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Abstract. Due to the continuing importance of laminated materials in civil, naval, mechanical 

and aerospace engineering, the development of structural analysis theories of laminated beams 

has been an active area of research. The well-known classical theories of Euler-Bernoulli and 

Timoshenko have limitations because they do not present a field of shear deformation or by the 

incorrect consideration of such deformations, without respecting the nullity of the shear stress 

in the edges of the beam. Thus, high-order theories have emerged to remedy the limitations of 

classical theories, especially the Equivalent Single Layer (ESL) theories. In ESL theory, the 

displacement function in the thickness coordinate are assumed to Class C1. This feature 

provides a discontinuous shear stress field at the interfaces of adjacent layers with different 

materials. In the 1980s, DiSciuva introduced a new class of laminated theories, where a zig-zag 

function is added to the ESL theories to describe the displacement in the thickness coordinate. 

This new theory allows the continuity of interlaminar tensions and a number of variables 

independent of the number of layers of the beam. In this way, the present work seeks to present 

the complete development of a finite element model of several ESL-Zig-Zag theories. Thus, a 

unified displacement field will be used that allows the simultaneous development and 

comparison of several refined theories found in the literature. After obtaining the governing 

equations, the finite element model is constructed using the Lagrange and Hermite polynomial 

functions. Finally, to show the good efficiency of the finite element model, numerical results 

are shown and compared with the exact solution of the elasticity of Pagano (1970). 
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1  INTRODUCTION 

In recent decades, composite beams have come to play a primary role in civil, mechanical, 

aeronautical and robotic engineering applications. As a result, the need for theories that could effectively 

describe the mechanical behavior of a laminated composite beam also increased. The classical Euler-

Bernoulli (EBT) theory, although widely known, fails in considering the null shear strain and the cross 

section of the beam remains flat and orthogonal to the neutral line after deflexion. Thus, at the beginning 

of the twentieth century, Timoshenko [1] proposes a First Order Theory (FOT) that considers constant 

shear strain along the cross section. However, because it does not consider the possibility of shear stress 

nullity at the beam edges, FOT needs correction factors for an improvement in its efficiency. From the 

middle of the twentieth century, high order theories have come to describe the shear strain of the beam 

without the need for correction factors ([2-9]). The high order theories propose for their displacement 

field, polynomial, trigonometric or exponential functions that allow the nullity of shear stress at the 

edges of the beam without incurring the need for correction factors. These theories were initially 

proposed for the analysis of isotropic and homogeneous beams. However, it is possible to extend its use 

to the analysis of orthopedic and laminated beams through three types of theories commonly found in 

the literature: Equivalent Layer Theories (ELT), Layerwise Theories (LW) and Zig-Zag Theories (ZZ). 

ELT, LW and ZZ theories differ mainly in the number of variables found in the differential 

equation system and in the possibility of zigzag behavior along the beam cross section. The ELT theory 

(Sayyad et al [10]), while simpler, has the disadvantage of assuming a C1 displacement field that results 

in a continuous strain field and since the layers have different transverse shear modulus, the shear stress 

field will be discontinuous. The LW theory (Reddy [11]) proposes the construction of an independent 

displacement field for each beam layer, however, the amount of variables will increase proportionally 

with the number of layers, which considerably increases the computational cost of the theory (in 

practical applications it is common for the number of layers to exceed 100). In the 1980s, DiSciuva [12] 

proposed a displacement field in which a piecewise function allows zigzag behavior, so the number of 

variables remains independent of the number of beam layers. In order to improve the efficiency of this 

theory for the clamped boundary and enable its implementation by finite element method with C0 

functions, it was proposed in DiSciuva et al [13] the Refined ZigZag Theory (RZZ). Thus, among the 

mentioned theories, the RZZ theory presents the ideal combination of efficiency and cost computational. 

In this paper, several high order models are developed simultaneously in conjunction with the 

ZZ theory for the analysis of the static and dynamic behavior of symmetrical and asymmetric laminated 

beams subjected to a transversal loading. The equations that describe the problem are derived from the 

Hamilton principle. A C1 finite element model using interdependent interpolation functions is also 

developed. The numerical results are compared with the elasticity theory obtained in Pagano [14] and 

Giunta et al. [15] 

2  GOVERNING EQUATIONS 

2.1 Kinematics  

Consider a beam of thickness h, composed of N orthotropic layers with the main material 

coordinates 
1 3( , , )k k k

xx x x  of the kth layer oriented at an angle kθ  related to the x coordinate. The kth layer 

is located between the points kz z=   and 1kz z +=  in the thickness direction (Fig. 1). 

