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Abstract. Relevant geomaterials, like soils, concretes or rocks, exhibit similar constitutive response 
when considering their yield strength dependencies or dilatancy processes. The continuous description 
of these geomaterials encounters limitations when large-scale slip and opening of a large amount of 
fractures. Discrete-based methods represent the material as an assemblage of independent elements 
interacting with one another and can be reproduce the discrete nature of the discontinuities, which are 
represented as the boundary of each element. In this case, for each particle, the interaction law is used 
in conjunction with the momentum balance principle so as to specify a set of governing equations to 
describe its interactions and motion. By solving these equations, we obtain the final state of rest of 
these particles. The constitutive stress-strain response is obtained in an uniaxial compression 
experiment were a sample of geomaterial is slowly compressed by a piston until failure occurs. The 
peak stress at which failure of the sample occurs is known as Unconfined Compressive Strength 
(UCS). This work studies these responses in geomaterials samples using Discrete Element Method 
(DEM). In our numeric simulation, a set of particles is placed between two piston walls which are 
compressed at constant speed. Then, we monitor the position and forces for construct a curve by each 
sample. Interactions incorporate translational and rotational degrees of freedom to rotate relative to 
each other when in frictional contact. Analytical relationship between the microphysical parameters 
and the macroscopic properties can be obtained by conducting a series of computational simulations to 
tune the microphysical parameters until desired macroscopic properties. To simulate elastic-brittle 
failure of material, a Mohr-Coulomb criterion is employed. These data are used to measure some 
elastic properties of the particle model such as Young’s modulus, wall forces, broken bond and the 
UCS himself. Results shows that possible obtain significant values for different geomaterials such as 
some specific concretes and rocks. 
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1  Introduction 

We believe that the study of geomaterials is very broad and covers many topics. This research 
seeks to understand the behavior of rocks and related materials such as concrete, soil and porous 
materials. Their discontinuous and inhomogeneous nature leads to complex mechanical behaviors 
which can be difficult to capture with standard numerical models as finite or boundary elements, as 
related by Donzé et al. [1]. On the other hand continuous description of geomaterials encounters 
limitations when large-scale slip and opening of a large amount of fractures. 

An alternative is to use discrete-based methods which represent the material as an assemblage of 
independent elements (also called units, particles or grains), interacting with one another. Such models 
explicitly reproduce the discrete nature of the discontinuities, which are represented as the boundary of 
each element. The Discrete Element Method (DEM) is a numerical method for discrete systems made 
of non-deformable elements and particularly suitable to model granular materials. This method was 
initially described by Cundall and Strack [2] and has been widely used in dynamic numerical analyses 
from an engineering perspective. The scheme is a Lagrangian approach where individual particles are 
calculated on the basis of Newton’s second law of motion. Discrete elements enable us to investigate 
the dynamic characteristics of particles and their motion precisely. For example, DEM application in a 
discontinuous medium was accomplished by Hoang Tran [3] that demonstrated the method efficiency 
in modeling the behavior of granular soil domains in microscopic scale. 

In this work, we will investigate a geomaterial sample using uniaxial compression simulation 
with DEM. According to Weatherley et al. [4] the simulations measure the equivalent macroscopic 
properties of synthetic geomaterials samples and can be an important tool for calibrating discrete 
element models. In fact, a quasi-static uniaxial compression test of a geomaterial sample is a common 
laboratory technique for measuring the macroscopic properties such as Young’s modulus and the 
Unconfined Compressive Strength (UCS). The last property is an important measure of the strength of 
a geomaterial and is associated to the peak stress at which failure of the sample occurs. The Young’s 
modulus and the UCS were obtained from a stress-strain curve. Young’s modulus is defined as the 
slope of the linear section of the stress-strain curve, whilst the UCS is the corresponding peak value. 
Equally important, the number of broken bonds is a useful quantity to monitor in elastic-brittle 
simulations, as measures of amount of damage the geomaterial sample has suffered due to the external 
load. Time-series of the number of broken bonds are presented along with the wall force time-series 
for comparison. Recent results presented by Sanches et al. [5] show that is difficult to establish an 
analytical relationship between the microphysical parameters and the macroscopic properties of the 
material. To overcome this, one more time will realize a procedure to conduct uniaxial compression 
simulations to fine tune the microphysical parameters until suitable macroscopic properties are 
obtained. 

