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Abstract. In most structural engineering designs deterministic models are used with requirements 

defined by standards, specifically, designs of reinforced concrete structures in Brazil are based on the 

NBR 6118:2014. This standard recommends the use of safety coefficients, without the consideration 

of the uncertainties associated to concrete structures designs. On the other hand, the Reliability-Based 

Robust Design Optimization (RBRDO), that will be studied in this paper, is characterized by 

optimization problems where the design uncertainties are treated statistically, allowing to measure the 

level of structural reliability and performance variability. In this type of problem, some constraint 

associated with the probability of failure is present in its formulation. The method to obtain the failure 

probability in this work will be FORM (First Order Reliability Method). Robust optimization 

problems aim to obtain a robust design, which in addition to a good performance, a low sensitivity to 

uncertainties of the problem are intended. The robustness measures employed in this work are mean 

and the standard deviation of functions of interest. This leads to a Robust Multiobjective Optimization 

(RMO) problem, due to multiple objectives, which has several optimum solutions called Pareto points. 

The main aim of the present research is to develop a computational tool to efficiently obtain robust 

optimum pareto designs of reinforced concrete framed structures under uncertainties. Such optimum 

pareto points will be found through Weighted Sums (WS), Min-Max e Normal Boundary Intersection 

(NBI) methods that were implement in the Python language. In addition, it will be used pre-existing 

in-house finite element libraries, which will be the method used for structural analysis. The reliability 

and optimization public libraries, also in the same language, will be considered. The applications in 

this work, is two 2D frames of reinforced concrete with one and three floors, with respectively 3 and 

30 bars. 
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1  Introduction 

Currently, in structural engineering designs deterministic models are used with 

requirements defined by standards, which uses semi-probabilistic methods, applying safety factors 

that increase the solicitations and the minors for the resistances. Such approach is also commonly 

employed when optimization procedures are used to obtain the optimum design. 
This methodology simplifies the calculations because it is practical and objective, however, it 

does not allow to measure the degree of reliability of the sections or the structure as a whole. In turn, 

Reliability-Based Design Optimization (RBDO) and Reliability-Based Robust Design Optimization 

(RBRDO or R²BDO) are characterized by an optimization problem where design uncertainties are 

statically addressed, allowing to measure the degree of structural reliability. In RBDO, some 

constraints associated with the failure probability or reliability index is present in its formulation. 

Moreover RBRDO, provides a project with good performance and reliable, has a low sensitivity to the 

uncertainties of the problem. 

Some authors who studied methodologies for the application of reliability-based design 

optimization can be cited: Liu and Kiureghian [1] who evaluated the efficiency and robustness of five 

optimization methods involving analyzes by the finite element method, it is worth mentioning that for 

optimization was used the Sequential Quadratic Programming (SQP) method, which proved to be very 

practical and efficient; Almeida [2] applied the probabilistic analysis optimization to reinforced 

concrete frames structures and compared it with the deterministic optimum, and declare to be the first 

to apply the SQP to such optimization, besides incorporating the physical and geometric nonlinearity 

to the problem; Andrade [3] who applied stochastic optimization to planes and spaces structures, 

following the normative prescriptions of NBR 6118, however, limiting himself to the analysis of a 

single floor separately; Motta [4] and Motta [5] presented an analysis of 2D and 3D trusses and 

frames, and plates applied to robust optimization; and finally, Alves [6] who used the reliability-based 

design optimization applied to 2D and 3D reinforced concrete frames, considering geometric 

nonlinearities and a simplified approaches to consider physical nonlinearities. 

Moreover, it is known that many real engineering problems have more than one goal to be 

optimized, so this work will also apply Multiobjective Optimization (MO) techniques, where the 

proper approach to problem solving is constituted of a class of strategies based on the called Pareto 

concept. NBI (“Normal Boundary Intersection”) will be used, an efficient algorithm developed by Das 

and Dennis [7] that achieves efficient Pareto point distributions for bi-objective problems. The results 

will also be compared with the classical approaches: Weighted Sum (WS) method and Min-Max 

method. Also, as a reference for multiobjective optimization, there is Motta [8]. 

