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Abstract. Risk optimization is a general approach for structural optimization regarding uncertainties.
Different life-cycle costs are considered, including expected failure costs, whose calculation requires
the computation of failure probabilities. Although more comprehensive than concurrent approaches,
the literature about this topic is scarce. Time-dependency can be considered, broadening the scope of
the analysis, but further complicating the solution. In this work, a numerical framework for solving
time-dependent risk optimization problems is proposed. It consists in a Monte Carlo simulation based
approach, where two adaptive coupled metamodels are employed. In the first level, objective functions
are approximated, and in the second, the limit state functions related to the computation of the failure
probabilities. An iterative procedure is developed for selecting candidate points to each surrogate model’s
design of experiment. The accuracy and generality of the method is shown in an example including
system-reliability and load-path dependent failures.
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1 Introduction

Different approaches have been proposed in the literature to solve design optimization problems
considering structural reliability. In reliability-based design optimization or RBDO [1–3], a deterministic
objective function involving material and manufacturing costs is minimized under reliability constraints.
This approach is a natural extension of deterministic design optimization, where deterministic constraints
are replaced by probabilistic design constraints. A different problem is obtained when structural reliabil-
ity is part of the objective function. In life-cycle cost or risk optimization [4–6], the objective function
is formulated in terms of total expected costs, which includes expected costs of failure. These, in turn,
are given by the product of failure costs by failure probabilities. Risk optimization allows one to find
the optimal point of balance between safety and economy in structural designs. Risk optimization also
allows different failure modes to compete with each other.

Comprehensive literature reviews [3, 7–9] reveal that the RBDO problem has received much more
attention than the life-cycle cost or risk optimization problems. Several very efficient methods have been
proposed for solving RBDO. In particular, several methods were designed to overcome the nested opti-
mization loops arising from the use of First Order Reliability Method (FORM) for structural reliability
evaluation. In contrast, not much is found in the literature about solving risk optimization problems.
Moreover, it is worthwhile to emphasize that the underlying reliability problems are time-variant, due to
the presence of stochastic loading, strength degradation (corrosion, fatigue), consideration of inspection
and maintenance, etc., which adds another level of complexity.

Assessing the reliability of engineering structures under random load processes, and with consider-
ation of resistance degradation, requires time variant reliability formulations. Unfortunately, analytical
or semi-analytical solutions of time-variant reliability problems are limited to very specific cases [10].
The up-crossing rate solution is limited to scalar loads with Gaussian distribution. The out-crossing
rate solution is limited to polyhedral failure domains. Fast probability integration is subject to conver-
gence problems. Load combination solutions are mainly limited to discrete (pulse-like) processes. Time
integrated or extreme value solutions neglect resistance degradation, and so on. Hence, most often time-
variant reliability problems have to be solved by Monte Carlo simulation. This has a significant impact
in computational costs, which makes the outer optimization loop impractical. Hence, general methods
for solving time-variant risk optimization problems shall involve: a) speeding Monte Carlo simulation
via dedicated techniques; and/or b) using surrogate models to simplify (approximate) the underlying
time-variant reliability problem.

With respect to the first point, Gomes and Beck [11] proposed a Monte Carlo-based method which
involves finding the roots of the limit state function, in the design space, for each sample. Rashki et al.
[12] and Okasha [13] proposed efficient solutions for risk optimization involving random design vari-
ables. These solutions are based on the ranked weighted average simulation of Rashki et al. [14]. Re-
garding the second point, Echard et al. [15] proposed an active learning method, combining Kriging and
Monte Carlo simulation, for reliability analysis. A similar approach was adopted to RBDO by Dubourg
et al. [16], Moustapha et al. [17]. Wang and Chen [18] presented an equivalent stochastic process trans-
formation approach for solving general time-variant reliability problems. This approach was employed
by Li et al. [19] to solve RBDO problems.