2  The Discrete Element Method 

Classic DEM is considered an explicit solution for the dynamic equilibrium of individual 
particles rather than solving the entire system [2]. The equations governing the translational and 
rotational dynamic equilibrium of a particle i with mass mi is 
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where 
ix&&  is the acceleration vector for ith particle, Fxi are the contact forces, mi is the particle mass, 

iω&  is the angular velocity vector, Ti is the torque, Mi is the resultant moment acting through the 
centroid of the particle i and I i  is the moment of inertia. For a circular particle the moment of inertia is 
equal to 2r 4

iπρ  where r i is the radius and ρ is the density. 
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From the dynamic equilibrium equations of particles and knowing the resulting forces acting on 
them, it is possible to calculate the accelerations for ith particle. Particularly, if the translation motion, 
can be isolated, we have: 

 t
i

t
ii Fam = . (2) 

where mi is the inertia (mass) matrix, ai
t = t

iu&&  is the acceleration vector at time t, and Fi
t is the resultant 

force vector. To update such parameters it is necessary to implement integration methods, i.e. given by 
their first and second derivatives with respect to time.  The relationship between the acceleration and 
velocity vector is: 
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where 2tt
iv ∆− , 2tt

iv ∆+  are the velocity at t - ∆t/2 and t + ∆t/2 respectively for the ith particle. 

Equation (3) is also known as the position Verlet time integration scheme, and the velocity at time 
t + ∆t/2 is then calculated as: 
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The velocity at time t + ∆t/2 is equal to the average velocity within the interval from t to t + ∆t. 
Then, we can calculate the updated particle position as: 
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Particle position vector x gives the particle Cartesian coordinates and the total rotation about the 
principal axis (for the 3D case). In two dimensions there is no coupling between the three degrees of 
rotational freedom. Additionally, the force Fn  denotes the normal component of the contact force, 
while the tangential (shear) component is denoted by Ft. According to O'Sullivan [6], the contact 
normal and shear forces can be calculated as: 

 nnNn vcFF −= ,    ttTt vcFF −= . (6) 

where FN is the elastic part of the normal interaction, cn is the normal interaction damping coefficient, 
vn = (v⋅ n)n if n is the unit vector in the interaction between the centers of the two particles, v is the 
particle translational velocity vector and the contact damping force proportional to the tangential 
component of the relative velocity, vt = v × n and ct is the tangential interaction damping coefficient. 

Particularly, in the tangential interaction, the frictional component of which is given by 

 ( )( )2/3

máxtNT /11FF δδµ −−= . (7) 

where δt is the total tangential displacement between the two surfaces from the point where they 
initially came into contact. If |δt| > δmáx then gross sliding is deemed to have started and the frictional 
force assumes a constant value given by Amonton's law, FT = µ FN, where µ is the friction coefficient. 

2.1 Geomaterials failure 

To simulate geomaterials failure under compressive loads, we need to integrate some additional 
techniques to traditional DEM such as: 1) Implementation of cementations (rotational) elastic-brittle 
bonds and rotational friction interactions and 2) Moving walls. The model adopted consists of a 
rectangular prism of particles sandwiched between two piston walls, which are compressed at constant 
speed. Simulation results are then used to measure the macroscopic elastic properties of the particle 
model. A typical particle interactions model is designed for only three (translational) degrees of 
freedom configuration and is suitable for granular flow of individual particles or aggregates. To 
simulate elastic-brittle failure of geomaterials, more sophisticated particle-pair interactions are 
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required. In particular, a particle-pair interaction that incorporates both translational and rotational 
degrees of freedom is required. Then, two bonded particles may undergo normal and shear forces, as 
well as bending and twisting moments.  

