hydrostatic pressure, currents and floater movements (static offset). 
This paper presents an efficient and accurate approach for riser static analysis based on the numerical 
integration of the differential equilibrium equations of a cable subjected to vertical and horizontal 
static loads. The riser is modeled as an inextensible cable without bending stiffness, subjected to 
effective weight, drag force and offset. The riser behavior is governed by a nonlinear system of 
ordinary differential equations. The resulting nonlinear Boundary Value Problem (BVP) is solved 
using the Newton-Raphson Method with line searches to guarantee global convergence and increase 
efficiency. Initial values are estimated in order to transform the BVP in an initial value problem. The 
fourth-order Runge-Kutta method is used in the numerical integration of the resulting initial value 
problem. A post-processing procedure is used to evaluate the bending moment along the riser. This 
approach is suitable for analyzing analyze different riser configurations, such as steel catenary risers 
and lazy-wave risers. The accuracy and efficiency of the proposed approach are assessed and the 
results are compared with the FEM for different riser configurations. The results show that the 
presented approach is not only much more efficient than FEM but also can be more accurate. 
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1  Introduction 

Risers are essential components of offshore production systems, since they connect the subsea 
units to the platforms, transporting fluids to/from the wells from/to the floating facilities. With the 
exploration and development of new oil and gas reservoirs located increasingly deepwater, the 
environmental conditions became more severe, leading to an increase in riser costs. When considering 
field development costs and technological feasibility, riser technology is a crucial issue [1].  

Riser analysis aims to evaluate the geometry and internal forces along the riser due to the acting 
loads. Design standards use these results for assessment of riser integrity under burst, collapse and 
combined load criteria [2]. Different techniques have been proposed for riser analysis. Chakrabarti and 
Framptom [3] presented a review of techniques for riser analysis, which included different solution 
methods, such as finite differences and finite elements. Patel and Seyed [4] presented a review of 
proposed approaches for static and dynamic analysis of flexible risers. Currently, the Finite Element 
Method (FEM) is the standard analysis procedure for riser design, as it can accurately model the riser 
behaviour, including nonlinear and dynamic effects, environmental loads, riser-soil interaction and 
other complex phenomena. Several FE programs for riser analysis are available [5]. 

Several structural models with different fidelity degrees can be used for riser analysis. As a 
general rule, the computational cost of engineering simulations increases with the model fidelity. 
Thus, complex models base on the Finite Element Model (FEM) can simulate the static and dynamic 
behaviour of risers with great accuracy, but it incurs in high computational costs. In the initial steps of 
riser design, simpler models can be used to analyse the riser under static loads. In addition, there are 
many studies concerning riser design and optimization, and riser static response is one of the 
prerequisites in these studies [6].  

During the optimization process, a high number of riser designs need to be evaluated, especially 
when genetic algorithms (GA) or other meta-heuristic methods are used. Thus, it is important to obtain 
the riser static response in an accurate and efficient manner. This raises the need for simple and 
representative models to perform these analyses. Lima et al. [7], Jacob et al. [8], Pina et al. [9] and 
Silva et al. [10] adopted simple models based on catenary equations in their studies. However, such 
models only consider vertical loads and are unable to account for the effect of sea currents. 

Ghadimi [11] used a lumped spring-mass approach for the static and dynamic analyses, which 
considers vertical loads and estimates the bending moment from the approximate curvatures. The 
lumped-mass model was employed in riser analysis by several researchers [12-14]. Wang et al. [15] 
presented a procedure for static analysis, where the riser is modelled as a large displacement beam 
under vertical and lateral loads in a vertical plane. The resulting system of nonlinear equations is 
solved using the Finite Difference Method (FDM). 

Steel Catenary Risers (SCR) are one of the most effective options for deep water exploration [16], 
allowing large diameter export or production from remote wells [17]. Although the free-hanging 
catenary configuration is the simplest to install and connect with other subsea facilities, there are 
engineering issues related to high hang-off tension levels when the suspended length is large [18] and 
fatigue issues at the touchdown zone (TDZ).  

