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Luis Espath
espath@gmail.com
King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathematical
Science and Engineering Division (CEMSE)
Thuwal, 23955-6900, Jeddah, Saudi Arabia
Leandro Fleck Fadel Miguel
leandro.miguel@ufsc.br
Federal University of Santa Catarina (UFSC), Department of Civil Engineering
Rua João Pio Duarte da Silva, Florianópolis, 88040-970, SC, Brazil
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Abstract. We use an efficient stochastic optimization framework to optimize the design of friction tuned
mass dampers (FTMD). To deal with the uncertainties in the model, we use a reliability analysis based
on the out-crossing rate approach. We formulate the unbiased gradient estimator of the reliability index
with respect to the design parameters, a condition for the use of stochastic gradient descent (SGD) and
its variations. We couple SGD with Nesterov’s acceleration, Polyak–Ruppert averaging, and a restart
technique to evaluate their improvement on SGD efficiency for design optimization. To assess the per-
formance of the proposed stochastic optimization framework, we optimize the parameters of an FTMD
in a steel frame building. Comparing the obtained results with the state-of-the-art in the literature, we
observe a reduction of up to an order of magnitude in cost to achieve a given accuracy. Given that an
unbiased estimator for the true gradient can be evaluated, stochastic gradient methods can efficiently
perform local search in design problems on the presence of uncertainties.
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Maximization of the reliability of friction tuned mass dampers using stochastic gradient methods

1 Introduction

In many cases it is important to consider the reliability of an engineering structure under seismic
loadings, since the effects of seismic excitations can lead to failure of the structure. To reduce the
probability of failure, one solution is to use passive dissipation systems [1]. In this paper, we focus on
passive control of buildings using friction tuned mass dampers (FTMDs), where friction is used to reduce
vibration amplitudes [2–7]. However, FTMDs have some parameters to be tuned, namely, their friction
force magnitude, stiffness, and mass. Moreover, the optimal tuning of these parameters is not trivial and
depends on the structure and loadings. Since we want to minimize the probability of failure, we have
a coupled reliability and optimization problem. These problems are generally expensive to solve due to
the high number of reliability analysis required; at least one per optimization iteration.

To efficiently optimize FTMDs, we use stochastic gradient descent (SGD) [8] and some of its vari-
ations. These methods are used in stochastic optimization to minimize (or maximize) the expected value
of a function, given that an unbiased gradient estimator is available. The advantage of SGD is that it si-
multaneously solves the uncertainty quantification and the optimization problems, resulting in a cheaper
procedure in comparison to combining deterministic local search methods with Monte Carlo integration.
Moreover, SGD does not introduce any bias in the optimum estimate, progressively converging to the true
optimum as optimization progresses. To further improve SGD, we couple it with state-of-the-art tech-
niques in stochastic optimization, namely, Polyak–Ruppert averaging [9, 10], Nesterov’s acceleration
[11], and an acceleration restart technique [12], furnishing the accelerated stochastic gradient descent
(ASGD). The ASGD method has been employed in stochastic optimization with success by the authors
[13], thus, being a promising approach to optimize FTMDs.

To assess the proposed methodology, we optimize an FTMD at the top of a steel frame building sub-
ject to a seismic excitation generated using the Kanai-Tajimi filtering [14, 15]. We model both stiffness
and mass of each element as random variables, besides building, FTMD, and Kanai-Tajimi filtering pa-
rameters, totaling 148 random variables. To compare the performance of the stochastic gradient methods
in optimzing the FTMD parameters, we use the Nelder-Mead (NM) [16] and the Sequential Quadratic
Programming (SQP) [17] algorithms. Both NM and SQP are used along with sample size averaging [18]
to reduce the variance, thus, reducing the optimization problem to a deterministic (and biased) one, at
the cost of evaluating at least one Monte Carlo Integration each optimization iteration.

