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Aideé A. Torres
Bruno Martins
Carlos A. S. Ferreira
Felipe W. Giacomelli
Clovis R. Maliska
herminio@sinmec.ufsc.br
aideetorres@sinmec.ufsc.br
bmartins@sinmec.ufsc.br
casf@sinmec.ufsc.br
fe.wallner@gmail.com
maliska@sinmec.ufsc.br
Department of Mechanical Engineering - Federal University of Santa Catarina
Campus Universitário, 88.040-900, Santa Catarina, Brasil

Abstract. The coupled nature of the equations composing Biot’s consolidation model often produces
quite unexpected behaviors. The most common one is the Mandel-Cryer effect, which refers to a pressure
increase in certain regions of the domain for a short period of time with no apparent reason. Although this
effect is well known and widely reported in the literature, a clear and comprehensive explanation on the
physical mechanism that causes of the Mandel-Cryer effect is not easily found. Another counterintuitive
behavior is observed in a fully saturated poroelastic column under the influence of a gravitational field.
In this case, the poroelastic properties can produce displacement profiles that defies the common sense.
In this paper, we provide a deep discussion on these phenomena and a few hypotheses for explaining
them are proposed. For instance, we argue that there must be a mechanism responsible for transferring
volumetric strain to different regions of the domain in order to occur the Mandel-Cryer effect. For the
poroelastic column, we propose a spring-mass system to explain the displacement profiles obtained in
different situations. All of these hypotheses are carefully tested through numerical experiments.

Keywords: Poroelasticity, Biot’s consolidation model, coupled consolidation, Mandel-Cryer effect,
poroelastic column
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Counterintuitive effects in coupled poroelasticity

1 Introduction

The first theoretical analysis of a 1-D consolidation column undergoing an external compressive
load was first developed by Terzaghi [1, 2]. Later on, Biot generalized this theory to three dimensions [3]
and for anisotropic materials [4], and since then, it has been referred to as Biot’s theory of consolidation.
Consolidation processes are generally coupled with the fluid flow in porous media, since the fluid flow
through the pore channels affects the pore pressure field, which causes a force imbalance in the solid
matrix. As a result, the porous matrix deforms in order to reach a new equilibrium state. The solid
deformation directly changes pressure field and thus the fluid flow. The coupling between these two
processes are mathematically described by Biot’s consolidation model.

Although consolidation processes are well understood, the coupling nature of this phenomenon
often produces quite weird effects that goes in opposite direction of common sense. A classical example
is the Mandel-Cryer effect [5, 6], which predicts an apparently unphysical pressure increase in specific
regions of the domain for a short period of time. The classical problems where this effect can be observed
are the Mandel’s problem [5] and the Cryer’s sphere [6], for which analytical solutions are available. The
Mandel-Cryer effect is predicted not just by the analytical solutions but also by numerical solutions. In
fact, these two problems are widely used in the literature for verifying numerical schemes for solving
coupled poroelasticity problems. Beyond these classical problems, the Mandel-Cryer effect has been first
observed in a real situation in a small village called Noordbergum, in the Netherlands, when a pressure
increase has been detected in the upper layer of an aquifer during groundwater withdrawal. Since then,
it has been known as the Noordbergum effect [7–9]. Furthermore, this effect has been captured by a
numerical experiment setup by Dean et al. [10] where a pay region (reservoir) with a production well at
its center is surrounded by a nonpay region. When the well starts the production, a pressure increase is
detected near the boundaries of the pay region, which is a clear indication of the Mandel-Cryer effect.
Although it is widely reported in the literature, a clear and detailed explanation on the physics behind
this phenomenon is not easily found anywhere.

Aside from the Mandel-Cryer effect, there is another quite unexpected behavior that appears in a
fully sealed poroelastic column subjected to oedometric conditions and under the influence of the gravi-
tational field. In this case, it would be natural to expect the vertical displacement profile to monotonically
vary from zero at the bottom to its maximum value at the upper boundary, which is precisely what hap-
pens for a solid material. However, for a nearly incompressible fluid and a very soft material, the vertical
displacement profile presents its maximum value somewhere in the middle of the column, which is a
quite uncomfortable behavior at first glance. In this problem, the fluid density also plays an interesting
role in the behavior of the equilibrium state (displacement profile), as it can exert a force at the up-
per boundary of the column. To the knowledge of the authors, a deep discussion on the causes of this
behavior is not reported in the literature.

This paper presents a careful discussion on these counterintuitive behaviors originated from cou-
pled poroelasticity. Special emphasis is given to the physical processes involved and on the role played
by the poromechanical properties. The rationale in this paper is to discuss the physics behind coupled
consolidation, analyze the model equations, provide hypotheses to explain these unexpected phenomena
and test them through numerical experiments. First, the Mandel-Cryer effect is discussed and a hypoth-
esis is developed to explain how it operates. In the sequence, the poroelastic column immersed in the
gravitational field is described and a spring-mass system is proposed to explain the different situations
that can occur. Finally, a set of numerical experiments are performed in order to reproduce the physical
effects and to test the hypotheses previously proposed. Finally, a few remarks close the presentation.