To overcome these challenges, other riser concepts have been developed, such as Steel Lazy-
Wave Risers (SLWR), in which buoyancy modules are added to a riser section, reducing the top loads 
and improving the fatigue life [19]. Wang et al. [20] proposed a mathematical model based on the 
large displacement beam theory to investigate the influences of internal flow and ocean current on 
SLWR, and to simulate a SLWR abandonment and recovery. FDM is used to solve the nonlinear 
differential equations.  

This work presents a simple approach for riser analysis based on the differential equilibrium 
equations of a cable subjected to vertical and horizontal loads. This procedure considers the static 
loads acting on the riser and the vessel motions (static offsets). The resulting nonlinear Boundary 
Value Problem (BVP) is solved using the Newton-Raphson Method with line searches to increase 
efficiency and robustness. The bending moment is evaluated in a post-processing step using the riser 
curvature and bending stiffness. The accuracy and efficiency of the proposed approach is 
demonstrated comparing the obtained results for different riser configurations with those obtained with 
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a commercial FE software for riser analysis. It is important to note that when FDM or FEM are 
adopted, the number of equations increases when the mesh is refined, which leads to higher accuracy 
and the computational cost. On the other hand, the number of equations to be solved in the proposed 
approach is constant, ensuring its computational efficiency.  

The rest of the paper is organized as follows. Section 2 describes the external loads considered by 
the analysis model and Section 3 presents the governing equations of the riser model. Section 4 
presents the analysis algorithm and Section 5 describes the post-processing techniques. The numerical 
results are presented and discussed in Section 6. Finally, the concluding remarks are presented in 
Section 7. 

2  Loads 

Marine risers are subjected to several static loads, including self-weight, buoyancy, hydrostatic 
pressure, currents and floater movements (static offset). The direct loads acting on the riser will be 
discussed here, while the consideration of static offset will be discussed in Section 4. 

The effective (or apparent) weight (𝑤") corresponds to the resulting vertical load acting on the 
riser:  

𝑤" = 	𝑤% + 𝑤' −	𝑤) (1) 

where 𝑤% is the riser self-weight (or dry weight), 𝑤' is the internal fluid weight and 𝑤) is the 
buoyancy force, corresponding to the weight of the displaced seawater. According to Sparks [21], the 
effects of the hydrostatic pressure can be considered using the effective tension (𝑇"). Conceptually, the 
effective tension represents the axial force that balances the apparent weight of the riser, allowing 
submerged risers to be analyzed as cables outside the water. After the analysis, the true tension (𝑇+), 
which corresponds to the axial stresses on the riser wall, can be computed from: 

𝑇+ = 𝑇" + 	𝑝-𝐴- − 	𝑝"𝐴" (2) 

where 𝑝" is the external pressure, 𝐴" is the external area, 𝑝- is the internal pressure and 𝐴- is the 
internal area.  

The effect of the sea currents can be evaluated using the Morison approach [21], where a circular 
cylinder submerged in some fluid whose velocity is perpendicular to the cylinder axis is subjected to a 
drag force (𝑓0) proportional to the square of fluid velocity. For a horizontal current velocity (𝑣), as 
depicted in Figure 1, the drag force is given by: 

𝑓0 	= 	
1
2
𝜌	𝐶0	𝐷	𝑣	sin 𝜃 	|𝑣	sin(𝜃)| (3) 

where ρ is the seawater density, CD is the drag coefficient and D is the riser outer diameter. 

 

Figure 1. Current force. 

3  Equilibrium Equations 

The riser is modeled as an inextensible cable without bending stiffness, subjected to the effective 
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weight (𝑤) and drag force (𝑓0). The governing equations of the model can be obtained from the 
equilibrium equations of the differential riser segment depicted in Figure 2.  

 

Figure 2. Loads on a differential segment. 