The main goal of the present research is to develop a computational tool to efficiently obtain 

robust optimum pareto designs of reinforced concrete framed structures under uncertainties The goal 

this work is to compare the three distinct multiobjective approaches by applying the robust 

methodology to two reinforced concrete structures. The first structure being a frame 2D with one floor 

and a uniformly distribute loading and the second being a frame 2D with three floors and also with 

uniformly distributes loadings on its beams. Details of such structures will then be presented. 

For reliability constraints, the First Order Reliability Method (FORM) was used to find the 

reliability index. For structural analysis was used the finite element method (MEF), with a code 

implemented by Alves [6] in Python 2.7 language, plus own code for MO methods and pre-existing 

libraries for reliability analysis (PyRe) and optimization (SciPy.optimize), in the same language. 

2  Structural analysis 

 

The cases studied in this work are small size frames 2D with one and three floors, and have 

vertical uniformly distributes loads only, which, consequently, make them relatively small 

displacements, allowing the considering of linear analysis of reinforced concrete structures, according 
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to NBR 6118: 2014. The finite element method with linear analysis was used, where, for the basic 

element (linear bar elements), the assumptions of the beam elements presented by the Euler-Bernoulli 

theory, which considers that the cross sections remain planes after deformation and therefore do not 

consider any deformation due to stress shear, were also considered. 

In summary, this type of analysis search to find the behavior of structural elements, which is 

characterized by nodal displacements of the system due to the action of point loads applied to these 

nodes. The other loads are simulated through equivalent nodal loads that have the same effect on the 

structure as the original load. Once these displacements are calculated, it is possible to obtain the 

supporting reactions and internal efforts in the elements. 

To perform the structural analysis in this work was adopted a code presented by Alves [6] 

developed in Python and validated with several examples presented by Logan [9] and by some 

commercial structural analysis software. 

It was decided to use the mentioned code because the process of reliability analysis and 

optimization can be very computationally expensive, as a consequence, the structural analysis should 

be as fast as possible, and the procedure for calculating the internal displacements and efforts in this 

code generated a significant gain in processing time, as well as being very versatile and can be easily 

adapted to solve various types of structures. 

3  Reliability analysis 

The normative prescriptions currently used for reinforced concrete structure projects are based on 

semi-probabilistic analysis. This approach, however, becomes questionable when it comes to 

optimized designs, for example, because they tend to be located around constraints where minor 

disturbances may lead to violation of design constraints (MOTTA [5]). Therefore, the reliability 

analysis, which allows the evaluation of probability of structural failure associated with the design 

criteria, has been gaining ground. 

The probabilistic analysis of a structure is based on the idea that there is always a probability that 

it will fail, either by rupture of the component materials or by failing to meet the normative 

requirements for maximum deformations, crack openings, etc., once it takes into account the 

uncertainties inherent in materials and their strengths, loads and their variability, and structure 

geometry. This probability can be roughly quantified by the reliability index (β). 

For the reliability analysis it is necessary to define the stochastic variables, also called random 

and their distribution type. In Brazil, there are not studies that analyze the most appropriate probability 

distributions yet, however, there are several studies published outside on this topic. Therefore, this 

paper will follow the premises presented by the Joint Committee on Structural Safety (JCSS) [10]. In 

addition to random variables, it is also necessary to define the failure function. 

Each probability distribution has its Probability Density Function (PDF) which, together with a 

set of random variables x and a failure function G(x), can define the failure probability (
fP ) as: 

 ( ) { : ( ) 0}f x
F

P f dx F G    x x x  (1) 

where F is the failure region of the structure or structural element and fx is the PDF of the failure 

function, unknow a priori. 

Because it is a robust optimization, random samples are generated based on the distributions of 

each random variable to calculate the robustness measures that are the means and standard deviations 

in the objective functions. Samples with size N = 100 were chosen to obtain the mean and standard 

deviation of the functions of interest. After a parametric study, this sample size was chosen because it 

gives good results with a lower computational effort. In summary, the arithmetic mean (Ma) and 

standard deviation (SD) of the function of interest, e.g. the cost or the maximum displacement, are 

calculated through the Equations (2) and (3). 

 1 2 ... N
a

x x x
M

N

  
  . (2) 
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where xi are the values of the function of interest evaluated for the sample points. It is important to 

mention that for gradient based optimization process the seed, of the random number generator, must 

be fixed for smooth statistics responses. 