2 Governing equations

Biot’s theory of consolidation is described by mass and momentum conservation equations. In this
case, the momentum equations, often referred to as equilibrium equations, consider the effective stress
principle of Terzaghi [1, 2] in order to account for the influence of the pore pressure p, which leads to
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the following equation,

∇ · (σ′ − αpI) + ρg = 0, (1)

where I is a second order identity tensor, g is the gravitational acceleration vector, ρ is a porosity
weighted density of solid (ρs) and fluid (ρf ) phases, that is, ρ = φρf + (1 − φ)ρs, with φ representing
porosity. Finally, the effective stress tensor acting on the solid matrix, for linear elasticity is given by

σ′ij = 2Gεij + λεkkδij , (2)

with G being the shear modulus, λ the first Lamé’s parameter and εij the components of the strain tensor
ε. By assuming small strains, the strain tensor relates to the displacement vector u as follows,

ε =
1

2
(∇u +∇uT ). (3)

Usually, the mass balance equation for fluid flow in porous media only considers fluid phase ve-
locity. However, for deformable porous media the solid motion (solid velocity, vs) also has to be taken
into account since the pore channels in the solid matrix transports fluid as it deforms. According to
Biot’s theory of consolidation, the mass balance equation for fluid flow in deforming porous media can
be represented as

1

Q

∂p

∂t
+∇ · (v + αvs) = 0, (4)

where the Biot modulus [11] is 1/Q = cfφ + (α − φ)cs, with α being Biot-Willis coefficient [12] and
cf and cs are the fluid and solid phase compressibilities, respectively. Still on Eq. (4), p is the fluid pore
pressure, vs is the solid velocity, given by the time derivative of the displacement vector u, and v is the
relative fluid phase velocity, represented by Darcy’s law, that is,

v = −k

µ
· (∇p− ρfg) , (5)

with µ begin the fluid viscosity and k the absolute permeability tensor.
By recognizing that the volumetric strain is given by εv = ∇ · u and assuming α to be independent

of the position r, Eq. (4) can be written in a more usual form,

1

Q

∂p

∂t
+∇ · v = −α∂εv

∂t
. (6)

For closuring the model equations, the initial and boundary conditions must be specified. The
domain occupied by the porous medium can be denoted by Ω and it is bounded by a surface Γ. In
addition, let n̂ be a unitary normal vector defined over the boundary Γ and pointing outwards the domain
Ω. The surface boundary can be divided into regions subjected to Dirichlet boundary conditions, denoted
by Γp

D and Γu
D for u and p, respectively, and to Neumann boundary conditions, denoted by Γp

N and Γu
N ,

respectively, such that Γp
D ∩ Γp

N = ∅ and Γu
D ∩ Γu

N = ∅. These sets are represented in Fig. 1.

Figure 1. Domain Ω and boundary sets.

Finally, the problem can be stated as finding p = p(r, t) and u = u(r, t) such that,
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∇ · (σ′ − αpI) + ρg = 0 ∀ r ∈ Ω (7)
1

Q

∂p

∂t
+∇ · v = −α∂εv

∂t
∀ r ∈ Ω (8)

v = −k

µ
· (∇p− ρfg) ∀ r ∈ Ω (9)

(σ′ + αpI) · n̂ = t ∀ r ∈ Γu
N (10)

u = ū ∀ r ∈ Γu
D (11)

−v · n̂ = ω̇ ∀ r ∈ Γp
N (12)

p = p̄ ∀ r ∈ Γp
D (13)

p(r, 0) = p0 ∀ r ∈ Ω (14)

u(r, 0) = u0 ∀ r ∈ Ω (15)

where t is the traction vector, ū and p̄ are the prescribed displacement vector and pressure, ω̇ is the
volumetric flux, and the pressure and displacement fields at time t = 0 are denoted by p0 and u0,
respectively.

3 The Mandel-Cryer effect

One of the key points to understand the Mandel-Cryer effect is the interplay between the volumetric
strain and the pore pressure. This means to understand how a pressure change affects the volumetric
strain and vice-versa. Another crucial ingredient for the Mandel-Cryer effect to happen is a special setup
of the boundary conditions in which a contraction (or expansion) in one region causes a contraction
(or expansion) in another region of the domain, where a pressure increase (or decrease) is observed.
Therefore, the Mandel-Cryer effect is a combination of this mechanism that transfers a contraction (or
expansion) from one place to another with the relationship between the pore pressure and volumetric
strain. These two points are discussed below.

3.1 Volumetric strain and pore pressure

Understanding the relationship between pore pressure and volumetric strain in the solid matrix is
key for understanding the Mandel-Cryer effect. It is quite intuitive that when the pore pressure increases,
the porous matrix tends to expand, that is, to increase its volume. Conversely, if a pressure decrease is
experienced by the fluid filling the pore channels, it tends to pull the solid grains together thus reducing
the bulk volume. In the same manner, if an external load forces the porous matrix to shrink, the pore
pressure will instantly increase before it starts to dissipate as the fluid starts to migrate to low pressure re-
gions. The opposite behavior should be observed if the external load imposes an expansion to the porous
matrix. This phenomenon is totally equivalent to material dilation, which is the mechanical response of
material due to temperature changes. In fact, the mathematical formulation of both poroelasticity and
termoelasticity are quite the same.