The equilibrium equation in the axial direction can be written as: 

𝑇 + 𝑑𝑇 cos 𝑑𝜃 − 𝑇 + 𝑤	sin θ +
dθ
2

ds + 𝑓0	sin
dθ
2

ds = 0 (4) 

While the equilibrium equation in the normal direction is given by:  

𝑤	cos 𝜃 +
𝑑𝜃
2

𝑑𝑠 − 𝑓0cos
𝑑𝜃
2

𝑑𝑠 + 𝑇 + 𝑑𝑇 sin 𝑑𝜃  (5) 

These equations can be simplified considering	cos 𝑑𝜃 = cos 𝑑𝜃/2 = 1, sin 𝑑𝜃 ≅ 𝑑𝜃 and 
sin 𝑑𝜃/2 ≅ 𝑑𝜃/2. Thus, neglecting the higher order terms, Eq. (4) can be rewritten as  

𝑑𝑇 + 𝑤	sin 𝜃 𝑑𝑠 = 0 (6) 

while Eq. (5) can be rewritten as: 
𝑇𝑑𝜃 + 𝑤	cos 𝜃 𝑑𝑠 − 𝑓0𝑑𝑠 = 0 (7) 

It is important to note that the tension (T) considered in the above equations corresponds to the 
effective tension, since this is the tension that balances the effective weight (𝑤). Eq. (6) and Eq. (7) 
describe the variation of the tension (𝑇) and slope (𝜃) of the riser, respectively. In order to complete 
the set of governing equations is necessary to include the geometric relations:  

𝑑𝑥 = 𝑑𝑠 cos 𝜃  

𝑑𝑦 = 𝑑𝑠 sin 𝜃  
(8) 

Therefore, the system of governing equations of the riser can be written as: 
𝑑𝑇
𝑑𝑠

= 	−𝑤	sin 𝜃 																																																		

𝑑𝜃
𝑑𝑠
	=

I
J
𝜌𝐶0𝐷𝑣	sin 𝜃 𝑣	sin 𝜃 − 𝑤	cos 𝜃

𝑇
𝑑𝑥
𝑑𝑠

= cos 𝜃 																																																												

𝑑𝑦
𝑑𝑠

= sin 𝜃 																																																												

 (9) 

It is important to note that the current velocity 𝑣 can vary with the vertical coordinate 𝑦, while the 
parameters 𝑤, 𝐷 and 𝐶0 can vary with the position 𝑠 along the riser, as occurs in lazy wave 
configurations and other risers with multiple segments.  

Equation (9) describes the behavior of suspended risers and to model SCRs and lazy wave 
configurations, it is necessary to model the riser-soil interaction. In order to obtain an efficient analysis 
procedure, the seabed is considered to be rigid, frictionless and horizontal. Therefore, the equilibrium 
equation for the riser segment in contact with the seabed is given by: 
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𝑓K = 𝑤 (10) 

where 𝑓L is the vertical soil reaction. Therefore, the governing equations describing the riser on the 
seabed are: 

𝑑𝑇
𝑑𝑠

= 	
𝑑𝜃
𝑑𝑠

= 	
𝑑𝑦
𝑑𝑠

= 0																																												
	

𝑑𝑥
𝑑𝑠

= 1																																																																				
																																																										

 (11) 

4  Analysis Procedure 

The riser static behavior is governed by nonlinear system of ordinary differential equations 
defined by Equations (9) and (11). The riser boundary conditions are prescribed in two points: the 
connection (initial point) and the anchor (final point). Thus, a two-point boundary value problem 
solution is required. In these problems, the boundary conditions at the beginning do not determine a 
unique solution to start with, and a random choice that satisfies these incomplete boundary conditions 
probably will not satisfy the boundary condition in the end [22], therefore the problem herein 
presented is complex. In this work, this Boundary Value Problem (BVP) will be efficiently solved 
using the Shooting Method. 

Since there are four differential equations, four boundary conditions are required to solve the 
BVP. It is important to note that the connection coordinates (𝑥MNO,	𝑦MNO), which are the coordinates of 
the point where the riser is connected to the vessel, are already known. For the consideration of floater 
movements (offsets), a simple adjustment of (𝑥MNO,	𝑦MNO) to the new coordinates (riser position 
considering the static offset) is made. On the other hand, the top traction (𝑇MNO) and top angle (𝜃MNO) 
are unknown. In this work, these values (𝑇MNO and 𝜃MNO) are estimated in order to transform this two-
point boundary value problem into an initial value problem.  

