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Abstract. The effect of severe environmental conditions, i.e., high pressure and high temperature
(HPHT), is known to cause various difficulties for the design of deepwater structures for oil and gas
production [1]. Subsea structures can be difficult to be repaired and/or replaced in response to the oc-
currence of unexpected problems due to severe HPHT conditions. Therefore, several methods have been
developed to design structures to withstand simultaneous pressure and thermal expansion [2]. This paper
aims to propose a topology optimization method to handle the challenges that simultaneous hydrostatic
pressure and thermal expansion impose on structural design. Topology optimization methods aim to find
optimal material distribution layouts (topologies) on specified design domains minimizing or maximiz-
ing an objective function subject to a set of constraints. The structural topologies are usually organic and
non-intuitive designs and they represent a powerful computational tool in the early stage of the struc-
tural design. Herein, the proposed Topology Optimization of Binary Structures (TOBS) method [3] uses
discrete 0,1 design variables within a finite element mesh to indicate the existence of solid 1 and void 0
material inside the design domain. A fluid pressure field is solved with a separate domain and constant
thermal expansion is applied on the structural volume. Sequential integer linear programming is used
to solve the optimization problem iteratively. The discrete nature of the method presents attractive fea-
tures when dealing with design dependent body and surface loads. In this paper, we use the structural
mean compliance and volume as functions for optimization. The methods of topology optimization have
achieved industrial maturity to be applied in stiffness maximization problems, but they are still quite
limited when it comes to Multiphysics design. A numerical example of a subsea structural design is
explored in this paper.
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1 Introduction

For the deepwater development of oil and gas production, it is well recognized that the effect of
severe environmental conditions, i.e., high pressure and high temperature (HPHT), has caused various
difficulties [1]. Recently, several researches have proposed designs for robust offshore and subsea struc-
tures that can withstand the above mentioned problems [2]. In HPHT conditions, thermal expansion
naturally occurs in structures such as pipelines, subsea systems, and topside facilities. Therefore, en-
gineers must carefully design and confirm the robustness of offshore oil and gas production structures.
This is especially true for subsea structures that are difficult to repair and/or replace in response to the
occurrence of unexpected problems, the cost of which is much greater than those of onshore or nearshore
cases.

To overcome HPHT-related problems of subsea pipelines, i.e., thermal expansion and global and
local deformation, engineers must consider the amount of thermal expansion that may take place. Sev-
eral methods have been proposed in order to predict the effects of structures under HPHT conditions
[2]. Optimization methods represent a potential tool to overcome structural failure in these cases as the
complexity of the physics increases. This work proposes to investigate the applications of a specific class
of structural optimization methods, namely topology optimization, to subsea structures under hydrostatic
pressure and thermal expansion loads.

Structural topology optimization is an intense research field. The idea of the method is to find the
optimal material distribution inside a design domain that minimizes a cost function subject to prescribed
constraints. The future perspectives pointed out in the survey by Deaton and Grandhi [4] are still target of
research. One of them is referred as design-dependent physics. In such problems, the interaction between
two or more physics depends on the material distribution and its boundaries, i.e., the structural design
itself. In such scenario, hydrostatic fluid pressure and thermal expansion lead to design-dependent loads.
Therefore, the applications of topology optimization in the offshore systems are still limited.

Thermal expansion loads depend on the volume the structure occupies. This is a partially unre-
solved a topic for topology optimization as the loads directly depend on the structural layout. The work
by Deaton and Grandhi [5] shows that the current methods can lead to ill-behaved optimization problems
and produce solutions that are opposed to engineering practices related to thermal stresses. Also, the
competing behavior between the volume objective, the mechanical and the thermal loads, poses addi-
tional challenges to the problem formulation. Less material can imply in less compliance due thermal
expansion forces and, depending on the boundary conditions, less deformation, whilst more volume al-
ways leads to less compliance due to mechanical loading [6]. Hydrostatic fluid pressure also imposes
some challenges to structural topology optimization [7]. During optimization, the fluid physics occupies
the regions where structural material is removed, which modifies the position of the fluid-structure in-
terfaces. Therefore, the pressure loads can change their location, direction and even magnitude during
optimization [8, 9].