Mathematically, the interplay between pore pressure and volumetric strain can be disclosed by per-
forming a time integration of Eq. (6)between time t and t+ ∆t, which leads to,

pt+∆t = pt − αQ(εt+∆t
v − εtv)−Q

∫ t+∆t

t
∇ · vdt (16)

or,

εt+∆t
v = εtv −

(pt+∆t − pt)
αQ

− 1

α

∫ t+∆t

t
∇ · vdt (17)
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The integrals on the RHS of Equations 16 and 17 are responsible for alleviating pressure as time
progresses. Thus any pressure increase caused by a contraction of the porous matrix tends to vanish as
the fluid flows towards low pressure regions, according to Darcy’s law, in order to equalize the pressure
field.

Furthermore, for the sake of simplicity, if we consider pt = εtv = 0 and a very small time step size
∆t so the fluid does not have enough time to move through the pore channels (undrained consolidation),
then the relationship between the pore pressure and volumetric strain becomes

pt+∆t = −αQεt+∆t
v , (18)

which highlight that a negative volumetric strain (contraction) produces a positive pressure (pressure
increase), and vice-versa. It is important however to keep in mind that for a drained condition, i.e.
when fluid has enough time to move through the pore channels, wherever there is a pressure decrease
a local negative volumetric strain is observed. In other words, wherever there is fluid loss, locally, the
porous medium shrinks and the bulk volume decreases. Conversely in an undrained condition, if an
external force causes a positive volumetric strain (expansion) somewhere in the porous medium, the pore
pressure in that region will immediately drop and fluid will then flow towards the low pressure region to
equalize the pressure levels.

3.2 Boundary conditions setup

Once the relationship between volumetric strain and pore pressure is well understood, we now
investigate the particular conditions in which the Mandel-Cryer effect appears. These conditions are a
sort of mechanism that transfer the volumetric strain observed in a region A of the porous material to
another region B, thus affecting the pore pressure at region B. A schematic representation of this idea is
depicted in Fig. 2, in which a volumetric strain εv,A in region A is transfered, through some mechanism,
to region B, denoted by εv,B . According to Eq. (18), at least for a short period of time, the pore pressure
should be affected at region B due to εv,B .

εv,A

εv,B

Region A

Region B
Transfer mechanism

Figure 2. Schematic representation of the mechanism that transfers volumetric strain from one place to
another.

Different setups of boundary conditions can create mechanisms that provide the transferring of
volumetric strain from one place to another. The classical ones are the Mandel’s problem and the Cryer’s
sphere, which are discussed below. The discussions will remain in the theoretical realm, since their
purpose is to provide hypotheses to explain the Mandel-Cryer effect that will be tested in the results
section.

Mandel’s problem

Mandel’s problem refers to a two-dimensional poroelastic slab of length 2L and height 2H , as
depicted in Fig. 3a. The lateral boundaries (x = L and x = −L) are fully permeable, so the pore pressure
Pout is prescribed (usually Pout = 0). The top and bottom boundaries are subjected to a constant force
of 2F . A very important detail in this problem is that the top and bottom boundaries are required to be
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horizontal during the whole simulation, that is, the vertical displacement, v, has to be the same along
these boundaries. Mathematically, this means that

∂v

∂x

∣∣∣∣
y=H

=
∂v

∂x

∣∣∣∣
y=−H

= 0 (19)

Finally, the initial pore pressure p0 and volumetric strain εov are obtained from the solution of this
problem with closed lateral boundaries, that is, subjected to an undrained condition. This implies that,
according to Eq. (18), p0 = −αQε0v.

Due to the symmetry planes, only a quarter of the domain can be considered by prescribing zero
normal displacements on boundaries x = 0 and y = 0, as illustrated in Fig. 3b. With the right boundary
closed, when the force F is applied on the top boundary a uniform pressure p0 establishes along the
entire domain. When the right boundary is opened, the pore pressure in x = L immediately drops to
Pout and a pressure front of disturbance travels towards the interior of the domain. In Fig. 3b, the dark
gray area, referred to as region B, represents the pore pressure in the interior of the slab that has not
yet been affected by the pressure front. Region A, on the right side of Fig. 3b, colored in light gray,
represents the area already disturbed by the pressure front. As the pressure front migrates to the interior
of the slab, region A gets larger and, consequently, region B is reduced until it finally disappears when
the pressure front reaches position x = 0.

F

F'

εv,Aεv,B

(c)

2F

2F

y

x
Pout Pout

2L

2H

(a)

F

Pout

(b)

R
eg

io
n 

A

Region B

Transfer mechanism

F'

Figure 3. Boundary conditions for Mandel’s problem.

As long as region B still exists, which implies that the pressure front did not fully penetrate the slab
yet, the pore pressure in this region increases above the initial pressure p0. This pressure increase is
precisely the Mandel-Cryer effect. In order to understand the reasons for this effect to appear we have to
first recall that wherever there is a pressure decrease due to fluid loss, the porous material tends to shrink.
This is exactly what happens in region A, where the pressure values are lower than p0, as represented
in light gray. Due to the boundary conditions imposed, region A can freely deform in the horizontal
direction, but not in the vertical direction. The vertical movement is restricted at the bottom boundary,
and the top boundary will only move in the vertical direction if the entire top boundary moves as well,
according to the boundary condition of Eq. (19). Therefore, when region A shrinks it will necessarily
pull down the top boundary with a force F ′, as represented in Fig. 3c. The additional compressive force
F ′ is transferred to region B through the top boundary, since it has to satisfy Eq. (19). This means that
region B will be forced to shrink a little bit further (beyond the volumetric strain caused by force F ),
thus forcing the pore pressure to increase.