In order to cover the kinematics of various refined theories, the unified field of displacement 

given in Eq. (1) is used: 
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where, ( , , )u x z t , ( , )ou x t , ( , )w x t  and ( , )x tφ  represent, respectively, the axial displacement, the axial 

displacement of the centroidal axis, the transverse displacement of the centroidal axis and the cross 

section rotation due to shear,  zk  is the z coordinate at the N-1 beam interface, ( , )k x tψ  is an unknown 

function and Y  is a singular function worth 1 when ( ) 0kz z− ≥  and worth 0 when ( ) 0kz z− <  and

( )f z  is a function that describes the used shear theory as shown in Table 1.  

 

Figure 1. Laminate composite beam geometry. 

The adopted strain field is presented in Eqs. 2(a and b): 
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Using the constitutive law for ortotropic materials (Reddy [11]), the stress field in Eqs. 3(a and 

b) can be achieved: 

 11xx xxQσ ε= ,  (3a) 

 55xz xzQτ γ= , (3b) 

where: 
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 2 2
55 cos( ) sin( )zx yzQ G Gθ θ= + . (5) 

 

In Eqs. (4 and 5), Eii, and Gij (i=x,y) are, respectively, the Young and the Shear modules in 

relation to the main axes; θ  is the angle that the fiber makes with the main axis of the beam.  

To ensure the continuity of shear stress, the following condition is imposed: 
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 ( 1) ( )lim lim
i i

k k
xz xz

z z z z
τ τ+

→ →
= . (6) 

Table 1. Shear theory used in the displacement field. 

Model Author Function ( )f z  

Model 1 Reddy [2] ² ²
( )

2 4 3

z h z
f z

  = −  
  

 

Model 2 Shi –Voyiadjis [3]  5 4 ²
( ) 1

4 3 ²
 

z z
f z

h

  = −  
  

 

Model 3 Ambartsumyan [4] 4 ²
( ) 1

3 ²

z
f z z

h

 = −  
 

Model 4 Touratier [5] 
( ) sin

h z
f z

h

π
π

 =   
 

Model 5 Soldatos [6] 1
( ) cosh sinh

2

z
f z z h

h

    = −        
 

Model 6 Karama et al. [7] 2

( ) exp 2
z

f z z
h

  = −  
   

 

Model 7 Akavci [8] 

2

3
( ) tanh

2

1
                     sec

2

z
f z h

h

z

π   = +   

 −   

 

Model 8 Thai et al. [9]  
1 2

( ) tan
z

f z h z
h

−  = − 
   

 

After replacing Eq. (3b) in Eq.(6), results: 

 ZZ
k k

aψ φ= , (7) 

where: 

 ( )
1 1

55 55

1
155

'
+ −

+
=

  −
= +  
  

∑
k k k

k k qk
q

Q Q
a f z a

Q
. (8) 

The Hamilton principle (Reddy [16]) is used to obtain the equations of motion for the 

displacement field given in Eq. (1). Thus, the equations that describe the theory are presented in Eq. 9 

(a, b and c): 
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where: 
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where b , h, N,ρ  and q represent, respectively, the section width, its height, the numbers of layers present 

in the laminated beam, its density and the applied distributed loading. In addition to the domain 

equations (Eqs. 9a-c and 10a-i), we have the following boundary conditions: 
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 (11) 

For dynamic purposes Eqs. (9a-c) can be formulated considering an eigenvalue problem to find 

natural frequencies. Thus, Eqs. (12a-c) represent the periodic movement of the beam under free vibration 

(Reddy [17]): 

 ( , ) ( ) i t
o
u x t U x e ω−= . (12a) 

 ( , ) ( ) i tw x t W x e ω−= . (12b) 
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 ( , ) ( ) i tx t S x e ωφ −= . (12c) 

where ω  is the natural frequency of transverse motion, ( )U x  , ( )W x  and ( )S x  are the modal shape 

of the transverse motion. Replacing Eqs. (12 a-c) in Eqs. (9 a-c) (being 0q = ) gives an eigenvalue 

problem whose solution represents the natural frequency of the beam subjected to free vibration. 

