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Abstract. The present paper deals with the formulation of a constitutive and computational model for 
the analysis of the deformations induced by the excavation of a tunnel in a saturated poroelastic medium. 
The finite element implementation relies upon the discretization of weak forms of local momentum and 
fluid mass balance equations in the context of infinitesimal skeleton strains. The simulations of the steps 
of excavation as well as placement of the concrete lining are modeled by the method of 
activating/deactivating elements. The accuracy of the finite element approach is assessed by comparison 
with available analytical and semi-analytical solutions developed for a circular tunnel driven in a 
poroelastic medium. The numerical simulations notably show that the strain and stress fields developed 
around the tunnel will depend on the depth, cross-section geometry, surface load distribution, soil 
poroelastic properties, permeability coefficient and soil porosity. They also allow for the calculation of 
seepage forces due to pressure gradient induced by excavation and acting on the tunnel wall and tunnel 
face. 
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Introduction 

 
The majority of tunnels are built in rockmass with presence of water, they are composed of rocks 

with fractured surfaces, through which the fluid moves causing problems of infiltration, it means ground 
with a high permeability. Infiltration of the fluid in the tunnel is also an important problem that must be 
considered in the design, construction and operation of the tunnel. Waterproofing and leak control saw 
the key in the construction of tunnels. 

The sequence of the excavation advances is illustrated in Carranza-Torres and Fairhurst [1] (Fig. 

1). The sequence starts at time 
0t (Fig.1a) in which the liner has been installed at section A-A, located 

at a distance 
0L  from the face and the ground has converged radially by the amount of 0

ru . At this initial 

time 
0t , the liner carries no load, i.e., 0

s sp p . As the tunnel advances (Fig.1b), the support at section 

A-A is now located at the distance 
tL  from the face and carries the partial load t

sp  that the face had been 

carrying previously. At the instant t , the ground deforms by amount t

ru . Once the tunnel has advanced 

far enough from section A-A (Fig.1c), spanning a distance 
FL  from the face, the face effect disappears. 

The support will carry the full excavation load F

sp and the tunnel will converge to its maximum radial 

displacement max

ru .   

 

 
Figure 1. Illustration of support pressure sp and radial displacement ru at section A-A due to tunnel 

advance as adapted from Carranza-Torres and Fairhurst [1] 

 
In tunnel with saturated ground, it exists a transient process, two important states can be 

distinguished: the state immediately after excavation (i.e., at time 0t  ) and the long term one ( t 
). The first state is characterized by the condition of constant water content (“undrained conditions”), 
the second state is governed by the steady state pore pressure distribution  (“drained conditions”). In the 
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drained conditions the pore pressure buildup obtained in undrained conditions will dissipate as the 
ground is consolidating. 

1  Poroelastic model and excavation procedure 

1.1 Field Equations 

The present work adopt the hypothesis of small perturbations that includes the following 
hypothesis: infinitesimal transformations, small displacements for the skeleton particles, small 
variations of Lagrangian porosity, small variations of the fluid mass density. Therefore the general 
expressions of constituve equations of the poroelastic medium are given as in [2]: 

  0:
0 ~

σ σ =C ε b p p    (1) 

  0

0

p p
= b : ε+

M
 


  (2) 

The local momentum and fluid mass balance equations in the context of infinitesimal skeleton 
strains are shown in Eq. (3) and Eq. (4) respectively: 

 divσ+ ρg=0  (3) 

 ρ
f

+div( q )= 0
t




 (4) 

Where a Darcy law in limit quasi-static is:  

  . f

f
q k p ρ g    (5) 

Where σ  is the stress tensor, 
~
C  is the drained stiffness tensor, ε   is the strain tensor, b  is the Biot 

effective stress coefficient tensor, p is the pore pressure, g  is the acceleration of gravity, ρ  is the 

density of the porous material ( (1 )f s      ), which can be computed from the Eulerian 

porosity   (i.e. the pore volume fraction in the current configuration), the fluid density 
f and the solid 

grains density 
s , is the Lagrangian porosity, M is the Biot modulus, 

f
q  is the filtration vector, k

is the permeability tensor. 

1.2 Analytical and semi-analytical solutions 

In the literature was presented an analytical solution for deep tunels in Coussy [2]   

for times shorter than the characteristic time of hydraulic diffusion (𝑡 ≪ 𝜏) and plane deformation, this 
solution is shown in Eq. (7) and Eq. (8).  
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c
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              
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 (8) 

Where ( , )p r t is the poropressure at a distance r and a time t, p is the initial poropressure, ip is 
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the poropressure at the tunnel wall,
iR  is the internal radius of the tunnel, 

fc is the fluid diffusivity 

coefficient. 
For any time in general form is presented a semi-analytical solution shown in Carslaw e Jaeger [3]. 

The solution is supported with the Stehfest algorithm and is shown in Eq. (9), Eq. (10), Eq. (11), and 
Eq. (12). 

