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Abstract. Relevant geomaterials, like soils, concretes ckspexhibit similar constitutive response
when considering their yield strength dependenmiatilatancy processes. The continuous description
of these geomaterials encounters limitations wiaegelscale slip and opening of a large amount of
fractures. Discrete-based methods represent therialads an assemblage of independent elements
interacting with one another and can be reprodoealiscrete nature of the discontinuities, whidah ar
represented as the boundary of each element.drcdisie, for each particle, the interaction lawsesdu

in conjunction with the momentum balance principteas to specify a set of governing equations to
describe its interactions and motion. By solvingsn equations, we obtain the final state of rest of
these particles. The constitutive stress-straimpaese is obtained in an uniaxial compression
experiment were a sample of geomaterial is slowlpgressed by a piston until failure occurs. The
peak stress at which failure of the sample occsirknown as Unconfined Compressive Strength
(UCS). This work studies these responses in georastesamples using Discrete Element Method
(DEM). In our numeric simulation, a set of part&lis placed between two piston walls which are
compressed at constant speed. Then, we monitqoigon and forces for construct a curve by each
sample. Interactions incorporate translational eotdtional degrees of freedom to rotate relative to
each other when in frictional contact. Analyticalationship between the microphysical parameters
and the macroscopic properties can be obtaine@hgucting a series of computational simulations to
tune the microphysical parameters until desiredrosmopic properties. To simulate elastic-brittle
failure of material, a Mohr-Coulomb criterion is ployed. These data are used to measure some
elastic properties of the particle model such asngs modulus, wall forces, broken bond and the
UCS himself. Results shows that possible obtainifsigint values for different geomaterials such as
some specific concretes and rocks.

Keywords: Computational Geomechanics, Uniaxial Compressionufation, Stress-strain response,
Geomaterials, Discrete Elements
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1 Introduction

We believe that the study of geomaterials is vagatl and covers many topics. This research
seeks to understand the behavior of rocks andetklataterials such as concrete, soil and porous
materials. Their discontinuous and inhomogeneouar@deads to complex mechanical behaviors
which can be difficult to capture with standard ruimal models as finite or boundary elements, as
related by Donzé et al. [1]. On the other hand iooous description of geomaterials encounters
limitations when large-scale slip and opening tdrge amount of fractures.

An alternative is to use discrete-based methodsiwtapresent the material as an assemblage of
independent elements (also called units, partmlagains), interacting with one another. Such nede
explicitly reproduce the discrete nature of thediginuities, which are represented as the bounofary
each element. The Discrete Element Method (DEM) ieimerical method for discrete systems made
of non-deformable elements and particularly suéell model granular materials. This method was
initially described by Cundall and Strack [2] arasibeen widely used in dynamic numerical analyses
from an engineering perspective. The schemeLagaangianapproach where individual particles are
calculated on the basis bewton’'ssecond law of motion. Discrete elements enabli uisvestigate
the dynamic characteristics of particles and thmition precisely. For example, DEM application in a
discontinuous medium was accomplished by Hoang [Bhthat demonstrated the method efficiency
in modeling the behavior of granular soil domamsnicroscopic scale.

In this work, we will investigate a geomaterial ggdenusing uniaxial compression simulation
with DEM. According to Weatherley et al. [4] themsilations measure the equivalent macroscopic
properties of synthetic geomaterials samples amdbeaan important tool for calibrating discrete
element models. In fact, a quasi-static uniaxiahgmession test of a geomaterial sample is a common
laboratory technique for measuring the macroscgpaperties such a¥oung’smodulus and the
Unconfined Compressive Strength (UCS). The laspg@my is an important measure of the strength of
a geomaterial and is associated to the peak sitaghich failure of the sample occurs. TYieung'’s
modulus and the UCS were obtained from a streassturve.Young'smodulus is defined as the
slope of the linear section of the stress-straivesuwhilst the UCS is the corresponding peak value
Equally important, the number of broken bonds isisgful quantity to monitor in elastic-brittle
simulations, as measures of amount of damage theajerial sample has suffered due to the external
load. Time-series of the number of broken bondspaesented along with the wall force time-series
for comparison. Recent results presented by Sarethak [5] show that is difficult to establish an
analytical relationship between the microphysicatapeters and the macroscopic properties of the
material. To overcome this, one more time will imala procedure to conduct uniaxial compression
simulations to fine tune the microphysical paramgetentil suitable macroscopic properties are
obtained.