The user can define the initial values of 𝑇MNO and 𝜃MNO as input data (Warm Start) or these initial 
values are estimated from the riser data (Automatic Shooting). When a riser is analyzed with different 
offsets and currents, the automatic shooting can be used to obtain the Mean configuration (i.e. without 
offset and current), while the results for this configuration can be used as warm start for other 
configurations (e.g. Near and Far). This approach improves both the efficiency and robustness of the 
numerical procedure. 

The fourth-order Runge-Kutta method [22] is used in the numerical integration of the resulting 
initial value problem. In this method, the integration interval is divided in a number of steps, and the 
present step values are used in the calculation of the variables in the next step. Increasing the number 
of steps improves the integration accuracy, but also the computational cost. This issue will be assessed 
in the numerical examples.  

For SCRs and lazy-wave risers, the integration procedure checks if the riser slope is zero, in this 
case it switches from Equation (9) to Equation (11). For lazy wave risers, the switch occurs only after 
the segment with negative effective weight. The procedure handles riser with multiple segments, as 
lazy wave riser. In this case, the integration is carried out segment-by-segment, where the initial values 
of segment i+1 corresponds to the final values of segment i.  

After the integration, the coordinates of the final point (𝑥'-O,	𝑦'-O) are obtained. These 
coordinates have to match with the prescribed coordinates of the anchor point (𝑥)OM,	𝑦)OM). However, 
as the initial values of 𝑇MNO and 𝜃MNO do not correspond to the exact values, a difference between 
(𝑥'-O,	𝑦'-O) and (𝑥)OM,	𝑦)OM) exists. Thus, the initial estimate must be improved in order to minimize 
the error on the final coordinates: 

𝐅 =
𝑥'-O − 𝑥)OM
𝑦'-O − 𝑦)OM = 𝟎 (12) 

which depends on the values of the initial variables: 
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𝐕 =
𝑇MNO
𝜃MNO

 (13) 

In this work, Equation (12) is solved using the Newton-Raphson method, where the initial 
estimative	𝐕S is updated iteratively as: 

𝐕TUI = 	𝐕T + 𝛿𝐕	 (14) 

where the iterative correction 𝛿𝐕 is calculated solving the linear equations system: 
𝐉	𝛿𝐕 = 	−𝐅	 (15) 

In this equation,	𝐉 is the Jacobian matrix: 

𝐽-Y =
𝜕𝐹-
𝜕𝑉Y

 (16) 

Since the analytical expressions of the vector F components are unknown, the derivatives that 
form the Jacobian matrix are approximated by the finite difference method. The iterative process 
continues until: 

|𝐅|	
𝐹ON%]

≤ 𝑇𝑂𝐿 (17) 

where 𝐹ON%] is a normalization factor, considered as the distance between the connection and anchor 
points, and 𝑇𝑂𝐿 is a prescribed tolerance.  

The Newton-Raphson method has quadratic convergence near its solution, but it can diverge if 𝐕S 
is far from the actual solution [22, 23]. Therefore, a line search procedure is used in this work to 
stabilize the iterative process and guarantee the global convergence of the solution method. The vector 
𝛿𝐕 generated by Equation (15) is a descending direction that minimizes the residual |F| if a sufficiently 
small step is taken [22, 23]. Therefore, the line search procedure adopted in this work consists in 
replacing Equation (14) by the expression: 

𝐕TUI = 	𝐕T + 𝛼b	𝛿𝐕	 (18) 

where 𝛼 represents the step size that will be taken in 𝛿𝐕 direction. In order to preserve the quadratic 
convergence rate, it is initially considered that 𝛼S = 1. It is checked if the new solution V reduces the 
error and if this does not occur, the step size is halved: 

𝛼bUI = 	
𝛼b
2
	 (19) 

The process is repeated until the error becomes smaller than the previous iteration (k) error. In 
addition, the line search procedure also checks if the top tension (𝑇MNO) is positive, since a negative 
tension does not have physical meaning. The analysis algorithm is depicted in Figure 3. 
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Figure 3 - Analysis algorithm. 