According to Weatherley et al. [4], bonds designed to impart such forces and moments are known 
as cementations bonds. In order to properly simulate elastic-brittle failure, bonds require a failure 
threshold criterion. In this work a Mohr-Coulomb failure criterion is employed. A bond will fail if the 
shear stress within the bond exceeds its shear strength τ, given by: 

 ( )fN φtanσCτ += . (8) 

where C is the cohesive strength of the bond for zero normal stress σN and ϕf is the internal angle of 
friction of the bond. 

2.2 Viscous damping 

Uniaxial compression experiments are usually conducted in the so-called quasi-static regime, i. e., 
external loads are applied slowly compared with the compressional wave speed of the sample. To 
simulate these conditions, it is also necessary to incorporate two body forces designed to attenuate 
translational and rotational oscillations. The viscosity coefficients are chosen to be small so that 
damping has little effect on the elastic response of the simulated geomaterial sample but it is sufficient 
to attenuate unwanted oscillations. 

2.3 Macroscopic elastic properties 

Macroscopic elastic properties as Young's modulus and Unconfined Compressive Strength (UCS) 
can be obtained from a stress-strain curve. To measure these quantities in a simulation, it is necessary 
construct the stress-strain curve for the geomaterial.  

Therefore, suppose the net restoring forces (at time t) that particles apply to the top and bottom 
walls are F(t)(t) and F(b)(t) respectively, and the unit normal vector of the walls is n(t/b). The stress 
exerted on the walls by the particle assembly is: 
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where Ac is contact area between a wall and the particle assembly. Since the peak stress is reached for 
relatively small axial strain, the contact area can be approximated by the undeformed area at particle 
assembly base.  

It is also relatively straightforward to accounting for the total strain. Let X (t)(t) and X (b)(t )be the 
positions of the top and bottom walls at time t. The strain εYY (t) is given by: 
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where y is the unit vector normal to the bottom wall.  
To compute the stress-strain curve, we use the net force acting on each wall and their position at 

each simulation time step. 
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2.4 Uniaxial compression simulation 

To simulate uniaxial compression it is necessary add two walls in the numerical model, which 
serve as pistons for compressing the geomaterial sample. One of them is added below the sample (the 
bottom wall) and another a top the sample (the top wall). It is worth mentioning that simply adding 
walls to the simulation is insufficient, we also have to define interactions between the walls and 
particles. For basic uniaxial compression simulations, repulsive elastic interactions are enough. If the 
interest were in tensile loading, one would need to bond the walls to particles at the base and top of the 
model. Herein, the following particle-wall interactions are sufficient to carry out simulations. Finally, 
only one component remains to be added to the uniaxial compression simulation: a method to move 
the two walls at constant speed. In this case, the wall speed is linearly increased from zero to the 
desired value over a few hundred time-steps. The top wall will move downwards and the bottom wall 
upwards. 

3  Computational implementation 

Numerical processes include domain clearing, particle registration, wall registration, collision 
detection, contact force calculation, and particle updating. Thus, there are three computational steps: 
internal force evaluation, in which the contact forces are calculated; integration of equations of 
motion, where the displacements of elements are computed; and contact detection, where new contacts 
are identified and broken contacts are removed. The interaction of the elements is treated as a dynamic 
process that alternates between applying Newton's second law and evaluating a force-displacement 
law on contacts. This law gives the acceleration of an element resulting from the forces acting on it, 
including gravitational forces, external forces prescribed by boundary conditions, and internal forces 
developed at inter-element contacts. Acceleration is then integrated to obtain speed and displacement. 
The force displacement law is used to find contact forces of known displacements. The equations of 
motion are then integrated in time. Once the calculated particles are recorded, they are stored in 
memory using a linked structure. This computational effectiveness is particularly important for large 
discretization. The efficiency of contact force estimation by a force calculation method is increased 
with parallel computing. 