2 Optimal design of passive control devices

To improve the performance of the FTMDs, we seek the design parameters vector that maximize
the reliability of the building when subject to transient loadings. We model the optimization problem as

Find d∗ = arg max
d ∈ Rnd

β̄(d)

Subject to dmin ≤ d ≤ dmax,
(1)

where d is the design parameters vector, dmin and dmax are the bound constraints, β̄ is the reliability
index and nd is the number of design variables. In the case of FTMDs, we model the friction force
magnitude (fF ) and stiffness (kF ) of the FTMDs as design variables.

The evaluation of β̄ for the optimal design of FTMD is a time dependent reliability problem [19,
20]. To solve this problem, we utilize the up-crossing rate approach, which consists in evaluating the
probability of a quantity of interest exceeding a barrier value b. In this work, we use statistics about the
absolute displacement (z) and velocity (ż) of the top floor of the building to define the up-crossing rate.
Gathering the uncertainties in a vector x ∈ X, we define the up-crossing rate for a barrier b as

v+z (d,x) =
σż(d,x)

σz(d,x)

1

2π
exp

(
− b2

2 (σz(d,x))2

)
, (2)
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where σz and σż are, respectively, the standard deviation of displacement and velocity responses [21].
Defining the probability of the up-crossing rate being violated as Pf , we define β as

β(d,x)
def
= −Φ−1(Pf (d,x)), (3)

where Φ is the cumulative probability density of the standard Gaussian. The reliability index is calculated
as

β̄(d)
def
= Ex[β(d,x)] (4)

=

∫
X
β(d,x)fx(d,x)dx, (5)

where fx is the pdf of x. For a further discussion on the evaluation of the probability of failure and
reliability index in the up-crossing rate approach, as well as a discussion on the statistical linearization
used to deal with FTMDs nonlinearities, the authors refer to their previous work [21].

Given that the reliability index requires the evaluation of an expected value, the optimization prob-
lem in (1) is one of maximization of an expected value, thus, an stochastic optimization problem.

3 Stochastic optimization

Rewriting (1) as a stochastic optimization problem furnishes

Find d∗ = arg max
d ∈ Rnd

Ex[β(d,x)]

Subject to dmin ≤ d ≤ dmax.
(6)

One way of solving (6) is to use the steepest descent method, also known in the stochastic case as full-
gradient descent (FGD). Algorithm 1 presents the iterative procedure for solving the problem in (6) using
FGD. The FGD evaluates the true gradient ∇dEx[β] every iteration and performs a step with size α in

Algorithm 1 Pseudocode for FGD.
1: procedure FGD(d0, α)
2: for k = 1, 2, ... do
3: dk = dk−1 + α∇dEx [β(dk−1,x)]
4: end for
5: d̂ = dk
6: end procedure

its direction. When the iterative process finishes, the last d is taken as d̂, the estimate of the optimum d∗.
The FGD method has a guaranteed convergence for convex problems, however, the evaluation of the true
gradient every iteration can be expensive. If the expectation of the gradient needs to be approximated by
a Monte Carlo integration (MCI), a MCI must be evaluated every iteration.

3.1 Stochastic gradient descent

One alternative to using FGD is to use SGD [8]. The SGD method consists in using an imprecise
estimate of the gradient as a descent (or ascent) direction. Thus, the expensive estimation of the true
gradient by MCI is substituted by a cheaper estimate, reducing the total cost of optimization. The SGD
algorithm converges almost surely to the optimum if the step-size decreases every iteration as αk =
α0/k.
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To use SGD, an unbiased estimator of the true gradient ∇dE[β(d,x)] is needed. Developing the
true gradient for our problem in (6) results in

∇dE[β(d,x)] = ∇d

∫
X
β(d,x)fx(d,x)dx (7)

=

∫
X
∇dβ(d,x)fx(d,x)dx +

∫
X
β(d,x)∇dfx(d,x)dx (8)

=

∫
X
∇dβ(d,x)fx(d,x)dx +

∫
X
β(d,x)∇d log(fx(d,x))fx(d,x)dx (9)

= E[∇dβ(d,x) + β(d,x)∇d log(fx(d,x))]. (10)

We define the gradient estimator for stochastic gradient methods as G, with

G(d,x)
def
= ∇dβ(d,x) + β(d,x)∇d log(fx(d,x)), (11)

for our case. Since E[G] = ∇dE[β], G is an unbiased estimator of the true gradient and, thus, can be used
in stochastic gradient methods. The second term in the right hand side of 11 results from the dependency
of fx on d (cf. Appendix B in [21]).