5  Post-processing 

From the differential geometry, the riser curvature 𝜅 can be computed using: 

𝜅 =
𝑑𝜃
𝑑𝑠

 (20) 

which corresponds to the second line of Equation (9). It is important to note, that this curvature and an 
approximation of the true curvature of the riser, since the proposed model does not consider bending. 
In this work, the approximate curvature will be used to estimate the bending moment along the riser 
using the classical relation from the beam theory:  

𝑀 = 𝐸𝐼	𝜅 (21) 

where EI is the riser bending stiffness. Good results are expected, since the curvature values of a 
flexible cable are very close to the curvatures of a riser subjected to the same loads, except close to the 
end points [21]. The accuracy of this approach will be assessed in Section 6 . 

The von Mises stress can be used to assess the safety of steel structures under complex stress 
states, due to hydrostatic pressure, axial force and bending moment. For a point in the riser wall, the 
von Mises stress (𝜎h]) is given by  

𝜎h] = 	
𝜎+i − 𝜎M J + 𝜎M − 𝜎% J + (𝜎% − 𝜎+i)²

2
 (22) 

where 𝜎+i is the axial stress, 𝜎M is the hoop stress and 𝜎% is the radial stress. In this work, the von 
Mises stress is evaluated at 4 points in the riser cross-section, as shown in Figure 4, which assumes 
that the bending moment is applied on the section x-axes. 
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Figure 4. Riser cross-section. 

 
The true axial stress in the pipe wall (𝜎+i) including the effect of the bending moment is given 

by: 

𝜎+i =
𝑇+i

𝐴" − 𝐴-
	 ± 	

𝑀𝑟
𝐼

 (23) 

in which I is the moment of inertia of the riser cross-section. The other stress components (𝜎M  and 𝜎%) 
can be easily obtained from the internal and external hydrostatic pressure [21]. 

6  Numerical Examples  

The formulation presented in the previous sections was implemented in C++ and used to analyze 
risers with different configurations. The obtained results are compared with FE results obtained with 
FLEXCOM [24], a FE software widely used in the offshore industry. 

In all numerical examples, the relative perturbation adopted for numerical differentiation is 10-6 

and the tolerance for convergence (𝑇𝑂𝐿) is 10-8. The water density is 1025 kg/m³ and the gravity 
acceleration is 9.81 m/s². For the automatic shooting option, the initial top angle was considered as 20º 
(θ0 = -70º = -7p/18 rad) and the connection tension was estimated as T0 = W/(1.5 sinq0), where W is 
the total effective weight of the riser. 

6.1 Hanging riser 

This example corresponds to a riser hanged at both ends and subjected to its own weight. This 
example does not consider current effects and was previously studied in other works [11, 25]. It was 
initially used to validate the formulation and the implementation of the analysis model herein 
presented, and later to investigate the influence of the bending stiffness on the riser behavior. 
Additional riser data is presented in Table 1. 

 
Table 1. Riser data. 

𝑥M(m) 0.0 
𝑦M(m) 0.0 
𝑥)(m) 150.0 
𝑦)(m) 150.0 
𝑆 (m) 350.0 
𝑤 (N/m) 346.094 
𝐷 (m) 0.26 
𝐸𝐼 (N.m²) 2.096E+04 
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Table 2 summarizes the results obtained with the cable model presented in this work and with 
FEM, both considering 50 divisions (or elements). Two different FE models were utilized, the first one 
considering the bending stiffness given in Table 1 (beam model) and the second one using a bending 
stiffness close to zero, aiming to disregard the bending effects (i.e. truss model). As it will be shown, 
the comparison of the results obtained using truss and beam elements indicates that the bending 
stiffness does not influence significantly the top traction and top angle values when a mesh with 
proper refinement is considered. 

 
Table 2. Results of the hanging riser with 50 divisions.  