Based on the above observations, this paper proposes a general procedure for solving time-variant
risk optimization problems, based on adaptive Kriging [15, 20, 21]. The proposed scheme has some
similarities with Li et al. [19]; however, herein it is applied for solving time-variant risk optimization
problems. Moreover, equivalent stochastic process transformation is not employed herein. In the pro-
posed approach, two adaptive Kriging surrogate models are constructed, namely one for approximating
the objective function and one for approximating the limit state function. An expected improvement
function is employed to efficiently choose additional support points for the surrogate models. Typical
time-variant reliability problems, involving random loads and stochastic corrosion degradation, are used
as examples to illustrate efficiency and accuracy of the proposed approach.
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2 Reliability Problem Statement

In a context where structures degrade in time, or when loads are described as stochastic processes,
it may be important to calculate not only instantaneous probabilities of failure, but the probability of a
failure occurring within a certain time interval, sometimes referred to as the cumulative probability of
failure in the literature. Consider a set X(t, ω) of M = p + q elements representing the uncertainties
of a given problem, where Xj(ω), j = {1, . . . , p} are random variables, typically describing geometric
characteristics and material properties, and Xk(t, ω), k = {p+ 1, . . . , p+ q} are random processes. In
this notation, ω is the outcome in the space of outcomes Ω. Moreover, let d be a vector that gathers
together all the system’s design parameters. It may include parameters describing moments of random
variables, in case tolerances on design dimensions are included in the analysis [22]. A limit state function
g(d, t,X(t, ω)) defines, for a given d, safe states if it is greater than zero and failure if it is smaller than
zero, so that the boundary between desirable and undesirable structure responses is given by the limit
state surface of equation g(d, t,X(t, ω)) = 0:

Df (d, t) = {d,X(t, ω) : g(d, t,X(t, ω)) ≤ 0} is the failure domain,

Ds(d, t) = {d,X(t, ω) : g(d, t,X(t, ω)) > 0} is the safe domain. (1)

For each limit state in the problem, the instantaneous probability of failure Pfi at a time t = τ is
calculated as:

Pfi(d; τ) = P (g(d, τ,X(τ, ω)) ≤ 0) =

∫
Df (d,τ)

fX(x)dx, (2)

where P (•) indicates the probability of the event • and fX is the joint probability density function of the
random variables X for a given configuration d at a time τ .

In the problems studied herein, the quantity of interest is the so-called cumulative probability of
failure Pfc(t1, t2) which is defined for a given configuration d as the probability of occurrence of a
structural failure within the time interval [t1, t2]:

Pfc(d; t1, t2) = P (∃τ ∈ [t1, t2] : g(d, τ,X(τ, ω)) ≤ 0) (3)

Not many approaches have been suggested to compute Pfc , the most widely used being probably the
so-called out-crossing approach. Popular methods include the PHI2 approach [23] and the asymptotic
PHI2 method [24]. The accuracy of such methods is significantly limited by the consideration of approx-
imations in its formulation The introduction of the first-order reliability method (FORM) in the problem
solution is known to lead to spurious results in presence of multiple design points or highly non-linear
limit states. A comprehensive review about time-dependent reliability can be found in Melchers and
Beck [10]. In order to avoid the aforementioned limitations, a direct Monte Carlo simulation approach
is considered instead in this paper. The adoption of such simulation techniques may lead to excessive
computational burden, and thus will be coupled to surrogate modeling, as shown in the sequel.

2.1 Simulation-based estimation of the cumulative failure probability

The adopted simulation approach basically consists in drawing sample trajectories of the limit state
function over the time interval of interest, and then counting the number of such trajectories for which
failure occurs within each time step. In order to do so, the random processes involved in the problem
must first be discretized, i.e. represented by a finite set of correlated random variables [25]. In this work,
the expansion optimal linear estimation (EOLE) method, after Li and Der Kiureghian [26], is employed.