To evaluate G in stochastic gradient methods, one or more realizations of x are independently sam-
pled each iteration. The pseudocode for the solution of (6) using SGD is presented in Algorithm 2. In
this paper, we refer to simple SGD as vanilla SGD, since other methods will later be built upon this idea.

Algorithm 2 Pseudocode for vanilla SGD.
1: procedure SGD(d0, α0)
2: for k = 1, 2, ... do
3: Sample random variables xk
4: αk = α0

k
5: dk = dk−1 + αkG(dk−1,xk)
6: end for
7: d̂ = dk
8: end procedure

The optimization path of FGD and SGD over the contour of a benchmark function is presented in
Figure 1 to illustrate their behavior. It can be seen that SGD moves is direction of the optimum, even
with noisy gradient estimates.

The vanilla SGD main disadvantages are that the step-size rapidly decreases and that SGD conver-
gence is very sensible to the initial step-size. To improve on SGD, we combine it with state-of-the-art
techniques in stochastic optimization, namely Polyak–Ruppert averaging [9, 10], Nesterov’s acceleration
[11], and a restart technique [12].

3.2 Polyak–Ruppert averaging

Polyak and Juditsky [10] and Ruppert [9] independently developed an averaging method that allows
the step-size in SGD to decrease slowly. The idea behind Polyak–Ruppert averaging is to use the average
of the optimization path as an optimum estimate. Let the average at the k-th iteration be

d̄k
def
=

1

k

k∑
i=0

di. (12)
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Figure 1. Path of full-gradient descent and stochastic gradient descent.

With step-size αk = α0√
k

, dk does not converge to the optimum, however, d̄k does [22]. Nemirovski uses
a weighted averaging with the step-size as a weight,

d̄k
def
=

 ∑
k
2
≤i≤k

αi


−1 ∑

k
2
≤i≤k

αidi, (13)

which is the averaging we opt to use in this paper.
We present the optimization path over the contour of a benchmark function for both d and d̄ in

Figure 2. The distances to the optimum of both d and d̄ are presented in Figure 3. It can be observed in
Figures 2 and 3 that the Polyak–Ruppert averaging consistently moves towards the optimum even though
d does not.

We refer to SGD with Polyak–Ruppert simply as SGD, since vanilla SGD is not used in this paper
due to its poor performance. We use a tolerance to the change in d̄ in consecutive iterations as a stop
criterion.

The pseudocode of SGD with Polyak–Ruppert averaging is presented in Algorithm 3, with the lines
related to the averaging colored in green.

Algorithm 3 Pseudocode for SGD with Polyak–Ruppert averaging.

1: procedure SGD(d0, α0)
2: d̄0 = d0

3: for k = 1, 2, ... do
4: Sample random variables xk

5: αk = α0√
k

6: dk = dk−1 + αkG(dk−1,xk)

7: d̄k =
(∑

k
2
≤i≤k αi

)−1∑
k
2
≤i≤k αidi . Polyak–Ruppert averaging

8: end for
9: d̂ = d̄k

10: end procedure
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Figure 2. Example of SGD with Polyak–Ruppert averaging.
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3.3 Nesterov’s acceleration in SGD

To improve on SGD, we use Nesterov’s acceleration [11]. Nesterov’s acceleration is a momentum
method that was developed for deterministic optimization. Momentum methods have been gaining at-
tention from the stochastic optimization community due to their remarkable performance in machine
learning training [23]. Nesterov’s acceleration uses information from previous iterations to perform an
extra step in comparison to steepest descent. We write the Nesterov’s accelerated stochastic gradient
descent (ASGD) method for solving (6) as

zk = dk−1 + αkG(dk−1,x)

dk = zk + γk(zk − zk−1),

(14)

where the sequence (γk)k≥0 is given by

γk =
λk−1(1− λk−1)
λ2k−1 + λk

, (15)

and the sequence (λk)k≥0 solves

λ2k = (1− λk)λ2k−1 + qλk, λ0 = 1. (16)

The variable q is a positive real number between 0 and 1 that defines how much acceleration is imposed;
0 is maximum acceleration and 1 furnishes the steepest descent algorithm. According to Nesterov [24],
if the objective function is µ strongly-convex and has L-Lipschitz gradient, the optimal value for q is
q∗ = µ/L.