For the calculation of the reliability index in each constraint was used the First Order Reliability 

Method (FORM) which will be presented below. 

3.1 FORM 

To avoid the use of the numerical integral presented in Eq. (1), the first order reliability method 

(FORM) was used, which uses the iterative technique. It is said of the first order because the method 

makes a linear approximation of the failure function at the point of greatest probability of failure. 

The FORM transforms the distributions of the variables involved into standardized normal 

distributions whose mean is zero and the standard deviation is unitary. This causes the initial problem 

to become an equivalent problem in a reduced standard space. 

The space corresponding to the standardized stochastic variables has radial symmetry, as seen in 

the concentric circles of Fig. 1. The reliability index (β) is then defined in this subspace as the shortest 

distance between the failure surface ( ( ) 0G x  ) and the origin of the reduced space coordinate 

system. 

 

Figure 1. Subspace of standardized random variables 

The failure probability is calculated by Eq. (4).  

 ( )fP     (4) 

where Φ is the cumulative probability density function for a standard random variable. Details of the 

procedure can be found in Melchers and Beck [11] or Motta [4]. 

In this work was adopted the PyRe (Python Reliability) library, developed in Python 2.7 

language, to use FORM in reliability analysis. This library was chosen because of its ease and 

versatility, and was properly tested and validated by Alves [6]. 

4  Multiobjective Optimization 

Many real engineering problems have more than one goal to optimize, and several criteria to 

meet, these problems are called Multiobjective Optimization. The mathematical formulation of the 

optimization problem is to find a set of n design variables contained in a vector x , such that: 
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     Minimize ( )F x  

Subject to: ( ) 0ig x   1,2,...,i m               (5) 

          ( ) 0kh x   1,2,...,k n  

    
 

L U
x x x  

where: 

1 2 3( ) [ ( ), ( ), ( ),..., ( )]nobjf f f fF x x x x x         (6) 

is the objective function vector, the vector components x  are the design variables, ( )ig x and ( )kh x  

are the inequality and equality constraint functions, respectively, and the vectores 
L

x  and 
Ux  are, 

respectively, the lower and upper limits of the design variables. And inside 
ig  are the constraint 

functions related to reliability analysis of the failure functions (G), that depends on the reliability 

index. 

The methods presented here for solving such problems consist in transforming the problem with 

several objectives into another with only one objective. For scalar optimization, it was applied the 

Sequential Quadratic Programming (SQP) method, which approximates the problem to a sequence of 

convex quadratic subproblems. This approximation is repeated repeatedly until the values of the 

design variables converge, which means that the difference between two consecutive iterations is 

smaller than an adopted value (tolerance). All this procedure can be found in detail in Motta [5], and 

this work was performed automatically within the minimize function present in the Scipy library. 

Usually, it is not possible to find a project that is ideal for all objectives instead there are several 

solutions to the problem, each representing a relationship between the objectives. To find these 

solutions the concept of Pareto can be employed. Pareto points have the property that when moving in 

the decreasing direction of a function, the other functions have their value increased (MOTTA [5]) or 

kept. 

The Pareto front contains the points that represent an optimal compromise (trade-off) between the 

respective evaluations of objective functions. Figure 2, taken from Bates [12], shows this concept, 

highlighting Pareto solutions and discarded inferior solutions. 

 

Figure 2. Pareto solutions for multiobjective optimization 

There are several methods to obtain these points, the following will be studied in this work: 

Weighted Sum (WS), Min-Max and the Normal Boundary Intersection (NBI) methods, which will be 

described below. 
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4.1 WS method 

This is the most employed method due to its simple use. The Weighted Sum Method (WS) is 

based on minimizing the sum of objective functions, normalized and weighted by a weighting 

coefficient vector B
j
, and repeating for different weights. Thus, the problem becomes a single 

objective function, algebraically represented by: 

 ,

1 0

nobj
T k
j j k

k k

f
F B B

f

 
0

f

f
. (7) 

Where the elements of
,j kB  are normalized as follows: 

 
, ,

1

1,0 1
nobj

j k j k

k

B B


    (8) 

and 0kf  is the objective function k in the initial design. 

Each B
j
 different gives a Pareto point, but problems may arise when the viable region contour in 

the objective function space is non-convex, as shown in Fig. 3. Where it is not possible to find a 

solution that is in the non-convex region. 