2 TheDiscrete Element Method

Classic DEM is considered an explicit solution flne dynamic equilibrium of individual
particles rather than solving the entire system J2je equations governing the translational and
rotational dynamic equilibrium of a partidlevith massm is

40y - ) 8000 T

il A Y4 , A 1
dt? ' m dt? ' I, @)

where %, is the acceleration vector fah particle,F, are the contact forcesy is the particle mass,
o, is the angular velocity vectofl; is the torqueM; is the resultant moment acting through the
centroid of the particleandl; is the moment of inertia. For a circular parti¢cle tnoment of inertia is
equaltc , z r* /2 wherer; is the radius ang is the density.
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From the dynamic equilibrium equations of partickesl knowing the resulting forces acting on
them, it is possible to calculate the acceleratfongh particle. Particularly, if the translation motion,
can be isolated, we have:

ma' =F'. 2
wherem is the inertia (mass) matrig, = u' is the acceleration vector at timendF;' is the resultant
force vector. To update such parameters it is sacg$o implement integration methods, i.e. givgn b

their first and second derivatives with respedinme. The relationship between the acceleratiah an
velocity vector is:

1/, _
ait ZE(Vit 42 _Vit At/z)_ (3)

where Vitht/z , a2

are the velocity at- At/2 andt + At/2 respectively for théh particle.

Equation (3) is also known as the positigerlettime integration scheme, and the velocity at time
t + At/2 is then calculated as:

1
Vit+At/2 _ Vitfm/z + At—(Fit ) @)
m
The velocity at time + At/2 is equal to the average velocity within the ingriromt tot + At.
Then, we can calculate the updated particle pos#és

Xit+At — Xit + At XViHAt/z. (5)
Particle position vectax gives the particl€artesiancoordinates and the total rotation about the
principal axis (for the 3D case). In two dimensidhere is no coupling between the three degrees of
rotational freedom. Additionally, the forde, denotes the normal component of the contact force,
while the tangential (shear) component is denotedrb According to O'Sullivan [6], the contact
normal and shear forces can be calculated as:

I:n = I:N —CVi, I:t = I:T —GV;. (6)

whereFy is the elastic part of the normal interactionis the normal interaction damping coefficient,
vh = (v- n)nif nis the unit vector in the interaction between tkaters of the two particles,is the
particle translational velocity vector and the e@mttdamping force proportional to the tangential
component of the relative velocity,= v x n andc; is the tangential interaction damping coefficient.

Particularly, in the tangential interaction, thietional component of which is given by
3/2
FT =H FN (1_(1_|5t|/5méx) ) (7)

where & is the total tangential displacement between e surfaces from the point where they
initially came into contact. If&| > dnax then gross sliding is deemed to have started lamdrictional
force assumes a constant value givel\imonton'daw, Fr = u Fy, whereu is the friction coefficient.

2.1 Geomaterialsfailure

To simulate geomaterials failure under compreskigds, we need to integrate some additional
techniques to traditional DEM such as: 1) Impleradah of cementations (rotational) elastic-brittle
bonds and rotational friction interactions and 2pvihg walls. The model adopted consists of a
rectangular prism of particles sandwiched betweengiston walls, which are compressed at constant
speed. Simulation results are then used to medlsermacroscopic elastic properties of the particle
model. A typical particle interactions model is idegd for only three (translational) degrees of
freedom configuration and is suitable for grandlaw of individual particles or aggregates. To
simulate elastic-brittle failure of geomaterialsomm sophisticated particle-pair interactions are
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required. In particular, a particle-pair interaatithat incorporates both translational and rotation
degrees of freedom is requitethen, two bonded particles may undergo normal &edrsforces, as
well as bending and twisting moments.