Figure 4 illustrates Nesterov’s accelerated steps over the contour of a benchmark function, where
the steepest descent step (zk) is in red and the accelerated step (γk(zk−zk−1)) is in blue. Figure 5 shows
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Figure 4. Example of Nesterov’s acceleration.

how the Nesterov’s accelerated step, presented in Eq. 14, is performed.
The pseudocode of ASGD with Polyak–Ruppert averaging is presented in Algorithm 4.
Nesterov’s acceleration with q∗ has optimal convergence rate for convex deterministic problems,

however, estimating q∗ can be expensive [12].
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Figure 5. Representation of how accelerated steps are taken.

Acceleration restart

O’Donoghue and Candès [12] proposed a restart technique to avoid the need of evaluating q∗. If,
for example, we are looking for the minimizer of a function f , the technique consists in restarting the
acceleration whenever the optimization step (dk − dk−1) has negative inner product with respect to
steepest descent direction. (−∇df ), i.e.,

〈−∇df(dk),dk − dk−1〉 < 0. (17)

The restart technique is illustrated in Figure 6, where the candidate d7 is rejected for being an upward
move, thus, acceleration is restarted and d7 is set as z7.

For the deterministic case, using the restart technique results in the same optimal linear convergence
as using q∗, as can be observed in Figure 7. For the ASGD case, we substitute the true gradient by its
estimate, thus, for the optimization problem in (6), the acceleration must be restarted whenever

〈G(dk−1,xk),dk − dk−1〉 < 0. (18)

We present the pseudocode of ASGD with restart in Algorithm 5.
In the next section, we refer to SGD with Polyak–Ruppert simply as SGD, and ASGD with both

Polyak–Ruppert averaging and the restart technique as ASGD.
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Algorithm 4 Pseudocode for vanilla ASGD.
1: procedure ASGD(d0, α0, q)
2: d̄0 = d0, z0 = d0, λ0 = 1
3: for k = 1, 2, ... do
4: Sample random variables xk
5: Solve λk for λ2k = (1− λk)λ2k−1 + qλk

6: γk =
λk−1(1−λk−1)

λ2k−1+λk

7: αk = α0√
k

. Decreasing step scheme

8: zk = dk−1 + αk∇dβ(dk−1,xk)
9: dk = zk + γk(zk − zk−1) . Nesterov’s accelerated step

10: d̄k =
(∑

k
2
≤i≤k αi

)−1∑
k
2
≤i≤k αidi . Polyak–Ruppert averaging

11: end for
12: d̂ = d̄k
13: end procedure
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Figure 6. Illustration of restart technique for Nesterov’s acceleration.
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Algorithm 5 Pseudocode for ASGD with restart.
1: procedure ASGD(d0, α0, q)
2: d̄0 = d0, z0 = d0, λ0 = 1
3: for k = 1, 2, ... do
4: Sample random variables xk
5: Solve λk for λ2k = (1− λk)λ2k−1 + qλk

6: γk =
λk−1(1−λk−1)

λ2k−1+λk

7: αk = α0√
k

. Decreasing step scheme

8: zk = dk−1 + αkG(dk−1,xk)
9: dk = zk + γk(zk − zk−1) . Nesterov’s accelerated step

10: if 〈∇dβ(dk−1,xk),dk − dk−1〉 < 0 then . Restart technique
11: λk+1 = 1
12: end if

13: d̄k =
(∑

k
2
≤i≤k αi

)−1∑
k
2
≤i≤k αidi . Polyak–Ruppert averaging

14: end for
15: d̂ = d̄k
16: end procedure
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4 Numerical example