 

Figure 3. Viable region in objective function space 

Typically, this methodology does not provide uniform Pareto points for uniform weight 

distribution B. 

4.2 Min-Max method 

A method based on the weighted sum method, the Min-Max method was created to minimize the 

problem of obtaining uniformly distributed points, differing in the normalization of objective 

functions, found in Hwang et al. [13]. 

To normalize the objective functions will require two more parameters: max kf  and min kf , 

which are obtained through individual optimizations solutions of isolated objective functions. It apply 

the variables set
*

kx , resulting from each optimization k alone, to each objective function and then find 

the maximum value of function ( max kf ) and the minimum value ( min kf ). 

The normalized objective functions will be: 

 
min

, 1,...,
max min

k k
k

k k

f f
f k nobj

f f


 


. (9) 

If max mink kf f   for some objective k, this can be disregarded. 

Then the following problem is proposed: 
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 min( )   (10) 

where 

 max( ), 1,...,k kB f k nobj     (11) 

subject to the same constraints as Eq. (5), in addition to the following restrictions: 

  para 1,...,k kB f k nobj  . (12) 

Solving this problem for various sets of vectors B, a new optimization subproblem is formulated, 

so a new Pareto point is found. 

4.3 NBI method 

The Normal Boundary Intersection (NBI) method was introduced by Das and Dennis [9] in order 

to find efficient contour points in the objective functions space (viable space) that allow the 

construction of a smooth curve. When the points are over a sufficiently convex contour part, these are 

Pareto points, but when they are in a concave part, there is no assurance that they are Pareto points, 

however, they contribute to the definition of the Pareto front. 

Details of the methodology can be found in the references Motta [8] and Das and Dennis [9], but 

in summary, first the minimum local vector of objective functions, represented in Eq. (13), must be 

found. 

 
* * * *

1 2[ , ,..., ,..., ]T

k nobjf f f f*
F   (13) 

where each 
*

if  represents an individual local minimum. 

After, the points of Convex Hull Individual Minima (CHIM) are defined by the convex 

combinations of ( )i * *
F x F , stored in the matrix form, Φ, called “pay-off”. So, the CHIM will be: 

 
1

: , 1,
nobj

nobj

i i

i

B B o


 
   

 
ΦB B  (14) 

where 

 
* *

, ( ) , 1,..., ; 1,...,i j i j if x f i nobj j nobj     . (15) 

The NBI method aims to find part of the contour δf, as illustrated in the example shown in Fig. 4, 

which contains Pareto points, from the intersection of the quasi-normal line to the CHIM, pointing to 

the origin, whose line is defined from the midpoint of the CHIM as shown in Eq. (16). 

 ,

1

1 nobj

i i j

j

n
nobj 

  . (16) 
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Figure 4. The viable set image about the mapping of f into the objective functions space 

Then, tΦB n , with t , represents the set of points on n , which form a quasi-normal line to 

the CHIM. And mathematically, to find the intersection of the quasi-normal line to the ECMI and the 

contour that defines the space (δf), one must solve the following problem: 

 
,

max
t

t
x

  (17) 

subject to the constraints of Eq. (5), plus the following constrain: 

 ( )t ΦB n F x   (18) 

where ( )F x  was replaced by ( ) ( )  *
F x F x F , as it was considered that at the origin is the utopia 

point 
*

F  and thus all functions are non-negative. 

5  Case studies 

Two examples of 2D reinforced concrete framed structure will be studied, where the three mentioned 

multiobjective optimization methods were applied, to obtain robust optimum results, and the results 

obtained by those methods compared. To applying the robust methodology the mean and standard 

deviation measures that were calculated as shown in Section 3, respectively Eq. (2) and Eq. (3) were 

used. 

5.1 Frame with one floor 

It is a three bar frame with uniformly distributed loading applied along its beam, as shown in Fig. 

5, and was taken from Coêlho [14], who in her work presented the analysis of this frame by sundry 

optimization methods and with several values for α. Here RBRDO will be used, as already mentioned, 

and only for α = 1 and L = 5.5 meters. 
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Figure 5. Three bar frame 

Reliability. The default value for the reliability level recommended by JCSS [10] has been assumed 

for the ultimate limit state check of most new structures, β = 4.2. 