This work proposes the use of topology optimization methods with clear definition of structural vol-
ume and boundaries. Herein, we apply the Topology Optimization of Binary Structures (TOBS) method,
recently created by Sivapuram and Picelli [3], Sivapuram et al. [10], to withstand hydrostatic pressure and
thermal expansion loads. In contrast with the classic Solid Isotropic Material with Penalization (SIMP)
approach [11] that presents gray areas and fuzzy boundaries due to intermediate densities, the TOBS
method restricts the optimization with discrete {0, 1} design variables, 1 meaning the presence of a solid
material and 0 representing the void regions. This implies that one always explicitly know the volume
and surfaces of the structure during optimization. In this case, the application of thermal expansion and
pressure loads is straightforward.

The remainder of the paper is organized as follows. Section 2 describes the TOBS. Section 3
describes the finite element formulations used in this work. The optimization problem and sensitivity
analysis are described in Section 4. Section 5 shows the application of the method in solving a structural
design problem with the presence of thermal and pressure loads. Section 6 summarizes the paper.

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
Natal/RN, Brazil, November 11-14, 2019



R. Picelli, R. Sivapuram

2 The Topology Optimization of Binary Structures Method

The structure is discretized into a finite element mesh and for each element a binary density variable
ρe ∈ {0, 1} is assigned, 0 indicating the absence and 1 the presence of material. A generic binary
optimization problem with inequality constraints is given by

Minimize
x

f(x)

Subject to gi(x) ≤ gi, i ∈ [1, Ng]

xj ∈ {0, 1}, j ∈ [1, Nd]

(1)

where x is the vector of design variables (densities in case of topology optimization) of size Nd, f is
the objective function, gi is the ith inequality constraint, gi is the associated upper bound, and Ng is the
number of inequality constraints. An approximate linearized version of the optimization problem from
Eq. (11) is solved at every iteration k. Such linearized problem is given by

Minimize
∆xk

∂f(xk)

∂x
·∆xk

Subject to
∂gi(x

k)

∂x
·∆xk ≤ gi − g(xk) = ∆gki , i ∈ [1, Ng]

||∆xk||1 ≤ βNd

∆xkj ∈ {−xkj , 1− xkj }, j ∈ [1, Nd]

(2)

where (·)k indicates the value of quantity (·) at iteration k, ∆xk is the update values of design variables
and ∆gki is the upper bound of constraint i. An extra constraint based on the 1-norm of design variables
is added to restrict the number of flips from 0 to 1, and vice-versa, therefore avoiding dramatic changes
in the structural topology from one iteration to another.

The upper bounds of constraints ∆gki are modified so that the linearized suboptimization problems
yield feasible solutions. The constraint bounds are modified using

∆gki =


−ε1gi(xk) : gi < (1− ε1)gi(x

k)

gi − gi(xk) : gi ∈ [(1− ε1)g(xk), (1 + ε2)g(xk)]

ε2gi(x
k) : gi < (1 + ε2)gi(x

k)

(3)

where ε1 and ε2 are parameters chosen from numerical experience. These parameters are selected such
that the suboptimization problems obtained through linearization yield feasible solutions. In this work,
we used ε1 = ε2 = ε for simplicity.

The integer suboptimization problems generated using sequential linearization can be solved using
Integer Linear Programming (ILP). In this work, the ILP problem is solved using the branch-and-bound
method of CPLEX package. The CPLEX package includes the cplexmilp function which solves
mixed integer linear problems. The branch-and-bound method is an algorithm based on the heap data
structure. The TOBS framework using branch-and-bound method successfully demonstrated in [10]
some problems using up to 6 constraints. The derivatives in the linearized subproblems are called sen-
sitivities of the objective function f and constraint functions gi. In the context of topology optimiza-
tion, a Finite Element Analysis (FEA) is performed for each set of design variables to compute the
sensitivities. A MATLAB implementation of this method is available at https://github.com/
renatopicelli/tobs.
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3 Finite Element Analysis

3.1 Structural Problem

Consider a linear elastostatics problem with external mechanical loads and thermal loads (through
uniform temperature change) acting on a structural domain Ω,