From the discussion above, it should be clear that the boundary condition imposed at the top bound-
ary, enforcing equal vertical displacement according to Eq. (19), is the mechanism responsible for trans-
ferring the volumetric strain produced in region A to region B. It is also interesting to notice that the
force F ′ should increase as the pressure front penetrates the slab, because the shrinking region (region
A) gets larger. Furthermore, the velocity in which the pressure disturbance travels is controlled by the
time integral in Equations Eqs. (16) and (17). Hence, when the pressure front reaches the center of the
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y

x

z

x

yz

(a) (b) (c)

z

x

RegionA
Region B

Pout

PoutPout

σ
σ

σ

Figure 4. Boundary conditions for Cryer’s sphere problem.

slab, Eq. (16) predicts that the pore pressure increase starts to dissipate due to the fluid movement, even
though the solid matrix is still undergoing a compressive deformation, and the force F ′ starts to decrease
until it completely vanishes.

Cryer’s sphere

This problem refers to a poroelastic sphere of radius R fully saturated with a slightly compressible
fluid. A normal stress σ is applied on the entire surface of the sphere, which is also fully permeable with
prescribed pressure Pout, as depicted in Fig. 4a. Initially, the normal stress is applied under undrained
condition (impermeable surface) and the resulting pore pressure and volumetric strain fields (p0 and ε0v,
respectively) satisfy Eq. (18). Due to the symmetry planes of the problem, only one eighth of the sphere
can be considered, as represented in Fig. 4b. In this simplified domain, zero normal displacements are
prescribed on the flat surfaces.

When the boundary of the sphere is opened to fluid flow at t = 0, a pressure front travels towards
the center of the sphere. The pressure front defines the region A in Fig. 4c, which is actually the crust
of the sphere. The core of the sphere that has not yet been reached by the pressure front defines the
region B. The interesting behavior in this problem is observed in the center of the sphere, where the pore
pressure raises above the initial pressure p0 during the time the pressure front takes to reach this position.
Although this is exactly the same Mandel-Cryer effect as observed in Mandel’s problem, in this case the
transfer mechanism of the volumetric strain is different and it is discussed below.

According to Eq. (16), wherever there is fluid loss, the porous matrix tends to shrink. In the sphere
of Fig. 4, region A undergoes a fluid loss, since it is in contact with the surface with prescrebed pressure
Pout (notice that Pout < p0), and consequently the entire crust of the sphere tends to shrink. Now we
turn our attention to what happens with the inner surface of region A as it shrinks. If the area of this inner
surface is reduced, then the crust will compress the core (region B) of the sphere. In order analyze the
behavior of the inner surface of region A, we can make use of the similarities between poroelasticity and
termoelasticity and see what happens with a hole in a material undergoing a thermal contraction. Let us
consider, for example, a plate at temperature T0 with a hole of diameter D0 at the center, as represented
in Fig. 5. If the temperature is reduced to T1, then the diameter of the hole will be reduced to D1 and so
the area of its inner surface. By analogy, this is exactly what happens with the crust of the sphere, that is,
the area its inner surface tends to be reduced, thus compressing the core of the sphere. It is interesting to
notice that the more the pressure front approaches the center of the sphere and region A gets thicker, the
more compressed will be the region B.

The paragraph above just described the transfer mechanism of volumetric strain mentioned in Sub-
section 3.2 as a fundamental ingredient for the Mandel-Cryer effect to be observed. The transfer mech-
anism in Cryer’s sphere, therefore, can be summarized as follows: as the crust tends to shrink it com-
presses the core of the sphere, thus increasing its pore pressure. Only when the pressure front reaches the
center of the sphere the pore pressure starts to dissipate, since the time integral of Eq. 16 begins to play
its role. It is important to emphasize that the entire sphere will be compressed anyways due to the normal
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D0

Expansion Contraction

D1

T1
T0

Figure 5. Thermal expansion of a flat plate with a circular hole.

stress σ prescribed on its surface. However, the contraction of the crust produces an additional compres-
sion that promotes the pressure increase above p0. In fact, if this hypothesis is valid, the Mandel-Cryer
effect should be observed even in the absence of the normal stress σ, since the transfer mechanism is
independent of it. This situation is tested in the results section.

4 Poroelastic column

In this section we provide a physical interpretation for the vertical displacement profile resulted from
a poroelastic column, with sealed boundaries, under the influence of the gravitational field (hereafter,
this case is referred to as problem III). In order to explain why the resulting displacement profile for
this problem defies our intuition we first discuss two similar problems that people usually feel more
comfortable with. These two auxiliary problems are referred to as problems I and II. We show that the
physical insights provided by these two problems leads our intuition to take wrong conclusions about the
physical behavior of problem III. In the subsections below, these three problems are discussed.