Design variables. The dimensions of the columns ( 1x ) and beam ( 2x ) were adopted as the continuous 

design variables of this problem which have boundaries between 0.01 m and 1 m. Note that the 

sections of both elements were considered square. 

Objective functions. One of the objectives is to decrease the mean of the total concrete volume of the 

structure, the function being defined as: 
2 2

1 1 2( ) (2 )objf mean L L x x x . The second objective is to 

minimize the standard deviation of the maximum displacement that occurs in the middle of the beam 

span. Such deformation is calculated by the finite element method, through the library implemented by 

Alves [6]. 

Random variables. The list of all random variables is shown in Table 1. 

Table 1. Random Variables from Example 1 

Variable Symbol 
Probability density 

function 
Unit Mean 

Standard 

deviation 
V 

Column dimension    Normal m 
Design 

variable 
- 0.025 

Beam dimension    Normal m 
Design 

variable 
- 0.025 

Load w Lognormal tf/m 1.5 2.25 1.5 

Resistent stress σ Lognormal kgf/cm² 9100 1547 0.17 

Span L Deterministic m 5.5 - - 

Width/height ratio of 

the frame 
α Deterministic - 1.0 - - 

Constraints. The constraints adopted, in addition to the constraints required for each multiobjective 

optimization method, have the format of Eq. (19) and depend on the evaluation of the limit state 

functions of Eq. (20), which represent the maximum stress at the top of the column and the maximum 

tensions of the beam in the meeting with the pillar and in the middle of the span, to obtain the 

reliability indexes. The variables Ni and Mi of Eq. (20) are, respectively, the normal forces and 

bending moments acting on the top of the pillar (1), the beam support (2) and the middle of the span 

(3). 

 ( ) ( ) 0, 1,2,3T

i i alvog i    x x . (19) 
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2
( ) , 1,2,3
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i
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i

x
M

N
G x i

xx


  
  
     

 
 
 

. (20) 

Results. The problem was solved by the three multiobjective optimization methods presented, with 11 

Pareto points for each method, the values found are in Table 2 and represented in Fig. 6. 

Table 2. Example 1 results 

WS Min-Max NBI 

Mean(V) (m³) Sdt( max ) (m) Mean(V) (m³) Sdt( max ) (m) Mean(V) (m³) Sdt( max ) (m) 

1650.0290 2.1005e-09 1238.6877 2.6415e-09 1650.0290 1.7992e-09 

40.3228 2.1762e-07 66.0204 9.1819e-08 1320.5223 2.0452e-09 

29.2872 3.4966e-07 47.8807 1.4606e-07 991.0667 2.8265e-09 

23.7266 4.7998e-07 38.7503 1.9915e-07 661.6977 4.5132e-09 

19.9893 6.2291e-07 32.6291 2.5686e-07 335.5219 3.9620e-08 

17.0959 7.9189e-07 27.9058 3.2443e-07 30.0089 2.9098e-07 

14.6343 1-0075e-06 23.9030 4.0965e-07 6.1357 3.4899e-06 

12.3661 1.3112e-06 20.2323 5.2783e-07 4.0630 6.9170e-06 

10.0834 1.8106e-06 16.5616 7.1795e-07 3.1998 1.0357e-05 

7.4382 2.9513e-06 12.3502 1.1345e-06 2.7050 1.3800e-05 

2.3779 1.9929e-05 2.3779 1.7246e-05 2.3779 1.7246e-05 

 

 

Figure 6. Pareto points for frame 1 

The points found by the weighted sum method were concentrated in a single region because, as 

stated, the method does not provide a uniform distribution of points. As with the Min-Max method 

which, in this example, also did not provide a proper distribution of points. However, when 

considering NBI more evenly distributed points were obtained, this method allows regular distribution 

of Pareto points for even a small set of vectors of the β parameter already mentioned, regardless of the 

number of objective functions. 

It can be observed that the Pareto points form a curve of approximately 90 degrees very close to 

the axes, that is, small variations of displacement up to an order smaller than 1e-08 cause a large 

volume variation. It can also be said that the global optimum is located at the point closest to the 

origin, in the region where the weighted sum method points were located. 
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The Table 3 shows comparative values between the methods, where the number of iterations and 

the number of functions evaluations of the optimizations are found. In that table, each function 

evaluation represents the objective functions and the constraint functions evaluation, for a given 

design point, i.e. the statistic calculation (for 100 random points) and one reliability analysis for each 

constraints. It can be concluded that the NBI, despite being the costliest, obtain better distributed 

points and is the most complete method. On the other hand, the weighted sum method has the smallest 

number of iterations and the smallest number of function evaluations. 