σij,j + bi = 0 Equilibrium

σij = Dijkl(εkl − α∆Tδkl) Constitutive Equation

εkl = u(k,l) Kinematic Compatibility

u = g for x ∈ Γg Essential Boundary Conditions

σijnj = ti for x ∈ Γt Natural Boundary Conditions

ui : Ω→ IR Solution Map

Table 1. Strong Form for linear elastostatics

where σ is the stress field, b is the body load, D is the elasticity tensor, ε is the strain field, α is the co-
efficient of thermal expansion, ∆T is the uniform temperature change, (·)(k,l) is the symmetric gradient,
u is the displacement field, g is the specified displacement field, x is the coordinate, Γg is the part of the
boundary where displacement is specified, nj is the normal vector, ti is the traction loading and Γt is the
traction loaded boundary. The finite element approximation on the variational form (nel elements and
nnd nodes) yields

Find uh = {uh : uh ∈ Sh ⊂ S and uh = gh for x ∈ Γg} such that∫
Ω
δuhTBsTDBsuh dΩ =

∫
Ω
δuhTN sTb dΩ +

∫
Γt

δuhTN sTN sth dΩ +

∫
Ω
α∆TδuhTBsTDq dΩ

(4)

where S is the solution space for displacements, u and g represent the displacement vector and specified
displacement vector respectively at a material coordinate, the superscript (·)h indicates that the quantity
(·) is discretized, h indicates the element size, uh is the vector of nodal displacements, Sh is the finite
element approximation space, N s and Bs are the matrices corresponding to shape functions and their
gradients respectively. The vector q is given by [1, 1, 0]T for 2D problems. The matrix form of the
present linear elastostatics problem is

Ku = Fmech + F th (5)

where K is the stiffness matrix (corresponding to the left hand side of (4)), Fmech and F th are the
mechanical and thermal loading respectively. F th corresponds from the third term of the right hand side
of (4), and Fmech corresponds to the first two terms. The stiffness matrix and load vectors are obtained
by assembly of element-wise matrices.

3.2 Fluid Problem

The physics of the fluid used in this work is governed by the Laplacian equation for pressure,
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∇2p = 0 Laplacian

p = p0 for x ∈ Θg Essential Boundary Conditions

p,ini = ri for x ∈ Θr Natural Boundary Conditions

p : Π→ IR Solution Map

Table 2. Strong form for the fluid problem

where p is the pressure, Π is the fluid domain, Θg is the part of the boundary with specified pressures,
Θr is the source boundary, ni is the normal to the fluid domain and ri is the source field. Upon finite
element discretization, the Galerkin form of the governing equation can be obtained as

Find ph ={ph ∈ Ph ⊂ P, p = p0 for x ∈ Θg} such that∫
Π
δphTBf TBfph dΠ =

∫
Θr

δphN f TN fr dΘ
(6)

where P is the feasible space of pressures, the superscript (·)h is the discretized field, r is the discretized
source field, N f and Bf are the shape function and shape function gradients corresponding to the fluid
domain. The matrix form for pressure equations can be written as

Kfp = F f (7)

where Kf and F f are the system matrix/vector for pressure equations, and are obtained by the assembly
of element-based matrix/vector.

3.3 Fluid-Structure Coupling

In this work, we use zero source and traction natural boundary conditions on, respectively, Θr for
the fluid problem and Γt for the structural problem, and no body loading for the structure (i.e., b = 0). At
the fluid-structure interface Γfs, the pressure field of the fluid acts as the traction field on the structure.
The fluid-structure coupling is achieved by using the boundary condition

σijnj = −pni for x ∈ Γfs (8)

Including the coupling boundary conditions, the coupled system of equations to be solved areKs −Lfs

0 Kf

u
p

 =

F th

0

 (9)

where Lfs is the fluid-structure coupling matrix, given by

Lfs =

∫
Γfs

N sTnN f dΓ (10)

This system of equations is coupled only one-way: from fluid to structure. The fluid pressures can first
be calculated and traction loads can be applied on the structure to enable solving the structural problem.
For a fully coupled system, the 0 in the system of equations would be nontrivial. So, this system of
equations can serve as a good starting point for the analysis of fluid-structure systems.