According to Weatherley et al. [4], bonds desigteompart such forces and moments are known
as cementations bonds. In order to properly sirauddastic-brittle failure, bonds require a failure
threshold criterion. In this work llohr-Coulombfailure criterion is employed. A bond will fail the
shear stress within the bond exceeds its sheaigstre given by:

t:C+0'Ntan(¢f). (8)

whereC is the cohesive strength of the bond for zero mbistresssy and ¢ is the internal angle of
friction of the bond.

2.2 Viscous damping

Uniaxial compression experiments are usually cotetlim the so-called quasi-static regime,,
external loads are applied slowly compared with cbepressional wave speed of the sample. To
simulate these conditions, it is also necessanydorporate two body forces designed to attenuate
translational and rotational oscillations. The wisty coefficients are chosen to be small so that
damping has little effect on the elastic resporiga@simulated geomaterial sample but it is sigfit
to attenuate unwanted oscillations.

2.3 Macroscopic elastic properties

Macroscopic elastic properties deung'smodulus and Unconfined Compressive Strength (UCS)
can be obtained from a stress-strain curve. To unedahese quantities in a simulation, it is neagssa
construct the stress-strain curve for the geonadteri

Therefore, suppose the net restoring forces (at jrthat particles apply to the top and bottom
walls areFY(t) and F®(t) respectively, and the unit normal vector of thdlsvis n”. The stress
exerted on the walls by the particle assembly is:

1), (1) L g b
O'YY(t): L S : 9)
2A
whereA, is contact area between a wall and the particlenalsly. Since the peak stress is reached for
relatively small axial strain, the contact area banapproximated by the undeformed area at particle
assembly base.

It is also relatively straightforward to accountiiog the total strain. LeX (t)(t) andX (b)(t Yoe the

positions of the top and bottom walls at tim&he strainsyy (t) is given by:

_[x90)-x0)-(x0)-x ()]
i1 l(x<t>(o>)—i<b>(o>>1-y b 0

or

[(x©@)-x @) y
gvv(t) =1- [(X(t)(o)_ X(b)(o))J_ y : (11)
wherey is the unit vector normal to the bottom wall.

To compute the stress-strain curve, we use théons acting on each wall and their position at
each simulation time step.
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2.4 Uniaxial compression smulation

To simulate uniaxial compression it is necessany b walls in the numerical model, which
serve as pistons for compressing the geomatemnablea One of them is added below the sample (the
bottom wall) and another a top the sample (thewaf). It is worth mentioning that simply adding
walls to the simulation is insufficient, we alsovhato define interactions between the walls and
particles. For basic uniaxial compression simutetjaepulsive elastic interactions are enoughdf t
interest were in tensile loading, one would needaind the walls to particles at the base and tdpeof
model. Herein, the following particle-wall interamts are sufficient to carry out simulations. Fipal
only one component remains to be added to the @hie@mpression simulation: a method to move
the two walls at constant speed. In this casewéié speed is linearly increased from zero to the
desired value over a few hundred time-steps. Thevall will move downwards and the bottom wall
upwards.

3 Computational implementation

Numerical processes include domain clearing, partiegistration, wall registration, collision
detection, contact force calculation, and partighelating. Thus, there are three computational steps
internal force evaluation, in which the contactcis are calculated; integration of equations of
motion, where the displacements of elements argouted; and contact detection, where new contacts
are identified and broken contacts are removed.ifiteeaction of the elements is treated as a dynami
process that alternates between applying Newt@tsnsl law and evaluating a force-displacement
law on contacts. This law gives the acceleratiomrmoklement resulting from the forces acting on it,
including gravitational forces, external forcesgmrgbed by boundary conditions, and internal forces
developed at inter-element contacts. Accelerasahen integrated to obtain speed and displacement.
The force displacement law is used to find contaates of known displacements. The equations of
motion are then integrated in time. Once the catedl particles are recorded, they are stored in
memory using a linked structure. This computatiaféctiveness is particularly important for large
discretization. The efficiency of contact forceimsttion by a force calculation method is increased
with parallel computing.