Model Tension (N) Diff. (%) θcon (deg) Diff. (%) Mmax (Nm) Diff. (%) 
Beam 3.592×10s  19.232  630.977  
Truss 3.592×10s 0.004 19.224 −0.04 − − 
Cable 3.592×10s −0.01 18.571 −3.44 634.060 0.49 

 

Due to the large difference between the top angles obtained with Ndiv = 50, the riser was analyzed 
with different meshes and the obtained results are presented in Table 3. The results show that the cable 
model is more accurate when the number of divisions is small, but the difference decreases with the 
mesh refinement. The mesh refinement also led to a smaller difference for the maximum bending 
moment. Thus, for Ndiv = 100 the difference decreased from 0.49% to 0.10%, with the bending 
moment of the FEM approaching of the results of the model proposed herein, whose value was kept 
constant.  

  
Table 3. Top angle (θ0).  

Ndiv Beam Cable Diff. (%) 

50 19.232 18.571 −3.44 

100 18.913 18.571 −1.81 

150 18.817 18.571 −1.31 

200 18.775 18.571 −1.09 

250 18.751 18.571 −0.96 

300 18.738 18.571 −0.89 

350 18.729 18.571 −0.85 
 

The riser geometry obtained with the three models is shown in Figure 5. It is noted that the 
geometry obtained in the proposed formulation is very close to the one obtained by FEM.  Figure 6 
shows the tension along the riser for the different models, and once again the comparison shows that 
the results are in very good agreement. These results show that the bending stiffness has little 
influence on the geometry and tension in static models.  
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Figure 5. Hanging riser geometry.  

 

 
Figure 6. Tension in the hanging riser. 

A comparison between the bending moments obtained by FE beam model and by the proposed 
cable model is presented in Figure 7. The results are in excellent agreement for the entire riser length, 
showing the adequacy of the post-processing approach presented in Section 5 . 

-100 

-50 

0

50

100

150

0 50 100 150

y	
(m

)

x	(m)

Cable	

FEM	- Beam

FEM	- Truss

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400

Te
ns
io
n	
(k
N
)

Length	(m)

Cable

FEM	- Beam

FEM	- Truss



L. A. G. Moura, J. C. Alves, L. Tornisiello, E. Parente Jr. 

CILAMCE 2019 
Proceedings of the XLIbero-LatinAmerican Congress on Computational Methods in Engineering, ABMEC, 

Natal/RN, Brazil, November 11-14, 2019 

 

Figure 7. Bending moment in the hanging riser. 
 

Figure 8 presents a comparison of the CPU time for each analysis model. Since the proposed 
model is simpler than FEM, the execution time of the analyses is lower. It is interesting to note that the 
time computation increases linearly with the number of divisions and the advantage of the proposed 
approach increases with refinement. 

 

 
Figure 8. CPU time for the hanging riser. 
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6.2 Steel Catenary Riser 

This example considers a Steel Catenary Riser (SCR) subjected to its apparent weight and a 
piecewise linear current profile, corresponding to the Far configuration [24]. The relevant parameters 
are presented in Table 4. Additional parameters used only by the finite element model are presented in 
Table 5.   

Table 4. SCR data. 

𝑥M(m) -94.5 
𝑦M(m) 1173.9 
𝑥)(m) 1200.0 
𝑦)(m) 0.00 
𝑆(m) 1955.0 
𝑤 (N/m) 1323.5 
𝑉S (m/s) 0.0 
𝑉ISxI (m/s) -0.15 
𝑉IIyz (m/s) -0.30 
𝑉II{I (m/s) -0.45 
𝐶0 1.2 
𝐷 (m) 0.273 
𝐸𝐼 (N/m²) 3.18E+07 

 

Table 5. Parameters used only by the FE model. 

Axial friction coefficient 0.2 
Lateral friction coefficient 0.4 
Vertical soil stiffness (kN/m²) 143.4 
Longitudinal soil stiffness (N/m²) 45 
Transverse soil stiffness (N/m²) 90 

 

Results for tension and top angle using the three previously mentioned models (FE/Beam, 
FE/Truss and Cable) are presented in Table 6. For comparison purposes, 98 divisions are considered 
for the three models, with this mesh, each element measures approximately 20 m.  As in the first 
example, the differences are very small, corresponding to 0.1% for top tension and 2.29% for the 
maximum bending moment.  