2.2 Shear stress 

Although the shear stress field of the present theory is continuous, it is possible to refine the results 

by employing the methodology for obtaining the shear stress given by Reddy [11]. Reddy [11] proposed 

an alternative way to obtain interlaminar stresses through the equilibrium equations of three-dimensional 

elasticity: 

 

0 ,

0 ,

0 .
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= + +
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xyxx xz
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zyzx zz

x y z

x y z

x y z

τσ τ

τ σ τ

ττ σ

 (13) 

For each layer, Eqs. (13) can be integrated with respect to z and obtain interlaminar stresses 

within each layer ( 1k kz z z +≤ ≤ ). Thus, the shear stress xzτ  is given as: 

 ( ) ,
∂ ∂

= − + + ∂ ∂ 
∫

k

z
xy kxx

xz

z

dz G
x y

τσ
τ  (14) 

where ( )kG is an integration constant that can be obtained through the nullity of shear stress at the beam 

edges and the interlaminar continuity condition. 

3  FINITE ELEMENT MODEL 

This section discusses the development of the finite element method applied to the ZZ theory 

for laminated beams. In this paper, the Hermite cubic approximation is used for both, the deflection and 

its derivative, and the Lagrange quadratic approximation for the variables ( , )ou x t  and ( , )x tφ , in order 

to avoid the shear locking effect (Reddy [16]). 

 

3.1 FEM formulation for the theory 

For the Higher-Order Zig-Zag FEM formulation (FEM-ZZ), aproximations for the ( , )w x t , 

( )0 ,u x t and ( ),x tφ  are considered as follows:  

     
(1) (2) (2)

1 1 1

( , ) ( ) ( ), ( , ) ( ) ( ), ( , ) ( ) ( )
m n n

i i o j j j j
i j j

w x t w t x u x t u t x x t t xϕ ϕ φ φ ϕ
= = =

≈ ≈ ≈∑ ∑ ∑ , (15) 

where 
(1)
jϕ  and 

(2)
jϕ  are Hermite cubic and Lagrange quadratic polynomial interpolation functions, 

respectively, iw  are nodal values consisting of ( ),w x t  , ju  are nodal values consisting of ( ),ou x t  and 
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jφ  are nodal values consisting of ( ),x tφ . Replacing Eq. 15 in the weak formulation of Eqs. 9(a-c) 

gives the following finite element model: 
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4  DISCUSSION OF NUMERICAL RESULTS 

This section compares the efficiency of the Finite Element Method applied to ZZ theories (FEM-

ZZ). For the static case, a comparison is made between the transverse and longitudinal displacement 

fields and the normal and shear stress fields for laminated composite beams subjected to sinusoidal 

loading. The number of layers (two, three and four) and the stacking configuration (0º/90º, 0/90º/0 e 

0/90º/90º/0, see Figure 3), referring to the angle that the fibers form with the main axis of the beam, 

were considered in the response field analysis. The L/h ratio considered in these examples is 4, that is, 

a moderately thick beam where the effects due to shear make it prominent over those of flexion. In these 

analyzes, the results obtained by FEM-ZZ are compared with the analytics developed by Pagano [14]. 

For dynamic analysis, it is considered the same beam of Figure 3 subjected to free vibration. In this 

dynamic consideration, the beam has the stacking configuration equal to 0º/90º e 0º/90º/0º and the L/h 

ratio varying in 100, 10 and 5. The results obtained by FEM-ZZ are compared to those obtained by the 

three-dimensional FEM. shown in Giunta et al. [15]. In all the examples is considered the graphite-

epoxy material whose Young modulus and Poisson ratio are: 
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Figure 2 a) Simply supported beam subjected to a sinusoidal load; b) Fibers arrangements in laminated 

beams. 

For the results to be independent of the geometric and loading parameters, the response fields 

were dimensionless as follows: 
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 (20) 

where u  is the dimensionless longitudinal displacement of the cross section, w  is the dimensionless 

deflection in the middle of the beam, xxσ   is the dimensionless normal stress, xzτ  is the dimensionless 
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shear stress, 0q  is the amplitude of the sinusoidal load and ω  is the natural frequency of the first mode 

of vibration. The L2-Norm error was calculated by the expression: 

 
1 1 2 2

2

1 2

( )² ( )² ... ( )²
relative error (%) 100%

( )² ( )² ... ( )²

− + − + + −
= ×

+ + +
n n

L

n

VR VC VR VC VR VC

VR VR VR
. (21) 

where iVR  e iVC   ( 1,2... )i n=   are calculated reference values, respectively. 