The computational model is based on multi-core ggsimg, according to Weatherley et al. [4]. A
modular open source object-oriented simulation ced#éten in C* was tested. In the DEM
simulation, spatial domain decomposition (in sulmdns) is implemented using a master slave
strategy with inter process communications usirey Message Passing Interface (MPI). For this, a
Verlet list neighbor search algorithm for detecting néigting particles and an explicit first-order
finite difference time integration scheme is emplbyBesides, a simple Application Programming
Interface (API) allows evaluating simulations vierigts written in Python programming language.
During all iterations and loading step, each DEMesmble runs independently. The parallelization is
achieved by decomposing the problem domain intedeuwbains, where the interface of each sub-
domain needs to be duplicated for information tepassed between two neighboring sub-domains.

4 Numerical results

Considering the computational implementation, #talization, particles are randomly inserted
and bond together. For geomaterials breakage diionsathe best results are obtained using blo€ks o
particles with variable radii and random locatiofitie reference simulation scenario generates a
rectangular prism of particles whose radii lie ke range 0.4 until 2.0 mm. Two more ranges were
considered using double and the half of the partiatlii. The prism adopted is 10 x 20 x 10 mm in
size with the center of the base at the originhGazarticle pair is tagged with a bond tag that sjgsc
the type of interactions between bonded partichsxt, two walls are added to the simulation
scenario. As previously said, these walls serv@ist®ons for compressing the geomaterial sample
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which are positioned below (bottom wall) and abthesample (top wall). Then, interactions between
the walls and particles are defined: repulsive tiglasteractions are sufficient for basic uniaxial
compression simulations under study. However, waldvoeed to bond the walls to particles at the
base and top of the model to assess tensile loading elastic stiffness (a single microphysical
parameter) specifies the elastic repulsion betvgsanple particles and walls. For this simulation we
set the standard elastic stiffness equal to 1000080d 102,000.0 N/nfhgenerating two result sets
plus some point variations.

To simulate elastic-brittle failure, more sophiated particle-pair interactions are required. In
particular, particle-pair interactions that incorpie translational and rotational degrees of freedo
Then, two bonded particles may undergo normal dredrsforces, as well as bending and twisting
moments. Bonds designed to impart such forces amahents are known as cementations bonds.
Rotational frictional interactions are defined bynécroscopicYoung'smodulus equal to 100,000.0
N/mnt and Poisson'sratio equal to 0.25 and two microscopic coeffitseaf friction. Typically the
Young'sand Poisson'sfor friction interactions are set equal to theiitte counterparts. The static p
coefficient of friction is set 0.6 and applied whero particles are in static frictional contacs. j.prior
to the first time the frictional sliding criterida met. Thereafter the dynamig goefficient of friction
equals 0.4 is applied. By setting dynamjc<static 1, one can simulate the physical obsienvdhat
the frictional force required to maintain slidingless than the force necessary to initiate sliding
viscosity coefficient equal to 0.002 is chosen $malthat damping has little effect on the sample
elastic response, but is still sufficient to atteuunwanted oscillations. In the uniaxial compoess
simulation, we move the two walls at constant spéteid best to gradually increase the wall speed
from zero to the desired value over a few hundiggkdteps. The velocity of the wall increases
linearly over that number of timesteps. In addititre two walls move in opposite directions botla at
speed of 0.125 m/s. Although this rate is signiftbahigher than typically used in laboratory urigx
compression experiments, it is sufficiently smalhtaintain quasi-static conditions in our simulasio
The piston speeds are approximately 2000&wer than the compressional wave speed of the
simulated geomaterial sample. The initial accelenadf the walls from zero to the desired speed als
helps ensure the sample is loaded quasi-statiealghown by Weatherley et al. [4].