 
Table 6. SCR results. 

Model Tension (N) Diff. (%) θcon (deg) Diff. (%) Mmax (Nm) Diff. (%) 
Beam 2.206×10z  17.184  6.575×10s  
Truss 2.206×10z 0.01 17.202 0.10 − − 
Cable 2.209×10z 0.14 17.201 0.10 6.425×10s 2.29 

 
Riser geometry and tension along its length are presented in Figure 9 and Figure 10, respectively. 

This example is more complex than the previous one, since this SCR is subjected to environmental 
loads (offset and current), however, the results were again in very good agreement.  
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Figure 9. SCR geometry (Far). 

 

 
Figure 10. SCR - Tension. 
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a coarser discretization. This emphasizes the greatest advantage of the model herein presented: it is 
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quicker and more accurate than the FEM, since it needs less refinement to converge, and for any 
refinement, it is quicker, as previously noted.  

 

 
Figure 11. SCR - Bending moment. 

The von Mises stresses along the riser length computed using FEM and the proposed cable model 
are presented in Figure 12. The results present an excellent agreement, where the difference between 
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Figure 12. SCR – von Mises stress. 
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proposed model was capable of obtaining satisfactory results, proving its effectiveness. 

6.3 Steel Lazy Wave Riser 

In this example, the SLWR studied by Orimolade [26] is analyzed in the Mean, Far and Near 
configurations. The vessel offset is 110 m and the riser is subjected to a piecewise linear current 
profile. Other riser parameters are presented in Table 7. For comparison purposes, 210 divisions are 
considered for the three models, each element measuring 10 m. Additional parameters used only by 
the finite element model are presented in Table 8.   

 
Table 7. SLWR data. 

𝑥M(m) 0 
𝑦M(m) 1088.0 
𝑥)(m) 1320.0 
𝑦)(m) 0 
𝑆I(m) 1239.0 
𝑆J(m) 441.0 
𝑆y(m) 
ρo (kg/m³) 

420.0 
800 

ρaço (kg/m³) 7850 
𝑤I, 𝑤y	 (N/m) 1069.4 
𝑤J (N/m) -700 
VS   (m/s) 0.23 
Vs~S (m/s) 0.23 
VzIS (m/s) 0.39 
V��~ (m/s) 0.54 
Vx~S (m/s) 0.83 
VxxS (m/s) 1.05 
VISyS (m/s) 1.31 
𝑉IS{{ (m/s) 1.67 
𝐶0 1.0 
𝐷NI, 𝐷Ny (m) 0.304 
𝐷NJ (m) 0.758 
𝐷- (m) 0.254 
𝐸 (N/m²) 2.070E+11 
𝐼 (m4) 2.149E-04 

 

Table 8. Parameters used only by the FE model. 

Internal pressure (MPa) 34.5 
Axial friction coefficient 0.3 
Lateral friction coefficient 0.5 
Vertical soil stiffness (kN/m²) 50 
Longitudinal soil stiffness (kN/m²) 200 
Transverse soil stiffness (kN/m²) 200 

 

The comparisons of the results obtained for tension, top angle and maximum bending moments 
for the mean, far and near configurations are included in Table 9, Table 10 and Table 11. For these 
configurations, the errors are low and the influence of the bending stiffness is very small. The obtained 
riser geometries are illustrated in Figure 13. 
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Table 9. SLWR results in configuration Mean. 

Method Tension (N) Diff. (%)  θcon(deg) Diff. (%) Mmax (Nm) Diff. (%) 

Beam 1.223×10z - 7.999 - 2.759×10~ − 

Truss 1.224×10z 0.07 8.032 0.41 − − 

Cable  1.224×10z 0.09 8.028 0.37 2.784×10~ 0.91 

 

Table 10. SLWR results in configuration Near. 