Table 3. Method comparison in example 1 

Method Iterations Function evaluations 

WS 110 457 

Min-Max 184 748 

NBI 276 1535 

 

5.2 Frame with three floors 

This second problem was also taken from the reference Coêlho [14] where was considered the 

deterministic optimization. It is a frame with three floors with uniformly distributed loading applied 

along its beams, as shown in Fig. 7. 

 

Figure 7. Frame with three floors 

Two groups of beams and pillars were adopted: type 01 pillars are those in the corner and type 02 

columns are in the center; the beams of the extreme spans are of type 01 and those of the central span 

of type 02. To obtain the efforts on the beams were discretized into two elements of the same size in 

each span, so the structure has a total of 30 bars (12 pillars + 18 beams). 

Reliability. The default value for reliability level, recommended by JCSS [10] for the ultimate limit 

state check, β = 4.2, was also assumed. 

Design variables. The continuous design variables adopted for the problem were the dimensions of the 

beams and columns of each group (   ,    ,    ,    ,    ,    ,    ,    ) and the steel areas of the 

elements (    
 ,     

 ,     
 ,     

 ,     ,     ). These variables have the limits indicated in Table 4. 
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Table 4. Limits values of design variables for example 2 

Description Upper limit Lower limit 

Beams base 20 50 

Beams height 35 90 

Columns base 30 60 

Columns height 30 90 

Steel beams area 5.67 22.81 

Steel columns area 11.34 88.36 

 

Objective functions. The first objective (
1objf  ) is to minimize the mean of the total cost of the 

structure, which is calculated as shown in Eq. (21). The second objective (
2objf  ) is to minimize the 

standard deviation of the maximum displacement, which is also calculated by the finite element 

method, through the library implemented by Alves [6]. 

 
1

1 1

( 2 ( )) ( 2 ( ))
p v

i j

n n

obj c i i a a f i i i c j j a a f j j j

i j

f mean C C W C L C C W C L
 

 
         

 
 b h b h b h b h .(21) 

 
2 max( ( ))objf std d .       (22) 

where: 

 
pn  and vn  are the numbers of pillars and beams, respectively; 

 cC = 54 USD/m³, aC  = 0.55 USD/kg and 
fC = 54 USD/m² are the costs with concrete 

volume, steel weight and shape area, respectively, adopted as reference work; 

 b and h are the vectors that contain the bases and heights of the elements respectively; 

 L represents the elements length; 

 aW  is the steel specific weight of each piece; 

 d is the vector that contain the displacements of the points. 

Random variables. The random variables adopted as well as their respective distributions and related 

parameters are presented in Table 5. 

Table 5. Example 2 stochastic variables 

Variables Unit PDF Mean V 

Beams base cm Normal Variable 0.025 

Beams height cm Normal Variable 0.025 

Columns base cm Normal Variable 0.025 

Columns height cm Normal Variable 0.025 

As positive cm² Deterministic Variable - 

As negative cm² Deterministic Variable - 

As columns cm² Deterministic Variable - 

Concrete strength MPa Lognormal 39.38 0.10 

Steel strength MPa Lognormal 491.2 0.05 

Steel modulus of elasticity GPa Normal 210 0.05 

Permanent load kN/m Normal 16.5 0.04 

Overload kN/m Normal -6.84 0.10 

Constraints. In addition to the restrictions for the multiobjective optimization methods, the other 

constraints have the same format as Eq. (19), however with 1,2,...,8i  , being associated the limit 

state functions shown in Eq. (23), which refer to the moments (positive and negative) and resistive 
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shear forces on the beams and the resistive bending moments on the pillars. The ultimate limit state 

has been verified. 

 
( )

( ) 1 0, 1,2,...,8
( )

Sd
i

Rd

S
G i

S
   

x
x

x
. (23) 

Where SdS  refers to the requesting efforts of sizing and RdS  resistant design efforts. 

Results. Similarly, this problem was solved by the three multiobjective optimization methods 

presented, with 11 Pareto points for each method. It was found the values in Table 6 which are 

illustrated in the graphs in Fig. 8. 