4.1 Static Analysis 

4.1.1  Two cross-ply laminated beam under transverse loading [0º/90º] 

Figure 3(a - d) shows the results for the displacement and stress fields when various kinematics 

are used in the FEM-ZZ (16-element). The deflection, w , was aproximated by Hermite cubic 

polynomials. The axial displacement ou  and rotation φ  were approximated by Lagrange quadratic 

polynomials. 

 

a) 

 

b) 

 
c) 

 

d) 

 
 

Figure 3. Field of (a) axial displacement, (b) normal stress, (c) transverse deflection along the beam, (d) 

shear stress when using 16-element FEM-ZZ. Response fields (a) and (d) are related to x = L and fields (b) 

and (c) are related to x = L/2 to the beam [0º/90º]. 
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Figures 4(a - d) show the L2-Norm errors between the various kinematics used and the reference 

solution (Pagano [14]) as the number of elements is increased. Figure 3 shows the good agreement of 

the results obtained by the various FEM-ZZ kinematics in relation to the reference solution. Figure 4 

shows the convergence of results after the use of 16 elements. Analyzing Figs. 3 and 4 shows the low 

influence of high order theories on the mechanical effects of the beam. Overall, all theories performed 

similarly with errors less than 10%, 9.5%, 4%, and 2% for the effects of axial displacement, normal 

stress, transverse deflection, and shear stress, respectively. 

 

a) 

 

b) 

 
c)  

 

d) 

 

 

Figure 4. L2-Norm errors: a) axial displacement, b) normal stress, c) transverse deflection and d) shear 

stress as the number of elements (NEL) increases. The response fields (a) and (d) are related to x = L and 

fields (b) and (c) are related to x = L/2 to the beam [0º/90º]. 
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4.1.2 Three cross-ply laminated beam under transverse loading [0º/90º/0º] 

For this example, the main advantages of the ZZ theory were highlighted. The approximation 

used to obtain the solutions showed in Figs. 5 (a-d) is again Hermite's cubic, for w , and Lagrange's 

quadratic for axial displacement ou  and rotation φ , with 16 elements. It is observed in Fig. 5a the 

zigzag behavior of the ZZ theory obtaining an error of less than 14% when considering the parabolic 

theories. The axial tension is presented in Fig. 5b, with greater emphasis on the parabolic Soldatos 

theories [6], with errors less than 12%. The transverse displacement and shear stress are presented in 

Figs. 5c and 5d, both obtained errors less than 5% when considering the parabolics and Soldatos theories 

[6]. Among the studied theories, Thai et al. [9] obtained the lowest efficiency. 

 

 

a) 

 

b) 

 
 

c)  

 

d) 

 

Figure 5. Beam behavior: (a) axial displacement, (b) normal stress, (c) transverse deflection along the 

beam, (d) shear stress when using 16-element FEM-ZZ. Response fields (a) and (d) are related to x = L 

and fields (b) and (c) are related to x = L/2 to the beam [0º/90º/0º]. 
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a) 

 

b) 

 
c)  

 

  

d) 

 

 

Figure 6. L2-Norma errors: a) axial displacement, b) normal stress, c) transverse deflection and d) shear 

stress as the number of elements (NEL) increases. Response fields (a) and (d) are related to x = L and 

fields (b) and (c) are related to x = L/2 to the beam [0º/90º/0º]. 

 

 

 

 

4.1.3 Four cross-ply laminated beam under transverse loading [0º/90º/90º/0º] 

 

For this example was used, again 16 elements and the same approximated polynomials of the 

previous example. From the results presented in Figs. 7 (a-d) it is possible to observe again the good 

efficiency of the ZZ theory. The parabolic theories and trigonometric theories of Soldatos [6] obtained 

the best results in relation to the others. The smallest errors obtained for these theories were 11%, 8%, 

1.5% and 1.5% for axial displacement, normal stress, transverse deflection and shear stress, respectively. 