Let X(t, ω) be a scalar Gaussian random process, with mean m(t), standard deviation σ(t) and
autocorrelation coefficient function ρX(t1, t2). An arbitrary number of time points P are selected in the
interval [0, T ], so that t1 = 0 and tP = T . The EOLE expansion is then given by:

X(t, ω) ≈ m(t) + σ(t)
r∑
i=1

ξi(ω)√
λi
φTi Ct,ti(t), (4)
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where {ξi(ω), i = 1, . . . , P} are independent standard normal variables, {φi, λi, i = 1, . . . , r} are the
eigenvectors and eigenvalues of the correlation matrix C sorted in decreasing order, with Cij = ρX(ti, tj), i, j =
{1, . . . , P}. The order of the expansion is defined by the number of terms r ≤ P that are kept after trun-
cating the series. One usually chooses r in such a way that a significant part of the spectrum of C is
retained, i.e. for an ε� 1:

r = min
k∈[1,..,P ]

{
k,

k∑
i=1

λi ≥ (1− ε) tr C
}

(5)

where tr C =
∑P

i=1 λi is the trace of the correlation matrix.
Once the random processes are discretized, it is possible to sample trajectories of the limit state

function itself. Consider the limit state g(d, t,X(t, ω)) for a given d in the time interval [0, T ]. Samples
of the random processes Xk(t, ω), k = {p+ 1, . . . , p+ q} are built from the EOLE expansions, and
the time independent random variables Xj(ω), j = {1, . . . , p} are sampled once and remain the same
throughout the whole trajectory. Let G be an array length N , where N is the number of time instants in
which the continuous time is discretized. The values obtained in the simulation are stored in this array,
where each position i = 1, ..., N corresponds to a time ti = (i − 1) · ∆t, where ∆t = T

N−1 is the
sampling step, considering a uniform discretization. For each time interval [ti, ti+1], a counter ki+1 is
defined. Every time g presents the first outcrossing in the interval [ti, ti+1], all the counters kn, with
n = i+ 1, . . . , N are increased (i.e. all the remaining counters on the time interval after the outcrossing
are increased). A brute Monte Carlo estimation for the cumulative probability of failure until an arbitrary
instant ti, i.e. PfcMC

(0, ti), is given by:

PfcMC
(0, ti) =

ki + k0
NMC

, (6)

where k0 counts the number of failures at t = 0.

3 Risk Optimization Formulation

Defining a structural configuration which is safe and cost efficient at the same time is a challenge for
the structural designer. Unfortunately, structures will always be associated with a probability of failure.
Thus, when its total life cost is of interest, a comprehensive approach should account for the expected
cost of failure. In risk optimization, different cost terms, associated with different phases of the structure
life, are considered. The function to be minimized is the total life cost CT (d), defined by:

CT (d) = CI(d) + CO(d) + CI&M (d) + CEF (d), (7)

where d ∈ D is a given design configuration. This cost is composed of various terms, namely the Initial
design costs CI , Operation costs CO, Inspection and Maintenance costs CI&M , and the Expected cost
of Failure CEF defined as:

CEF =

Nls∑
j=1

PfjCfj , (8)

where j = {1, . . . , Nls} enumerates different limit states associated with a possible failure that occurs
with a probability Pfj and whose cost is Cfj . Design and reliability constraints can also be considered,
so that the optimization problem can be cast as:

d∗ = arg min
d∈D

CT (d),

subject to: Pfj ≤ P̄fj , j = {1, . . . , Nls} ,
(9)
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where P̄fj are target failure probabilities that shall not be exceeded, for each limit state.
Constraints are often unnecessary in this type of problem, since the probabilities of failure are

directly defined in the objective functions. Although reliability constraints can be considered in order
to comply with standards, the solution domain D may also be limited by bound constraints, so that only
possible structural configurations are studied.

The consideration of only initial and expected failure costs is a common practice in risk optimiza-
tion, neglecting the inspection and maintenance terms [27, 28]. Aissani et al. [29] explain that the failure
cost is particularly important, because it largely affects the optimal solution in an uncertain context,
whereas other terms can usually be regarded as deterministic. Several works indicate that maintenance
costs could be high over a structure’s lifespan, but generally have weak dependence on the design vari-
ables [30]. The same is observed with inspection costs, as shown by Gomes et al. [31]. Therefore, in this
work, only initial and failure cost terms will be considered in the objective functions.