Table 6. Exemple 2 results 

WS Min-Max NBI 

Mean(Cost) 

(USD) 

Sdt( max ) 

(m) 

Mean(Cost) 

(USD) 
Sdt( max ) 

(m) 

Mean(Cost) 

(USD) 
Sdt( max ) 

(m) 

22504.7781 5.2880e-05 20385.2918 8.5643e-05 20385.2918 8.5643e-05 

20381.2527 7.1139e-05 16543.0767 2.0173e-04 18439.3429 1.2376e-04 

16377.6990 1.8269e-04 15255.6824 2.9567e-04 16461.1318 1.5647e-04 

20238.6464 7.1500e-05 14431.4860 3.8947e-04 14723.6231 2.2956e-04 

18173.4901 1.0370e-04 13371.9460 4.4589e-04 13231.7004 3.4387e-04 

20019.0143 7.3443e-05 12767.0534 5.3029e-04 12052.3068 5.1063e-04 

16255.0088 1.8940e-04 12274.1373 6.4454e-04 10696.2509 6.4779e-04 

16230.1793 1.9042e-04 11902.2627 8.0111e-04 10375.6097 9.5859e-04 

16173.1041 1.9281e-04 11633.5718 1.1411e-03 9705.0277 1.2107e-03 

12889.0817 3.5953e-04 10921.9801 1.4414e-03 9668.0383 1.5692e-03 

10231.8318 1.5287e-03 9975.1077 1.7417e-03 9519.7681 1.9090e-03 

 

Figure 8. Pareto points for example 2/ 

As in the previous example, the Weighted Sum method presented points more concentrated in a 

single region, while the Min-Max method, in this example, was able to minimize this effect. Finally, 

the results of the NBI method for example 2 also obtained a more uniform distribution of points. 

The comparison between the multiobjective optimization methods can be seen in Table 7. Again, 

each function evaluation includes the objective functions and the constraints functions evaluations as 

explained in previously example. The table shows that the NBI method is the costliest. However, this 

method obtained a smooth curve with well distributed Pareto points, which was not obtained by the 

other methods. 
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Table 7. Methods comparison in example 2 

Method Iterations Function evaluations 

WS 335 5736 

Min-Max 702 14574 

NBI 1109 20905 

Table 8 display the number of iterations for each Pareto point in each method, where usually the 

points closest to the lowest cost have the largest number of iterations. This is due to the fact that the 

reliability constraints become actives. 

Table 8. Number of iterations 

Method Lowest disp. (P1) P2 P3 P4 P5 P6 P7 P8 P9 P10 Lowest cost (P11) 

WS 48 23 13 29 36 30 10 10 07 36 93 

Min-Max 10 22 13 8 24 20 49 23 326 34 173 

NBI 10 17 19 35 37 66 142 274 145 106 258 

It was also made the analysis of three points found by the NBI method (indicate in Fig. 8), 

calculating their displacement histograms, shown in Fig. 9. The points are: the minimum displacement 

point, the minimum cost point and an intermediate point that can be considered as a global optimum, 

which is in the slope change of the Pareto curve found and has low values for both cost and 

displacement. 

 

Figure 9. Histograms of displacements at three points 

 As can be observed that the mean and the standard deviation of the displacement are 

proportional, that is, the minimum point for the standard deviation has the smallest mean of the 

displacement (in modulus). It is also proved that the point that minimizes the cost has the largest 

displacement and therefore the largest standard deviation. 

6  Conclusions 

Two statistical objectives of reinforced concrete framework with reliability-based constraints 

were optimized using code developed in the Python language. The methods for obtaining the Pareto 

curve fulfilled their objectives by finding curves with the acceptable reliability level recommended by 

the JCSS [10], making possible to choose the optimal overall design, according to the needs of the 

designer. 

From the methods used for multiobjective optimization, the NBI obtained better results, even 

being the costliest. It is the most complete, finding smooth curves and evenly distributed Pareto points, 

increasing the need for its use with increasing complexity of the problem. 
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The code used proved to be very efficient, obtaining coherent results, as well as being free and 

publicly licensed libraries, and easy to use, allowing implementation for other methods and objectives, 

according to the interest of other authors and future research. 
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