4 Optimization Problem and Sensitivity Analysis

In this work, topology optimization is applied aiming to design the stiffest structure given a volumet-
ric material usage constraint. To maximize stiffness is equivalent to minimize the structural compliance
C. This optimization problem can be written as
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Minimize
x

C(x)

Subject to V (x) ≤ V
xj ∈ {0, 1}, j ∈ [1, Nd]

(11)

where V (x) is the volume fraction of the structural topology, V is the constrained volume fraction and
Nd is the number of design variables. The compliance of a structure is defined using the mean strain
energy as

C(x) =
1

2
uTKsu (12)

The displacements u are computed using the coupled system of equations in (9).
As shown in Sec. 2, the topology optimization problem requires the gradients (sensitivities) of the

associated objective and constraint functions to iterate over solutions. The sensitivities for the present
compliance function with respect to the design variables (structural finite elements) are expressed as

∂C

∂xj
= −1

2
uT
e

∂Ks
e

∂xj
ue + uT

e

∂F th
e

∂xj
+ uT ∂L

fs

∂xj
p (13)

where the first term gives the compliance sensitivities for a structure without thermal and design-dependent
loads, the second term represents the effect of thermal loading on the sensitivities and the third term gives
the sensitivities due to design-dependent pressure loads. The sensitivities of the volume fraction function
with respect to a design variable e are given by

∂V

∂xj
= Ve (14)

where Ve is the area (in 2D) of the finite element e.
To avoid checkerboard solutions (a common problem for topology optimization methods) and noisy

sensitivities, a conventional mesh-independent filter is used to produce smooth sensitivity fields. This
filter is demonstrated to yield mesh-independent and non-checkerboard solutions ([3], [12]). A nodal
sensitivity field is first computed using averages of sensitivities corresponding to the connected finite
elements. The nodal sensitivities are computed as

∂f

∂yn
=

1

|E|
∑
e∈E

∂f

∂xj
(15)

where f is a generic function, yn is a virtual nodal design variable, E is the set of elements surrounding
node n and |E| is the cardinality of set E. The filtered element-based sensitivities of an element e
is obtained from the nodal sensitivity field using weighted average over a neighborhood of the finite
element e. The filtered sensitivity field is given as

∂f

∂xj
=

∑
m∈N wnm

∂f

∂ym∑
m∈N wnm

(16)

where
∂f

∂ρe
is the filtered element-based sensitivity and N is the neighborhood around element e.

5 Numerical Examples

We consider the example of a biclamped beam (l×b = 0.15×1 m2) in contact with a fluid field. This
could be interpreted as the design problem of the cross-section of a pipe or subsea mechanical system
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under pressure and thermal loads. The structure is discretized using 400× 60 bilinear quadrilateral ele-
ments. Plane stress is assumed. The beam is made of a material with Young’s modulus E = 199.5 GPa,
Poisson’s ratio ν = 0.3 and coefficient of thermal expansion α = 15.4×106 ◦C−1. The beam is clamped
at both the ends. The fluid above the structure carries a varying pressure field, with essential boundary
conditions Pin = 10 MPa and Pout = 1 MPa. The investigation is done for different thermal loads, i.e.,
uniform temperature difference ∆T values.

Figure 1. Structural design problem.

For an initial full solid design, Fig. 2(a) presents the scaled plot of the structural displacement field
when only the hydrostatic pressure loads are acting. Figure 2(b) and (c) show the thermal expansion
of the structure when subject to, respectively, positive and negative temperature difference. The defor-
mations of the structure under these separate load cases are quite different between each other and their
combination can considerably affect the optimization. The direction of the displaced structural regions
are also different, depending on the load case, which can lead to the addition or cancellation of loads
when combined. The structural mean compliance value for each load case is indicated in Fig. 2.