Since the life cycle of a structure may be considered to span over years or decades, the costs to be
optimized cannot be directly treated. Economic changes over time would make the considered values
unrepresentative. In order to account for this effect, the structural life time can be discretized, and
all costs brought to present value considering discount rates over each period (e.g. yearly discount
rates). This way, cumulative failure probabilities associated with each given period can be considered to
compose the expected cost of failure as follows [32]:

CPVEF (T ) =

Nls∑
j=1

T∑
n=1

PfcjnCfjn
(1 + η)n

(10)

CPVEF is the expected cost of failure in present value, Pfcjn and Cfjn are, respectively, the so-called
cumulative probability and cost of failure of the j-th limit-state in year n, and η is the discount rate,
herein adopted as 1% per year. In the remainder of this paper, instead of Eq. (8), Eq. (10) will be used to
compute the expected cost of failure in Eq. (7).

4 Proposed Framework

The solution of the problem in Eq. (7) relies on optimization techniques which would usually require
thousands of calls to the objective function CT . Furthermore, the evaluation of a single cost CT (d)
requires to solve a time-variant reliability analysis using Monte Carlo simulation. The associated cost
amounts to millions of calls to the limit-state function. Solving naively this problem as introduced above
would therefore be extremely time-consuming. This becomes even more intractable when the limit-state
function involves expensive-to-evaluate computational models.

To address this challenge surrogate modeling is used in this paper. The basic idea is to replace
a time-consuming black box model by an analytical proxy that can be evaluated millions of times at
practically no cost. Several surrogate modeling techniques have been introduced in the literature to solve
optimization and reliability analysis problems, e.g. response surface models [33], polynomial chaos
expansions [34–37], support vector machines [38, 39], neural networks [37, 40, 41] or Kriging [16, 17,
37, 42, 43]. In this work, we are interested in Kriging as it features a built-in error measure that arises
from epistemic uncertainty and which allows for the development of active learning techniques. Such
techniques allow one to reduce the computational cost of building the surrogate model by controlling its
accuracy only in confined regions of the input space.

In summary, the proposed framework is based on two coupled surrogate models. In the inner loop,
an adaptive Kriging surrogate of the limit state equations is built. This allows us to effectively estimate
various cumulative failure probabilities for different design choices using the simulation-based approach
presented in Section 2.1. In the outer loop, the optimization is carried out using EGO. The computation
of the various costs CT (d) in this stage is performed using the inner Kriging model. The two stages are
decoupled yet interdependent, henceforth the accuracy of the inner metamodel is crucial for the proposed
methodology to provide valid results. This accuracy is enforced by using an adaptive scheme (EGRA)
with a tight convergence criterion.
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5 Example

Consider the truss composed by circular bars 1 and 2, as shown in Figure 1. Two time-variant loads
H(t) and V (t) are applied on the upper node. Three failure modes are considered: tensile rupture of
bar 1 (gt1), buckling of bar 1 (gb1), and buckling of bar 2 (gb2). Thus, a time-variant system reliability
problem is defined considering the limit state equations associated to these failure modes:

21

L

H

V

L



Figure 1. Two-bar truss scheme

gt1(X, t) = A1σu −

[
H(t)

2 cosα
− V (t)

2 sinα

]

gb1(X, t) =
π2EI1
L2

−

[
− H(t)

2 cosα
+

V (t)

2 sinα

]

gb2(X, t) =
π2EI2
L2

−

[
H(t)

2 cosα
+

V (t)

2 sinα

]
gsys(X, t) = min(gt1, gb1, gb2)