Figure 8 show the convergence of FEM-ZZ from 16 elements. 
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a) 

 

 
 

b) 

 

 

c)  

 

 

d) 

 

 

 

 

Figure 7. Fields of: (a) axial displacement, (b) axial stress, (c) transverse deflection along the beam, (d) 

shear stress when using 16-element FEM-ZZ. Response fields (a) and (d) are related to x = L and fields (b) 

and (c) são related to x = L/2 to the beam [0º/90º/90º/0º]. 
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a) 

 

b) 

 
 

c)  

 

d) 

 
 

 Figure 8. L2-Norm errors: a) axial displacement, b) axial stress, c) transverse deflection and d) shear 

stress as the number of elements (NEL) increases. The response fields (a) and (d) are related to x = L and 

fields (b) and (c) are related to x = L/2 for the beam [0º/90º/90º/0º]. 
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4.1.4 Shear Locking 

The shear locking effect corresponds to not recovering the correct response field as the beam 

becomes thin. To show the absence of this effect, the maximum transverse displacement of a beam 

[0º/90º/0º] using FEM – ZZ (16 elements) is shown in Fig. 9, as the L/h (S) ratio increases. In addition 

to the theories developed here, we also show the Euler-Bernoulli (EBT) theory which has a field of 

response independent of the value of S. It is evident that all theories seek to recover the analytical value 

developed by Pagano [14] for both, moderately thick and thin beams. 

 

 
Figure 9. Maximum transverse displacement w  of the beam as L/h(S) ratio increases [0º/90º/0º]. 

4.2 Free vibration analysis 

The natural frequency is obtained by solving the eigenvalue problem proposed in Eqs. (23), 

using the Finite Element Method. Thus, the approximation for the vibration modes ( )W x  and ( )S x
are shown in Eq. (22): 

 ( )      
(1) (2) (2)

1 1 1

( ), ( ) ( ) ( ), ( ) ( ) ( )
m n n

i i j j j j
i j j

W x W x U x U t x S x S t xϕ ϕ ϕ
= = =

≈ ≈ ≈∑ ∑ ∑ , (22) 

where 
(1)
jϕ  and 

(2)
jϕ  are Hermite cubic and Lagrange quadratic polynomial interpolation functions, 

respectively. The finite element model is given by: 
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To show the efficiency of the model proposed in Eq. (23) is considered a simply supported beam 

subject to free vibration. The stacking configurations used were [0º/90º] and [0º/90º/0º] and its L/h ratio 

varied in 100, 10 and 5. It was observed the convergence of the model using 8 elements. Tables 2 and 3 

compare the FEM-ZZ (8 elements) and the three-dimensional FEM solution shown in Giunta et al. [15]. 
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The natural frequency obtained was dimensionless according to Eq. (20). It is evident that all theories 

have a good efficiency in obtaining the natural frequency with relative errors less than 1%. Among the 

presented theories, the parabolic ones had the highest efficiency, with a maximum error of 0.7% for all 

analyzed cases. Also noteworthy is the efficiency of FEM – ZZ for both thin and moderately thick 

beams. 

Table 2. Natural frequency ω  for a simply supported beam [0º/90º/0º]. 

Author  S = 100 S = 10  S = 5 

Reddy [2] 13,948 10,345 6,940 

Shi-Voyiadjis [3] 13,948 10,345 6,940 

Ambartsumyan [4]  13,948 10,345 6,940 

Touratier [5] 13,948 10,352 6,962 

Soldatos [6] 13,948 10,344 6,938 

Karama et al. [7] 13,948 10,364 6,989 

Akavci [8] 13,948 10,350 6,955 

Thai et al. [9] 13,948 10,380 7,022 

FEM 3D [13] 13,932 10,334 6,888 

Table 3. Natural frequency ω  for a simply supported beam [0º/90º]. 

Author  S = 100 S = 10  S = 5 

Reddy [2] 6,175 5,807 5,016 

Shi-Voyiadjis [3] 6,175 5,807 5,016 

Ambartsumyan [4]  6,175 5,807 5,016 

Touratier [5] 6,175 5,808 5,019 

Soldatos [6] 6,175 5,807 5,015 

Karama et al. [7] 6,175 5,810 5,024 

Akavci [8] 6,175 5,808 5,018 

Thai et al. [9] 6,175 5,812 5,030 

FEM 3D [13] 6,169 5,772 4,936 

5  CONCLUSIONS 

In this paper, a finite element model was developed for several high-order Zig-Zag theories. All 

theories were observed to have a similar performance, especially the parabolic theories - which had the 

same performance - and the trigonometric theory of Soldatos [6]. ZZ theories showed good efficiency 

for both, static and dynamic effects. In particular, the effects of transverse displacement, shear stress 

and free vibration showed errors less than 5% in all analyzed examples. In general, FEM – ZZ presented 

convergence without shear locking effect using from 16 elements. 
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