The computational model is based on multi-core processing, according to Weatherley et al. [4]. A 
modular open source object-oriented simulation code written in C++ was tested. In the DEM 
simulation, spatial domain decomposition (in sub-domains) is implemented using a master slave 
strategy with inter process communications using the Message Passing Interface (MPI). For this, a 
Verlet list neighbor search algorithm for detecting neighboring particles and an explicit first-order 
finite difference time integration scheme is employed. Besides, a simple Application Programming 
Interface (API) allows evaluating simulations via scripts written in Python programming language. 
During all iterations and loading step, each DEM ensemble runs independently. The parallelization is 
achieved by decomposing the problem domain into sub-domains, where the interface of each sub-
domain needs to be duplicated for information to be passed between two neighboring sub-domains. 

4  Numerical results 

Considering the computational implementation, at initialization, particles are randomly inserted 
and bond together. For geomaterials breakage simulations, the best results are obtained using blocks of 
particles with variable radii and random locations. The reference simulation scenario generates a 
rectangular prism of particles whose radii lie in the range 0.4 until 2.0 mm. Two more ranges were 
considered using double and the half of the particle radii. The prism adopted is 10 x 20 x 10 mm in 
size with the center of the base at the origin. Each particle pair is tagged with a bond tag that specifies 
the type of interactions between bonded particles. Next, two walls are added to the simulation 
scenario. As previously said, these walls serve as pistons for compressing the geomaterial sample 
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which are positioned below (bottom wall) and above the sample (top wall). Then, interactions between 
the walls and particles are defined: repulsive elastic interactions are sufficient for basic uniaxial 
compression simulations under study. However, we would need to bond the walls to particles at the 
base and top of the model to assess tensile loading. The elastic stiffness (a single microphysical 
parameter) specifies the elastic repulsion between sample particles and walls. For this simulation we 
set the standard elastic stiffness equal to 100,000.0 and 102,000.0 N/mm2 generating two result sets 
plus some point variations. 

To simulate elastic-brittle failure, more sophisticated particle-pair interactions are required. In 
particular, particle-pair interactions that incorporate translational and rotational degrees of freedom. 
Then, two bonded particles may undergo normal and shear forces, as well as bending and twisting 
moments. Bonds designed to impart such forces and moments are known as cementations bonds. 
Rotational frictional interactions are defined by a microscopic Young's modulus equal to 100,000.0 
N/mm2 and Poisson's ratio equal to 0.25 and two microscopic coefficients of friction. Typically the 
Young's and Poisson's for friction interactions are set equal to their brittle counterparts. The static µ 
coefficient of friction is set 0.6 and applied when two particles are in static frictional contact, i.e., prior 
to the first time the frictional sliding criterion is met. Thereafter the dynamic µd coefficient of friction 
equals 0.4 is applied. By setting dynamic µd < static µ, one can simulate the physical observation that 
the frictional force required to maintain sliding is less than the force necessary to initiate sliding. A 
viscosity coefficient equal to 0.002 is chosen small so that damping has little effect on the sample 
elastic response, but is still sufficient to attenuate unwanted oscillations. In the uniaxial compression 
simulation, we move the two walls at constant speed. It is best to gradually increase the wall speed 
from zero to the desired value over a few hundred timesteps. The velocity of the wall increases 
linearly over that number of timesteps. In addition, the two walls move in opposite directions both at a 
speed of 0.125 m/s. Although this rate is significantly higher than typically used in laboratory uniaxial 
compression experiments, it is sufficiently small to maintain quasi-static conditions in our simulations. 
The piston speeds are approximately 20000× lower than the compressional wave speed of the 
simulated geomaterial sample. The initial acceleration of the walls from zero to the desired speed also 
helps ensure the sample is loaded quasi-statically, as shown by Weatherley et al. [4]. 