where Ai is the area of the i-th bar in m2 and L is the length of the bars in m. The truss is symmetric.
The two bars have the same Young Modulus E, defined as a normal random variable with µE = 70GPa
and COV E = 0.03, and the same ultimate tensile strength, defined as a normal random variable σu,
with µσu = 24.5643MPa and COV σu = 0.1. This value of ultimate stress was set so as to result in a
tight compromise between the three different failure modes. The probability that random variables reach
negative values is very small and can be neglected in this example. This problem is load-path dependent,
i.e. the structure can violate different limit states or fail at different times depending on the trajectory
that the loads follow in time. To illustrate the load path dependent problem, consider that the radius of
the cross sections are r1 = 4mm for the first bar, and r2 = 5.2mm for the second bar. Figure 2 shows
three possible load paths, as well as the limit state equations, evaluated at the mean µX . Suppose that at
time t = t0 the loads are at point A, and at t = tf > t0, the loads correspond to point B. If the loads
follow Path 1, the structure fails due to buckling of the first bar. If the loads follow Path 2, the horizontal
load is increased first, and the structure fails by tensile rupture of bar 1. Now, if the loads follow Path
3, which corresponds to a concomitant increase in both loads, point B is safely reached, and there is no
failure. Thus, the load-path dependency of the problem is demonstrated.
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Figure 2. Load Paths

When the loads are stochastic processes, there is an infinite number of possible trajectories, and eval-
uating structural reliability depends on considering such trajectories, which only adds complexity to the
problem. Load-path dependent problems cannot be solved by usual techniques, such as time-integration
(extreme value analysis) or load combination, as discussed in Melchers and Beck [10]. However, load
path-dependent reliability problems can be solved by explicit simulation of load process realizations, as
proposed in this work.

Consider now that one is interested in the optimal areas for the two bars, aiming at minimizing total
costs in a risk-optimization scenario. Forces V (t) andH(t) are stochastic Gaussian processes with means
1 kN and 2 kN, respectively. Both loads have a COV of 0.2 and a correlation length of λV = λH = 1
month. The auto-correlation function of the random processes is given by:

R(x, λ) = exp

[
−
(x
λ

)2]
(11)

The loads are independent of each other and of the other random variables. A time interval of
10 years is studied, so that the objective function of the problem can be stated as:

CT (r1, r2) = CI(r1, r2) +

10∑
i=1

CfPfci(r1, r2)

s.t. 4 mm ≤ r1 ≤ 6 mm

4 mm ≤ r2 ≤ 6 mm

(12)

The initial costs are proportional to the volume of the structureCI(r1, r2) = 105
(
A1(r1)+A2(r2)

)
L,

and the cost of system failure is 10 times higher. An annual discount rate of 2% is also considered.
Different failure costs could be associated to different limit states, without any change in the solution
procedure.

Table 3 shows the results for the optimization problem, comparing 10 runs of the approach proposed
in this work (denoted by ’EGO’) and a reference obtained with 20 generations of 30 particles of a PSO
algorithm, performed without the aid of surrogate models. The standard deviations of the obtained results
are denoted between parenthesis.

As seen from table 3, the results obtained with both methodologies are remarkably consistent, with
less than 1% discrepancy between the optimum design radii and associated total cost.

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.

Natal/RN, Brazil, November 11-14, 2019



Solution of Time-Variant Risk Optimization Problems using Two-Level Active Learning Kriging Approach

Table 1. Mean and COV of optimization results and reference

r1(mm) r2(mm) CT Ncalls

EGO 4.37(0.01) 5.32(0.01) 5.16(0.01) 17(5.1)

PSO 4.35 5.29 5.13 600

6 Conclusion

Expected life-cycle cost, or risk optimization, allows one to find the optimal points of compro-
mise between safety and economy in structural desing. Typically, the underlying reliability problem is
time-variant, and its solution is far from trivial. Problems involving strength degradation or load-path
dependency usually require solution by Monte Carlo simulation, with a large computational burden, es-
pecially in an optimization context. To address efficiently and accurately this type of problems, a nested
Kriging approach with active learning is proposed in this paper. The strategy is based on constructing
two adaptive Kriging surrogates. One surrogate is built so as to mimic the objective (cost) function,
starting from a design of experiment built with LHS in the space of the design variables, which is fur-
ther enriched as the optimization problem is solved using the EGO approach. Another Kriging surrogate
model is built for the limit state functions, starting from a first design of experiment built with LHS in the
augmented space of both design and random variables. The surrogate is then enriched using the EGRA
strategy. An analytical example was studied, with satisfactory accuracy and convergence with a few calls
to the objective function.
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