Method Tension (N) Diff. (%)  θcon(deg) Diff. (%) Mmax (Nm) Diff. (%) 

Beam 1.200×10z - 9.456 - 3.937×10~ − 

Truss 1.201×10z 0.07 9.667 2.23 − − 

Cable  1.202×10z 0.23 8.401 11.2 4.050×10~ 2.87 

 

Table 11. SLWR results in configuration Far. 

Method Tension (N) Diff. (%)  θcon(deg) Diff. (%) Mmax (Nm) Diff. (%) 

Beam 1.269×10z - 8.126 - 1.844×10~ − 

Truss 1.269×10z 0.01 7.984 1.75 − − 

Cable  1.267×10z 0.15 9.066 11.6 1.874×10~ 1.57 

 

 
Figure 13. SLWR - geometry in the 3 different configurations. 

The warm start and the linear search procedures were also studied in this example. The warm start 
was used to obtain the Near configuration, where the top tension and top angle used in the initial shoot 
were the ones obtained in the Mean configuration values (1223800 N; 0.140 rad), while the Mean 
configuration was obtained using the automatic shooting. It is shown in Table 12 that the program 

-100	

100

300

500

700

900

1100

-500	 0 500 1000 1500

y	
(m

)

x	(m)

Cable

FEM	- Beam

FEM	Truss

NearFar Mean



L. A. G. Moura, J. C. Alves, L. Tornisiello, E. Parente Jr. 

CILAMCE 2019 
Proceedings of the XLIbero-LatinAmerican Congress on Computational Methods in Engineering, ABMEC, 

Natal/RN, Brazil, November 11-14, 2019 

needs less iterations to converge when the warm start is used, and also that when the initial shoot is far 
from the solution, which occurs in the automatic shooting in this example, the linear search acts, 
helping the method to achieve its convergence.  The method did not converge when the linear search 
was not used in the same example. 

 
Table 12. Warm start and linear search validation.  

 Automatic Shooting Warm Start 
Iteration Error α Error α 

1 4.92×10�I  7.16×10�J  
2 1.76×10�I 0.5 2.53×10�y 1.0 
3 2.19×10�J 1.0 1.52×10�~ 1.0 
4 7.17×10�s 1.0 6.36×10�IS 1.0 
5 1.23×10�z 1.0 - - 
6 3.65×10�IJ 1.0 - - 

 

The comparisons for tension and bending moment obtained in the Far position with the three 
procedures are presented in Figure 14 andFigure 15, respectively. The tension values obtained with the 
proposed model were again very satisfactory. Higher differences were found in the bending moment in 
the TDZ, due to the riser-soil interaction and the large variation of the riser curvature in this zone. 
However, it is important to emphasize that in all riser points, the bending moments were always higher 
on the cable model, indicating that the proposed model lead to slight conservative results. 

 
  

 
Figure 14. Tension - SLWR. 
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Figure 15. SLWR - Bending moment. 

The von Mises stresses were evaluated on the Near and Far configurations. As shown in Figure 
16, the differences are very small, except for the TDZ. In fact, the differences between the maximum 
values were 0.04% for the Near and 0.01% for the Far configuration. It is important to note that the 
riser geometry in the Near configuration is more complex, since the curvature sign changes faster, 
leading to larger bending moment differences. However, the differences are small, with the proposed 
approach leading to slightly conservative results. 

 
 

 
Figure 16. SLWR – von Mises Stress. 
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7  Conclusion 

This work presented a simple approach for riser analysis based on the differential equilibrium 
equations of a cable subjected to static loads. This procedure considers the static loads acting on the 
riser and the vessel motions. An efficient and robust solution algorithm is adopted to solve the 
resulting nonlinear equations. The bending moment is evaluated in a post-processing step using the 
riser curvature and bending stiffness.  

Different riser configurations were analyzed and compared to the results obtained with a FEM 
program in order to validate this model. The results for geometry, tension, and bending moment and 
von Mises stresses were very accurate. The results showed that the proposed formulation is not only 
more efficient than FEM for the same discretization, but also requires a coarse discretization to 
converge, resulting in an accurate and efficient approach for static analysis, especially in the early 
design phases where many different options and configuration have to be assessed.  
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