In this example, we optimize the friction force magnitude and stiffness of a single FTMD in the
top of a steel frame building subject to seismic excitation in order to maximize its reliability index. The
structure is modeled as a planar steel building frame, with three spans (23.77 m wide) and ten stories
(37.42 m high), obtained from [25]. The linear elastic finite element model is discretized in 70 elements
and 44 nodes, resulting in 132 degrees of freedom. Regarding the mass and damping, we adopted a
consistent mass matrix and the classical Rayleigh proportional damping. The damping ratio is fixed as
5% for the first and second vibration modes. We obtained the geometric properties of the steel profiles
from [26]. An additional mass of 44 t is considered per story, due to slabs and some eventual overload.
The geometry of the structure of the building and the cross section of its elements are presented in Figure
8.
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Figure 8. Planar steel frame (dimensions in m): Adapted from [25]

The seismic excitation is simulated by a zero mean Gaussian stationary stochastic process, z̈0(t),
filtered through the Kanai-Tajimi [14, 15] model, with power spectral density

S(ω) = S0

[
ωg

4 + 4ωg
2ξg

2ω2

(ω2 − ωg2)2 + 4ωg2ξg
2ω2

]
, (19)

where S0 is the constant spectral density, ω is the angular frequency and, ξg and ωg are, respectively, the
damping ratio and the natural frequency of the filter, which depend on the local soil.

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.

Natal/RN, Brazil, November 11-14, 2019



Maximization of the reliability of friction tuned mass dampers using stochastic gradient methods

We individually model the elasticity modulus and specific mass of each element as Gamma-distributed.
Moreover, the additional mass per story and the damping ratio of the whole structure are modeled as
Gamma-distributed. The parameters of the FTMD, its mass, stiffness and friction force magnitude are
modeled as Gamma-distributed, with the mean value of the stiffness and friction force magnitude being
our design parameters. Finally, we consider the uncertainties related to a seismic excitation, the natural
frequency of the Kanai-Tajimi filter (ωg) and its damping ratio (ξg) are modeled with truncated-Normal
distribution, whereas the peak ground acceleration (PGA) is modeled as log-normal. The parameters of
the distributions are presented in Table 1.

Table 1. Statistical information about the random variables

Random variable Probability distribution Mean value Coeff. of var. (%) NRV1

Building frame

Elasticity modulus (steel) Gamma 200 GPa 5.0 70

Specific mass (steel) Gamma 7500 kg/m3 5.0 70

Additional mass per story Gamma 44 t 5.0 1

Damping ratio Gamma 0.05 10.0 1

FTMD

Mass Gamma 1.94 t 5.0 1

Stiffness Gamma µkF1
(d) 10.0 1

Friction force magnitude Gamma µfF1
(d) 10.0 1

Seismic excitation

Natural frequency of the filter Truncated-Normal 37.3 rad/s 20.0 1

Damping ratio of the filter Truncated-Normal 0.30 20.0 1

PGA Log-normal 0.500g 20.0 1

Since the probability distribution of the stiffness and friction force magnitude of the FTMD are
dependent on design variables, the gradient ∇dfX in (11) does not vanish. The partial derivative of the
logarithm of the pdf of a Gamma-distributed variable with respect to its mean is

∂

∂µi
(log fx(µi,x)) =

−µi + x

$2µ2i
. (20)

Thus, for this case, the i-th element of G is

Gi(d,x) =
∂

∂di
β(d,x) + β(d,x)

−µi + x

$2
i µ

2
i

, (21)

where µi and $i are, respectively, the mean and coefficient of variation of the i-th element of d (cf.
Appendix B at [21])

To evaluate the performance of SGD and ASGD in the solution of the present numerical example,
we compare their efficiency with NM and SQP methods coupled with sample average approximation.
We randomly sample 10 starting points and perform optimization from these points using the four opti-
mization methods (SGD, ASGD, NM, and SQP), using the same random number generator seed for each
method. We run the algorithms until the stop criterion: |dk − dk−1|2 < 10−5. For SGD and ASGD,
Polyak–Ruppert averaging d̄ is used instead of d for the stop criterion. Moreover, the barrier b on the
horizontal displacement, as in (2), is set as 0.467; value obtained by Curadelli and Amani [1] from a
static nonlinear analysis, and also used by Mantovani et al. [7].