4.1 Problem I

When implementing a numerical scheme for solving linear elasticity or poroelasticity, one of the first
problems to be solved is a unidimensional column subjected to oedometric condition in the absence of
body forces, such as the gravitational field. A compressive load is usually applied on the top boundary,
which can freely move in the vertical direction. For a poroelasticity model, fluid flow is not allowed
through any boundary of the domain, which characterizes an undrained consolidation. This situation is
illustrated in Fig. 6a. Whether it is linear elasticity or poroelasticity, the resulting vertical displacement
w linearly ranges from zero at the bottom of the column, due to the prescribed boundary condition, to its

σ z

H

Vertical displacement

z

H
g=0 σ

Initial state (σ = 0) σ ≠ 0

(a) (b)

Figure 6. (a) An elastic or poroelastic material subjected to compressive load and without gravity. (b)
Spring-mass system. Obs: the red color means the spring is compressed.
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maximum value at the top boundary. The volumetric strain can be obtained by taking the derivative of
w along the z direction, which is always constant in this case, thus every point of the column is equally
deformed. It should not be difficult to wrap our minds around this result since the column actually
behaves as a simple mechanical spring, as illustrated in Fig. 6b.

4.2 Problem II

Problem II defies our minds a little bit more. It refers to an elastic material under the influence of
a gravitational field, as depicted in Fig. 7a. In the absence of a compressive load at the top boundary,
the resulting displacement profile still presents its maximum value at the top boundary but the maximum
volumetric strain is at the bottom of the column. This is because the bottom layer carries all the weight
of the column above, while the top boundary does not carry any weight at all and therefore it does not
experience any deformation, which can be seen by recognizing that ∂w/∂z equals zero at this position.
In fact, the weight carried by each layer of material linearly decreases from the bottom (maximum) to the
top of the column (zero). This fact requires that the volumetric strain profile has to be linear. The analyt-
ical solution of the equilibrium equations can be easily obtained for this problem by simple integration
and it provides, indeed, the quadratic profile represented in Fig. 7a for the vertical displacement. The
important thing to observe is that, just like in the previous problem, described in Fig. 6, the maximum
displacement is still on the top boundary and every point of the column undergoes a negative volumetric
strain (compression).

z

H

z

H
g g

w

Initial state (g = 0)

(a) (b)

Figure 7. (a) Elastic material under the influence of a gravitational field. (b) Spring-mass system. Obs:
the red, gray and blue springs denote springs under compression, undeformed and under traction, respec-
tively.

This problem can be roughly modeled by a stack of blocks with mass m connected by springs with
stiffness K, as represented in Fig. 7b. It is clear that the spring on the bottom carries the weight of
all five blocks, while the top one only holds the upper block. As a consequence, all springs are under
compression, specially the one at the bottom. Additionally, the upper block is the one who displaces the
most since it comprises the upper spring deformation and the displacements of each block bellow.

If an external compressive load is applied on the top boundary, as in problem I, we still observe a
maximum compression at the bottom of the column and a maximum displacement at the top boundary,
as shown in Fig. 8a. In this case, however, it is important to observe that the top boundary is not
undeformed anymore, since ∂w/∂z is not zero at this position. The reason for this is, although the top
boundary does not carry any weight, it is subjected to an external load σ that forces it to be compressed.
The corresponding spring-mass system for this case is depicted in Fig. 8b.

These simple mass-spring systems, therefore, properly reproduce the physical behavior of the origi-
nal problem. This simplified model will turn to be very helpful to understand the physics of problem III,
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z

H

z

H
g g

w

Initial state (g = 0)

(a) (b)

σ

σ

Figure 8. (a) Elastic material under the influence of a gravitational field and a compressive load. (b)
Spring-mass system. Obs: the red, gray and blue springs denote springs under compression, undeformed
and under traction, respectively.

presented in the sequence.

4.3 Problem III

In this case, a permeable porous material saturated with a slightly compressible fluid is subjected to
the same boundary conditions of the previous problem II. According to Terzaghi’s principle of effective
stress, both solid and fluid phases support the total weight of the system (remember that there is no
external load applied). In this manner, we could think of this system as a solid material with mechanical
properties resulting from a combination of the mechanical properties of both solid and fluid phases.
The mechanical properties of the solid phase can be defined, in this case, by the constrained modulus
M = λ+ 2G. The fluid phase, since it only produces normal stresses, can be characterized by the fluid
compressibility, cf . Evidently, the inverse of the fluid compressibility gives an idea of ”fluid stiffness”.
This interpretation suggests that this problem is similar to problem II and it can also be modeled by a
system of springs and masses. In this case, however, between two blocks there are two springs, one
representing the solid stiffness (Ks) and the other representing the fluid stiffness (Kf ), as illustrated in
Fig. 9. From this interpretation, we should expect the vertical displacement profile to behave just like

Initial state (g = 0)

g

Solid stiffness (Ks)Fluid stiffness (Kf)

Figure 9. Hypothetical spring-mass system for problem III. Obs: the red, gray and blue springs denote
springs under compression, undeformed and under traction, respectively.
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as in problem II, that is, the maximum displacement should be at the top boundary and the maximum
compression at the bottom of the column, as in Fig. 7a. With this idea in mind, a very unpleasant feeling
appears when we numerically solve this problem and come across a displacement profile like the one
shown in Fig. 10a. From the point of view we built based on the previous problem II, there would be
no reasonable explanation to observe, for instance, a maximum displacement anywhere else other than
the top boundary. Even worse, what could possibly be the reason to justify a region of the domain to
undergo an expansion such as the one we see close to the top boundary? The conclusion is unavoidable:
the assumption of a material with combined mechanical properties does not apply. We now present an
alternative hypothesis for explaining this behavior.
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Figure 10. (a) Poroelastic material under the influence of a gravitational field. (b) Spring-mass system.
Obs: the red, gray and blue springs denote springs under compression, undeformed and under traction,
respectively.