 

 ( , ) ( , )p r t p p r t  . (9) 
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Where ( , )p r t is the poropressure at a distance r at a time t, p
is the initial poropressure, ( , )p r s

is the Laplace transform, !k  is the factorial of a natural number, ( )E x  designates the whole number of 

𝑥, ( , )Min a b  designates the minimum of 𝑎 and b , 
0K  is the modified Bessel of second kind and order 

0, N is a natural number greater than or equal to 6. 

2  Finite Element Implementation 

Making the temporal and spatial discretization of the Eq. (1), Eq. (2), Eq. (3), Eq. (4) and Eq. (5)   
and following the approach of Sandhu and Wilson [4], we get the array shown in (13): 

 

 UU UP U

PPU PP

K K FU

FK K P

    
    

     

. (13) 

The first line of the system corresponds to the momentum balance equation, and the second line 

corresponds to the fluid mass balance equation. The sub-matrix 
UU

K represents the terms of internal 

stress. The sub-matrices 
UP

K  and 
PU

K  are symmetric and correspond to the terms of hydro-mechanical 

coupling. The sub-matrix 
PP

K  represents the pressure terms. UF  and PF  are the vectors of force and 

pressure, U  e P  represents the variation of displacements and pressures respectively. 

As performed by Brüch [5], the finite element used in numerical modeling is based on the element 
superposition method. For the approximation of the displacements, a quadratic isoparametric element 
of 20 nodes is used, with three degrees of freedom per node. To approximate the pore pressure, the 8-
node linear hexahedral element is used, with one degree of freedom per node, therefore is obtained: 

 

 
   

e

T t

eUU es ese
V

K B C B dV  . (14) 

 
    

1

e

T Tt

e eUP PU es

V

K K b B N dV     . (15) 
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1
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M

      . (16) 

 
 

          
T
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V S V
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Q

e e e

T T Tt t t f t d Q

eP e e e e e ee e e

V V S

F t k B B p dV t k B g dV t q N dS            . (18) 

The arrays and vectors used are shown below: 
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   6 1

T

xx yy zz xy yz xze
      


   

. (23) 

 
       1 88 1

T T

e
P P P P


  . (24) 

 
   3 1

T d

x y ze
T T T T


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. (25) 

 

Where the matrix iN is the shape functions,  
e

C  is the elasticity matrix containing the material 

properties,  

tb  is the coefficient of Biot,  

tM  is the Biot Modulus, eg  is the vector of acceleration of 

gravity,  

t  is the density of the porous material,  

tk is the coefficient of permeability and t is the time 

interval.   
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3  Implementation of the excavation process 

3.1 Excavation process in a poroelastic medium 

For deactivate an element (element excavated), physical parameters of the material are changed to 
obtain stresses and pore-pressures that tends to zero. 
 

From equation (2), the pore-pressures variation p  can be written as: 

  :p M b     . (26) 

The condition of 0p   (in the excavated elements), is obtained when 0M  , i.e. 
escM M  

(The value of the Biot module of the excavated elements 
escM  is considerably smaller than the Biot 

modulus of the rest of the rockmass M ). 
 

From equation (1), the vector of tensions can be written as: 

 :
~

b pC    . (27) 

In the excavated elements, the vector   is zero when 0
~
C  , since p  is null (due the previous 

condition),  in consequence  0E  ,i.e. 
escE E  (The Young's modulus of the excavated elements 

escE is considerably smaller than the Young's modulus of the rest of the rockmass E ). 

 
The flow vector can be written as: 

  . f

f
q k p ρ g   . (28) 

Since the value 0p  , the permeability tensor k  must tend to infinity. 

4  Applications 

4.1 Bi-dimensional analysis of a deep tunnel 

An analysis considering the case of plane strain deformation, showing the analytical, semi-
analytical and numerical solution is presented. The numerical solution is implemented with finite 
element method and is based within the framework of the quasi-static Biot's theory of poroelasticity [6]. 

It is considered an unlined circular tunnel of radius R =1 m, through an poro-elastic and saturared 

medium subjected to total isotropic in situ stress 4xx zz   Mpa and initial hydrostatic pore pressure 

of 
0 2p  Mpa. The ground properties are given in Table 1, while the layout of the tunnel model and the 

corresponding boundary conditions are shown in Fig. 2. Is modeled the fourth part of the model taking 
advantage of the symmetry, the model boundaries are impermeable, except those at the tunnel wall, 
where the pressure pore is equal to zero. 
  

https://www.linguee.com.br/ingles-portugues/traducao/rocky+massif.html
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Table 1. Ground properties 

E   200 Mpa Young's modulus 

 = 0.25 Poisson's ratio 

k   4.10-12 m/s Hydraulic conductivity 

M   7500 Mpa Biot's modulus 

b   1 Biot's coefficient 

   1200 kg/m3 Rock specific weight 

w   9807 N/m3 Fluid volumetric weight 

g   9.80665 m/s2 Gravitational acceleration 

 

 

Figure 2. Illustrations of model layout and boundary conditions 

The characteristic time is calculated with the Eq. (22): 

 
2 21 (1 )(1 2 )

. 122
(1 )

i

w

R b

M Ek

g

 






  
   

   
 
 

days (29) 

The analytical solution shown in Coussy [2] was corroborated, confirming that this solution is valid 
for times shorter than the characteristic time ( ). In this interval the analytical solution coincides with 
the semi-analytical solution shown in Carslaw and Jaeger [3] (Fig. 3). 