1Number of random variables
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Results

We present the mean value and standard deviation of the objective function and computational cost
(OFE) reached by each algorithm over the 10 runs in Table 2.

Table 2. Single FTMD: Results for different optimization methods.

Optimization method Objective function
(
β̄
)

Cost (103× OFE)

mean std mean std

NM 4.124 8.8 ×10−3 63.6 6.72

SQP (fmincon) 4.128 2.8 ×10−3 28.4 15.9

SGD 4.187 8.3 ×10−3 6.05 3.62

ASGD 4.191 3.0 ×10−3 1.14 0.45

A histogram of the cost required by each of the tested algoritms (Nelder-Mead, SQP, SGD, and
ASGD) to solve this numerical example in ten independent runs is presented in Figure 9.
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Figure 9. Single FTMD: Histogram of optimization costs for the different methods.

For the sake of comparison, the ten initial points are presented in Table 3 along with their respective
reliability indexes. It can be observed, comparing with the results in Table 2, that ASGD is able to
improve the reliability index. Averaging the reliability indexes at the start results in a probability of
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Table 3. Starting points of the independent runs and their reliability indexes.

d0 k1 (kN/m) f1 (kN) β̂

1 37.91 0.52 3.41

2 48.94 2.31 3.43

3 61.08 2.31 3.36

4 44.63 0.36 3.29

5 45.64 2.03 3.47

6 42.40 0.97 3.43

7 40.91 0.14 3.26

8 3.49 0.82 3.41

9 51.87 1.42 3.37

10 33.53 2.09 3.77

failure of 3.13×10−4, whereas, considering the optimized design parameters, this probability reduces to
1.89× 10−5. Hence, we can conclude that the tested methods successfully improve the efficiency of the
FTMD without introducing more mass, reducing the probability of failure up to one order of magnitude
in comparison to randomly generated values. Moreover, ASGD is able to perform optimization with a
fraction of the cost of the other methods, as can be observed in Figure 9.

5 Conclusion

In the present paper, we studied the performance of stochastic gradient methods in the maximiza-
tion of the reliability index of a building with respect to the parameters of a friction tuned mass damper
(FTMD). This optimization problem is a coupled reliability and optimization problem, where uncertain-
ties in the building structure, loadings and the FTMDs must be taken into consideration. Moreover, the
FTMDs have a non-linear model that increases even more the cost of the optimization process. Thus,
we are interested in investigating if stochastic gradient methods are able to reduce the number of model
evaluations required to find the optimum.

We used two stochastic gradient methods in this paper, the stochastic gradient descent (SGD) and
the accelerated stochastic gradient descent (ASGD), where, in both cases, Polyak–Ruppert was used,
and, for ASGD, an acceleration restart technique was also employed. We presented the pseudocodes for
the algorithms used, namely, vanilla SGD, SGD with Polyak–Ruppert averaging, vanilla ASGD, and
ASGD with restart technique. The pseudocodes allow other authors to reproduce the results obtained
and to adapt the methods to their needs. Moreover, we deduced the unbiased gradient estimator of the
reliability index, which is required for stochastic gradient optimization. This deduction is not trivial,
given the dependency of the statistics of the random parameters on the design variables.

To test the optimization methods, we optimized the FTMD at the top of a building using SGD,
ASGD, Nelder-Mead (NM), and sequential quadratic programming (SQP). We modeled uncertainties
in the example as Mantovani et al [7], resulting in 148 random variables. SGD was able to perform
better than NN and SQP, however, ASGD performed even better, finding better optima with less model
evaluations, in average. ASGD found the optima with an average of 1140 model evaluations, whereas
SQP needed 28400 model evaluations and NM required 63600 model evaluations.

The stochastic gradient methods tested were able to efficiently solve the passive control problem,
providing accurate results with a fraction of the cost of classical methods. Moreover, we conclude that
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Nesterov acceleration and the restart technique were able to further improve the performance of SGD.
Hence, given that an unbiased gradient estimator is available, stochastic gradient methods are a viable
alternative for local search on the presence of uncertainties.
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