The hypothesis just presented in the previous paragraph actually holds true for a porous material
with zero permeability, which means that the pore spaces are not connected to each other. In this case,
because the fluid is trapped between the different layers, each layer of the column is carried by the
solid stiffness and the pore pressure of the fluid, so the spring-mass system represented in Fig. 9 is
correct. However, as mentioned in the beginning of this subsection, problem III actually refers to a
permeable material, which means that the fluid is not trapped in a single pore of the domain, but instead,
it can freely move inside the poroelastic column. As a consequence, the fluid is not able hold each
layer of the domain anymore because a relative motion between the solid and fluid phases is perfectly
allowed. In other words, when the middle layers of the poroelastic column start to move, they do not face
any resistance from the fluid phase. Obviously, this is not the case for the top and bottom boundaries
due to the undrained condition. In these two layers (top boundary and bottom boundary), the relative
velocity between the solid and fluid phases is zero, which means that they are the only layers that feel the
resistance of the fluid. This is equivalent to have a long spring connecting the bottom to the top boundary
in such a way that whenever these two boundaries come closer to each other the spring tends do push
them in opposite directions. So a proper spring-mass system could be the one represented is Fig. 10b.
On the left side of Fig. 10b it is represented the fluid phase, where the springs represent the fluid stiffness
(Kf ) and the block represent the fluid weight, given that ρf 6= 0.

It is possible to show that the spring-mass system presented in Fig. 10b does reproduce the behavior
shown in Fig. 10a. For convenience, the springs corresponding to the solid and fluid phases are referred
to as springs S and F, respectively. Now, let us consider an almost incompressible fluid (cf → 0) and a
soft porous material, such that there is a large difference between the stiffnesses of springs F and S, that
is, Kf >> Ks. This means that, under the same external load, spring F deforms way less than spring
S. In this manner, when the gravitational field is turned on, the spring F deforms very little and thus the
displacement of the top boundary (block A in Fig. 10c) is very small as well. It is easy to see in Fig.
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10c that the displacement of block B equals the displacement of block A plus the deformation the upper
spring S. Since Ks is very small, the upper spring S will surely undergo significant deformation, which
implies that the displacement of block B is larger than the displacement of block A. In other words, the
spring S connecting blocks A and B is necessarily under traction, which means that the solid phase has
to expand close to the top boundary, as observed in the displacement profile presented in Fig. 10a. If
we now look at the lower spring S, we see that it will only expand if block E moves upwards, which has
no reason what so ever to happen, so it will certainly be compressed. The same idea applies to the other
springs. Eventually, there can be a situation in which two neighbor blocks have the same displacements,
such as blocks B and C, and thus the spring connecting them is undeformed. This situation is equivalent
to have a ∂w/∂z = 0, as observed in the vertical displacement profile of Fig. 10a. It is also important
to emphasize that the block representing the fluid weight in Fig. 10c is only sustained by the lower
spring F . Therefore, the hypothesis for explaining problem III is that the fluid filling the pore channels
actually holds the top boundary in position, while the gravitational field pulls down the layers in the
middle section of the poroelastic column, thus causing a maximum displacement somewhere below the
top boundary.

According to the hypothesis drawn above, if the fluid phase is very compressible such as Kf <<
Ks, then the lower spring F is not able to sustain the fluid weight without the help of the upper spring
F . Thus the upper spring F must be under traction, as represented in Fig. 11a. As a consequence, the
top boundary perceives a load applied downwards due to the fluid weight. In this manner, the problem is
similar to the one represented in Fig. 8, where a solid material is subjected to the gravitational field and
a compressive external load.
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Figure 11. (a) Very compressible fluid. (b) Fluid with a specific compressibility. (c) Weightless fluid
phase. Obs: the red, gray and blue springs denote springs under compression, undeformed and under
traction, respectively.

If we slowly reduce the fluid compressibility, that is, increase Kf , there will be a point where the
lower spring F will completely sustain the fluid weight without compressing the upper spring F , as
depicted in Fig. 11b. At this point, the top boundary does not feel the presence of the fluid phase
and the problem reduces to problem II with no external load applied, as presented in Fig. 7. Another
way of reproducing the displacement profile of problem II with no external load, is to consider a very
compressibility cf , such that Kf << Ks, and to consider a weightless fluid (ρf = 0), as represented in
Fig. 11c. In this case, the spring F , representing the fluid phase, does not offer any resistance to the top
boundary, which means that the solid phase does not perceive the presence of the fluid. Therefore, the
porous matrix behaves as a completely solid material.
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5 Numerical Formulation

In the previous sections, the Mandel-Cryer effect and the poroelastic column under the gravitational
field have been discussed and a few hypotheses have been raised in an attempt to explain these phenom-
ena. In order to prove these hypotheses, the situations previously described are reproduced through nu-
merical experiments and the governing equations of Biot’s consolidation model are numerically solved.
The numerical formulation is briefly described in this section.