In order to investigate the combination of the pressure and thermal expansion loads, the structure
is subject to optimization. The volume fraction of the optimization problem is 0.5, and the parameters
used are β = 0.05, ε = 0.01 and r = 0.02m. In all the cases, the initial solution used is the fully-solid
design. First, it is considered that the fluid-structure interface can not change its location, i.e., the struc-
tural elements close to the fluid are considered as non-design domain. Figure 3 presents the optimized
topologies when the structure is subject to the hydrostatic pressure loads and three different temperature
changes, ∆T = 0oC, ∆T = 2.5oC and ∆T = −2.5oC. It can be observed that the combination of the
hydrostatic pressure loads with the positive thermal expansion (∆T = 2.5oC) caused a more significant
change in the optimized structure. In this case, the members in the bottom of the structure disappeared
if compared to the case with ∆T = 0oC. The deformation of the structure under ∆T = 2.5oC increases
the stresses in the bottom region, consequently, it is interesting to remove that part of the structure. This
information is transferred out to the optimizer via the thermal expansion term in the sensitivity equation
from Eq. (13). When applying a ∆T = −2.5oC, the critical stresses are in the top region of the struc-
ture, however, they can not be removed in this example and the structure must support them with the bars
present in the optimized topology. The mean compliance value for the optimized structures are indicated
in Fig. 3.

The next example considers the case where the fluid-structure interface can change its location. This
implies in a much more challenging problem for topology optimization, classified as design-dependent,
since the surface and volumetric loads also change [13]. Figure 4 presents the optimized structures, and
mean compliance values, considering the hydrostatic pressure load and different positive ∆T ’s when
allowing the interfaces to change. In this case, the patterns in the optimized topologies are similar to
the ones with fixed interface. Material is removed from the bottom regions of the structure, but then
adjusting the fluid-structure surfaces to support the hydrostatic pressure with an arch-like structure. It is
also important to point out that the mean compliance values for the optimized structures with changing
interfaces are generally lower than the ones where the interfaces are kept fixed.

The optimized structure solved when the thermal expansion loads arise from a negative temperature
difference is shown in Fig. 5. It can be observed that the material in the top region of the structure is
removed, as opposed to the case of positive ∆T ’s. This is because the compression region of the structure
is added up by the thermal expansion deformation, becoming more critical. Figure 6(a) and 6(b) present
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(a) C(x) = 516.30 Nm

(b) C(x) = 169.04 Nm (c) C(x) = 169.04 Nm

Figure 2. Structural displacement fields (scaled plots) under separate load cases: (a) pressure loads, (b)
thermal expansion under positive temperature difference and (c) thermal expansion under negative

temperature difference.

(a) ∆T = 0oC; C(x) = 844.84 Nm

(b) ∆T = 2.5oC; C(x) = 868.06 (c) ∆T = −2.5oC; C(x) = 844.84

Figure 3. Topology optimization of the biclamped beam under the combination of hydrostatic pressure
and thermal expansion loads with different ∆T ’s.

the convergence history of the structural mean compliance and volume fraction functions. The peak on
the compliance history indicates the break of a structural member.
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(a) ∆T = 0oC; C(x) = 806.60 Nm (a) ∆T = 2.5oC; C(x) = 730.69 Nm

(b) ∆T = 5.0oC; C(x) = 705.52 Nm (c) ∆T = 7.5oC; C(x) = 743.87 Nm

Figure 4. Topology optimization of the biclamped beam under the combination of hydrostatic pressure
and thermal expansion loads allowing the fluid-structure interfaces to change location.

∆T = −5.0oC; C(x) = 775.23 Nm

Figure 5. Topology optimization of the biclamped beam under the combination of hydrostatic pressure
and thermal expansion loads with negative ∆T ’s considering design-dependency of the fluid-structure

interface.
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Figure 6. Mean compliance and volume fraction functions convergence history.

6 Conclusions

This paper presented a topology optimization methodology applied to the design of structures under
hydrostatic pressure and thermal expansion loads. Applications can include structural design problems
in offshore systems. The method employs discrete {1, 0} design variables, which allows for the switch
between fluid and structural regions straightforwardly. It was shown that hydrostatic pressure and ther-
mal expansion loads can cause very different deformation configurations on the structure when applied
separately. This is reflected on the optimization results, which indicate that the combination of both type
of loads into a single load case causes the optimized structure to occupy different regions of the design
domain. Convergence was achieved smoothly. The method presented here can be considered as one tool
for the design of structures under complex multiphysics loads. Future works shall include more detailed
analyses and offshore applications.
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