The Figure 1 and 2, show evaluate time series @walwf the broken bonds in the connected
particles considering the initial stiffness. Filistis evident that a significant fraction of bonoieaks
down before the peak stress is reached. In othedsythe sample undergoes significant irreversible
internal damage before reaching UCS. The secoetkesting observation presented by Figure 2 is that
the total number of broken links after the peakssris reached is approximately 30 until 40% of the
initial number of connections. The values variesewhve consider the particle at twice or half the
radius. Considering only the results with range @il 2.0 mm was observed that apparently the
geomaterial sample remains largely intact everr dffte post-peak stress. This is exactly what one
would expect in laboratory uniaxial compressioneskpents.

It is also feasible to determine the time serigsdaexerted on the rigid wall (Figures 3 and 4).
Figure 3 shows that the maximum force on the botieai occurs between 15000 and 20000 step
increments (loading and unloading). Figure 4 shioat the maximum force on the top wall occurs in
step increments bigger. Besides this, the maximantefvalue slightly increases on the bottom wall
and most significantly on top (about 25%).

Finally, the Young’smodulus and UCS was obtained from a stress—stwaive, as shown in
Figures 5 and 6. Considering magnitude the valesbelieve it is possible to relate this sample of
geomaterial analyzed with some rock material oewa high resistance concrete. The analysis was
made considering an increase and decrease in ttieeaize of the material (ranging of 0.2 unti01
mm, 0.4 until 2.0 mm and 0.8 until 4.0 mm, respexdyi for the three graphs presented). A variatibn o
the UCS about 180 until 300 MPa and theung'smodulus (E) about 120 until 190 GPa can be
observed in Figures 5 and 6 for these three rayesbelieve that the geomaterial sample no longer
remains intact as before when we increase thecfersize. Apparently, this is less expected in
uniaxial compression laboratory experiments. Adddilly, we see that the total number of broken
bonds after reaching the maximum force undergaemsonable variation from the initial number of
connections.
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5 Conclusions

Discrete elements has been shown to be a powarfukncal technique for modeling the static
and dynamic mechanical behavior of geomaterialseMilised properly, it allows the simulation of
fairly complex nonlinear and interaction problemsgeotechnical engineering. Based on simulations
of standard geotechnical laboratory tests sucth@she dimensional compression or direct simple
shear tests, can be observed behavior non-ling@sssstrain and strength. This work aimed to
describe the modeling of macroscopic properties standard geomaterials samples using this discrete
elements. In a uniaxial compression experimensgmaple of geomaterial is slowly compressed by a
piston until failure occurs. The numerical modalglat to reproduce the experimental procedure. The
corresponding number of broken bonds and the wwatlef time-series in bottom and top of the wall
was been determined. Interesting results were faumeh we analyzed the resistance of the sample.
The constitutive stress-strain responses showrY dlieg'smodulus varying about 120 until 190 GPa
and also the Unconfined Compressive Strength vgrghout 180 until 300 MPa for two little
different particle stiffness. These results congpasconsiderable resistance range when compared to
materials used in practice. So it seems possibhedmel materials with different resistance behavior
Additionally, was also observed that analyticahtieinship between the microphysical parameters and
the macroscopic properties can be obtained by atimgua simulation campaign to fine tune these
parameters so as to obtain suitable macroscoppepres.

It was likewise observed that the standard geomahtsample remains largely intact even after
the post-peak stress for a pre-set particle radibis is exactly what one would expect in labonator
uniaxial compression experiments. Seemingly thepsarhecomes more susceptible to damage by
increasing the particle size. This is less expedatedniaxial compression laboratory experiments.
Anyway, considering the magnitude of the valuesoantered in the simulations we think that it is
possible to relate the sample of geomaterial ardlyrith a specific rock material or a high strength
concrete. Future investigations will ca be exantini different types of geomaterials samples sich a
rocks porous and particular high resistance coesret
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