5.1 Element-based Finite Volume Method (EbFVM)

Traditionally, the finite element method (FEM) is the most common technique employed for obtain-
ing the discretized equations in coupled poroelasticity. In this paper, however, we employ the element
based finite volume method (EbFVM), which combines important features from both FEM and FVM.
This method is naturally applied to unstructured grids that can be composed of different types of el-
ements, which provides great geometrical flexibility for representing complex domains. In order to
handle these unstructured grids, the EbFVM uses the element shape functions and their derivatives in a
similar way to the finite element method. Finally, as a finite volume method the EbFVM ensures local
conservation, which is an important feature specially for fluid flow problems.

The most important entity in any version of the finite volume method is the control volume, where
the property balance is performed. In the EbFVM, each element of the grid is subdivided into sub-
elements (or sub-control volumes) associated to each element vertex. In this manner, the control volume
Ωi is built by the union of all sub-control volumes sharing the same grid node i, as illustrated in Fig.
12. Moreover, every control volume Ωi is bounded by a control surface Γi that can be further split into a
set of faces. Each face of the control volume contains an integration point ip and an area vector s point
outwards the control volume.

Control volume (Ωi)

Element (e)

Node (i)

Integration point of face (ip)

Control surface (Γi)

Sub-control volume (SCV)

i

Area vector (s)

Figure 12. Control volume construction and geometrical entities.

The discretized mass conservation e stress equilibrium equations are obtained by first integrating
Equations 1 and 6 on a control volume Ωi. The volumetric integrals of the divergence terms are trans-
formed into surface integrals by the divergence theorem. Next, the midpoint rule is applied to evaluate
the integrands (fluxes) at the integration points surrounding the control volume. The element shape func-
tions and their derivatives are then used for approximating these fluxes at the integration points. Finally,
the mass conservation equation (Eq. 6) requires a time integration for evaluating the accumulation terms.
In this work we use a fully implicit first-order backward Euler scheme. A detailed description of the
discretization process can be found in Honório et al. [13]. This procedure leads to the algebraic rep-
resentation of the mass balance and the stress equilibrium equations, which can be respectively written
as,

∆Ωi

Q∆t
pi +

∑
ip∈Γi

(Eipue −Hippe) =
∆Ωi

Q∆t
poi +

∑
ip∈Γi

(Eipue)o + bp, (20)
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∑
ip∈Γi

(Kipue − Lippe) = bui Ωi, (21)

where pe and ue respectively denote the pressure and displacement values associated to the element e that
contains the current integration point ip of the summation. Terms Kipue and Lippe in Eq. 21 represent
the forces acting on the surface Γi due to the effective stress tensor and to the pore pressure, respectively.
In Eq. 20 the terms Eipue andHippe respectively represent the volumetric strain and the mass fluxes due
to Darcy’s law. Additionally, the superscript ”o” in Eq. 20 is used to denote the variables evaluated at the
previous time step t, and no superscript is used for the current time level t+ ∆t.

When the procedure described above is performed for each control volume of the grid, the resulting
set of equations can be grouped in a single system of equations with the following form,−K L

E A−H

u

p

 =

bu

bp

 , (22)

where matrix A represents the accumulation terms, H represents the mass fluxes due to the seepage
velocity, Q express the mass fluxes due to the solid movement (volumetric strain), and K and L represents
the effective stresses and the pore pressures acting on control volume’s surfaces, respectively. Finally,
vectors bu and bp are the right-hand side of stress equilibrium and mass conservation equations. In
this work, the linear system represented in Eq. 22 is solved with a fully implicit scheme by an LU
decomposition.

6 Results

The purpose of this section is to present a systematic sequence of problems that allows to test the
hypotheses raised in this paper. Firstly, we verify the correction implementation of the governing equa-
tions of coupled poroelasticity. The numerical solutions are compared with the analytical solutions for
the Mandel’s problem and the Cryer’s sphere. On the implementation is verified, we setup a few different
problems to reproduce the Mandel-Cryer effect and test the hypothesis of the transfer mechanism dis-
cussed in Subsection 3.2. In the sequence, the poroelastic column subjected to the gravitational field is
addressed. The different scenarios discussed in Subsection 4.3 are reproduced by adjusting the porome-
chanical properties.

6.1 Verification of the numerical formulation

In this paper we employ numerical simulations as a tool for testing the hypotheses discussed in Sec-
tions 3 and 4. Therefore, it is of utmost importance to verify the correct implementation of the numerical
formulation presented in Section 5. For this purpose, we perform simulations for the Mandel’s problem
and the Cryer’s sphere and compare the numerical results with the analytical solutions available, which
can be found in Verruijt [14]. For both problems, the poromechanical properties used are summarized in
Table 1. The fluid properties are cf = 3, 0303× 10−10 Pa−1 and µ = 1, 0× 10−3 Pa.s.