The semi-analytical solution is valid for any time and matches with the numerical solution. The 
numerical solution is evaluated in two ways: The first considers the existing tunnel and the second 
consider the intact rockmass and then applying the excavation process (in a single step). Both numerical 
solutions are similar, thus validating the excavation process (Fig. 3). 
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 Figure 3. Pore pressure versus o radius    

4.2 Tri-dimensional analysis of a deep tunnel 

The analysis presented consider the tridimensional case. The numerical solution is implemented 
with finite element method and is based within the framework of the quasi-static Biot's theory of 
poroelasticity [6], the results are compared with the results obtained by Prassetyo and Gutierrez [7]. 

It is considered an unlined circular tunnel of radius R =2.5 m, through an poro-elastic and saturared 

medium subjected to total isotropic in situ stress 4.5xx zz    Mpa and initial hydrostatic pore 

pressure of 
0 2.25p  Mpa. The ground properties are given in table 2, while the layout of the tunnel 

model and the corresponding boundary conditions are shown in Fig. 4. It is modeled the fourth part of 
the model taking advantage of the symmetry, the model boundaries are impermeable, except those at 
the tunnel wall, where the pressure pore is equal to zero. 

 
Table 2. Ground properties 

E   292.5 Mpa Young's modulus 

 = 0.125 Poisson's ratio 

k   5.10-10 m/s Hydraulic conductivity 

M   5096 Mpa Biot's modulus 

b   1 Biot's coefficient 
   1200 kg/m3 Rock specific weight 

h   9807 N/m3 Fluid volumetric weight 

 

A excavation process is simulated by progressively deactivating 40 regions of width 1.25y  m, 

from y = 0 to y = 50 m, implying an excavation rate of 5 m/day. During the excavation process, the face 

is instantaneously removed for a period of 0t  (undrained loading), followed by drained 

consolidation for a period of 1 4t  day (drained loading) at each excavation step. 
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Figure 4. Illustrations of model layout with (a) longitudinal boundary conditions (b) excavations steps 
(c) transversal boundary conditions adapted from Gutierrez and Prassetyo [7] 
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The Figure 5 shows a displacement in the wall of the tunnel (convergence), at y=25 m, during the 

excavation period. This displacement starts to drop at t=3 days, and quickly increases to -3 cm at t=5 
days then keep increasing as the face advances até t=10 days when the displacement results in -4.24 cm. 
Also is shown an axisymmetric analysis of Prassetyo and Gutierrez [7] that have similar values. 
 

 
Figure 5.Transient hydraulic-mechanic response of the convergence during the excavation period 

using the progressive step by step excavation 
 

The Figure 6 shows a displacement in the wall of the tunnel (convergence) along the tunnel axis, 
when a face is at y=25 m, allowing a consolidation during t=920 days after the excavation. This results 
shows the expected behavior of the displacement, comparing with the results of Prassetyo and Gutierrez 
[7]. similar values of convergence are observed at the face of the tunnel. 

The Figure 7 shows a pore pressure at 1m above the wall of the tunnel at y=25 m, during the 
excavation period. The pore pressure starts to increase slowly to reache the peak value of 2.33 MPa at 
t=4.5 days  and drops to 1.56 MPa at the monitoring point at t=5 days. The pore pressure continues to 
fall as the tunnel face passes the monitoring point and it starts to decrease more steadily at t=5.25 days, 
after continue decreasing with similar slope. Comparing with the results of Prassetyo and Gutierrez [7], 
similar value of pore pressure is observed at the face of the tunnel (y=25 m), the differences must be 
due to the type of analysis, mesh difference of the finite elements and considerations of 

drained/undrained conditions. 
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Figure 6. Plots of radial displacements after finish the excavation when t = 920 days 

 

 

Figure 7. Transient hydraulic-mechanic response of the porepressure during the excavation period 
using the progressive step by step excavation 
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5  Conclusions 

A simulation is carried out for the excavation process in a poroelastic medium, that was modeled 
using the Biot theory and the excavation using the activation/deactivation method. For the deactivation 
of the elements it is considered a very small values of Young Modulus and Biot Modulus and very large 
values of permeability. With these considerations we obtained similar values of the analytical, semi-
analytical and numerical solutions for the case of plane strain deformation. 

When the excavation takes place (in a saturated mass), the initial tensions in the rockmass change 
due to the excavation and the forces of infiltration. The infiltration flow follows the direction from which 
the material is removed because the pressure at the excavation boundary is generally atmospheric and 
the mass around the tunnel acts such a draining wall. Due to this effect in vicinity of the tunnel, the 
convergence increases compared to the unsaturated case, while the face of the tunnel advances the 
convergence increases until reaching the maximum convergence. 
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