The Figure 1 and 2, show evaluate time series evolution of the broken bonds in the connected 
particles considering the initial stiffness. First, it is evident that a significant fraction of bonds breaks 
down before the peak stress is reached. In other words, the sample undergoes significant irreversible 
internal damage before reaching UCS. The second interesting observation presented by Figure 2 is that 
the total number of broken links after the peak stress is reached is approximately 30 until 40% of the 
initial number of connections. The values varies when we consider the particle at twice or half the 
radius. Considering only the results with range 0.4 until 2.0 mm was observed that apparently the 
geomaterial sample remains largely intact even after the post-peak stress. This is exactly what one 
would expect in laboratory uniaxial compression experiments. 

It is also feasible to determine the time series force exerted on the rigid wall (Figures 3 and 4). 
Figure 3 shows that the maximum force on the bottom wall occurs between 15000 and 20000 step 
increments (loading and unloading). Figure 4 show that the maximum force on the top wall occurs in 
step increments bigger. Besides this, the maximum force value slightly increases on the bottom wall 
and most significantly on top (about 25%). 

Finally, the Young’s modulus and UCS was obtained from a stress–strain curve, as shown in 
Figures 5 and 6. Considering magnitude the values, we believe it is possible to relate this sample of 
geomaterial analyzed with some rock material or a few high resistance concrete. The analysis was 
made considering an increase and decrease in the particle size of the material (ranging of 0.2 until 1.0 
mm, 0.4 until 2.0 mm and 0.8 until 4.0 mm, respectively for the three graphs presented). A variation of 
the UCS about 180 until 300 MPa and the Young's modulus (E) about 120 until 190 GPa can be 
observed in Figures 5 and 6 for these three ranges. We believe that the geomaterial sample no longer 
remains intact as before when we increase the particle size. Apparently, this is less expected in 
uniaxial compression laboratory experiments. Additionally, we see that the total number of broken 
bonds after reaching the maximum force undergoes a reasonable variation from the initial number of 
connections. 
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Figure 1. Number of broken bonds 
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Figure 2. Broken bonds - percentage (%) 
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Figure 3. Wall force - bottom 
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Figure 4. Wall force - top 
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Figure 5. Stress-strain - initial stiffness 
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Figure 6. Stress-strain - slightly higher stiffness 
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5  Conclusions 

Discrete elements has been shown to be a powerful numerical technique for modeling the static 
and dynamic mechanical behavior of geomaterials. When used properly, it allows the simulation of 
fairly complex nonlinear and interaction problems in geotechnical engineering. Based on simulations 
of standard geotechnical laboratory tests such as the one dimensional compression or direct simple 
shear tests, can be observed behavior non-linear, stress-strain and strength. This work aimed to 
describe the modeling of macroscopic properties in a standard geomaterials samples using this discrete 
elements. In a uniaxial compression experiments, a sample of geomaterial is slowly compressed by a 
piston until failure occurs. The numerical model sought to reproduce the experimental procedure. The 
corresponding number of broken bonds and the wall force time-series in bottom and top of the wall 
was been determined. Interesting results were found when we analyzed the resistance of the sample. 
The constitutive stress-strain responses shown the Young's modulus varying about 120 until 190 GPa 
and also the Unconfined Compressive Strength varying about 180 until 300 MPa for two little 
different particle stiffness. These results comprise a considerable resistance range when compared to 
materials used in practice. So it seems possible to model materials with different resistance behaviors. 
Additionally, was also observed that analytical relationship between the microphysical parameters and 
the macroscopic properties can be obtained by conducting a simulation campaign to fine tune these 
parameters so as to obtain suitable macroscopic properties. 

It was likewise observed that the standard geomaterial sample remains largely intact even after 
the post-peak stress for a pre-set particle radius. This is exactly what one would expect in laboratory 
uniaxial compression experiments. Seemingly the sample becomes more susceptible to damage by 
increasing the particle size. This is less expected in uniaxial compression laboratory experiments. 
Anyway, considering the magnitude of the values encountered in the simulations we think that it is 
possible to relate the sample of geomaterial analyzed with a specific rock material or a high strength 
concrete. Future investigations will ca be examine this different types of geomaterials samples such as 
rocks porous and particular high resistance concretes. 
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