Mandel’s problem

The boundary conditions for Mandel’s problem are presented in Subsection 3.2. Since we employ
a three-dimensional formulation, the geometry for this problem is a cube of 1 meter edges and the
grid employed is composed of 20.860 tetrahedra and 4.614 nodes, as illustrated in Fig. 13a. Normal
displacements are set to zero at the bottom boundary (z = 0), at the left boundary (y = 0) and at the
front (x = 0) and back (x = −1) boundaries. The right boundary (y = 1) is traction-free and pressure is
prescribed to be zero (fully drained). The top boundary (z = 1) is subjected to a total force F = −10.000
kN and the vertical displacement is not allowed to vary in the x− y plane.
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Table 1. Poromechanical properties for verification problems.

Property Nomenclature Value

Biot’s coefficient α 0,978

Porosity φ 0,19

Poisson’s ratio ν 0,2

Shear modulus G 0,6 GPa

Solid compressibility cs 2, 78× 10−11 Pa−1

Permeability k 1, 9× 10−12 m2

Figure 13b shows good agreement between the analytical and numerical solutions of the pressure
profiles along the horizontal direction for different time levels. It is important to notice the pressure
increase at position y = 0 until t = 0, 02 s. This is precisely the Mandel-Cryer effect caused by
contraction of the right boundary.
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Figure 13. (a) Tetrahedral grid and pressure field. (b) Pressure profiles along horizontal direction for
different time levels.

Cryer’s sphere

For the Cryer’s sphere, only an eighth of a sphere with 1 m radius is simulated, as depicted in
Fig. 14a. The grid employed is composed of 17.370 tetrahedra and 3.928 nodes. In this problem, zero
normal displacements and undrained condition are prescribed over the flat surfaces. On the outer surface,
pressure is prescribed to be zero and a compressive load of 10 kPa is applied. The analytical solution
for this problem provides the pressure behavior at the center of the sphere. In Fig. 14b, the analytical
and numerical solution of the pressure at the center of the sphere is plotted against time. As shown in
this figure, the pressure increase during the begin of the simulation, which characterizes the Mandel-
Cryer effect, is perfectly captured by the coupled numerical formulation. It is also interesting to notice
in Fig. 14a that the region swept by the pressure front (referred to as region A in Fig. 4c) can be clearly
identified. We suggest that it is precisely the shrinkage of this region what causes the core of the sphere
to compress even more, thus causing the pressure to increase above the initial level.
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Figure 14. (a) Tetrahedral grid and pressure field. (b) Pressure at the center of the sphere along time.

6.2 Numerical experiments: Mandel-Cryer effect

According to the hypothesis developed in Section 3, the additional pressure increase that character-
izes the Mandel-Cryer effect occurs because of a sort of mechanism that transfers the volumetric strain
from on region of the domain to another another region. This hypothesis implies that the Mandel-Cryer
effect has nothing to do with the external load applied. Therefore, one of the strategies for testing this
hypothesis is to solve the Mandel’s problem and the Cryer sphere with no external load applied. In this
case, the initial pressure can be set to zero, so the porous matrix expanded at the beginning of the simula-
tion. Finally, a negative pressure is prescribed along the draining boundary in order to cause it to shrink
and thus inducing the Mandel-Cryer effect. This strategy is employed in both problems presented below.

Mandel’s problem

As mentioned above, no external load is applied to the Mandel’s problem. At the draining boundary,
a prescribed pressure of −10 kPa is applied. In this case, a pressure increase at the center of the slab
necessarily means it is under compression. If there is no compressive load at the top boundary, then there
must be another cause. As we can see in Fig. 15, the pressure at the center of the slab does increase as
the pressure front penetrates the domain. As expected, only when the pressure front reaches the center
of the domain the pore pressure starts to alleviate. The correlation between the pressure increase and
the pressure front (region A in Fig. 19) suggests that the Mandel-Cryer effect is indeed caused by the
volumetric strain transferring mechanism, which in this case is the horizontal orientation imposed on the
top boundary.

Cryer’s sphere

In Section 3 we also raised an argument that the pressure at the center of the sphere increases as the
crust (region A in Fig. 4c) gets thicker. Once the pressure front reaches the center of the sphere, then
the fluid starts to flow due to the pressure gradient and thus the pore pressure starts to dissipate. In fact,
the fluid flow, represented by the time integral on the right hand side of Eq. 16, is the only reason for
the pressure decrease. If the core of the sphere is impermeable, for example, then the fluid is not able
to move and thus there will be no pressure decrease unless the center of the sphere expands. In other
words, if the pore pressure at the center of the sphere, which is impermeable, does not decay it means it
is constantly under compression. If there is no external load applied to the sphere, then the only reason
for the core to be compressed is that the crust must be compressing it. The hypothesis here is that this
compression is caused by the shrinkage of the crust.
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Figure 15. Pore pressure at the center of the slab (x = y = z = 0).

The Cryer’s sphere is now solved with no external load, zero initial pressure and a pressure of −10
kPa prescribed on the external surface. Additionally, the sphere has 1 m radius and it is composed of two
concentric regions. The interface between the two regions is at R = 0, 5 m. The poromechanical proper-
ties of both regions are summarized in Table 1, except for the inner region, which has zero permeability.
Figure 16 shows the pressure behavior at the center of the sphere, as well as the pressure distribution
at certain time levels. As predicted in the previous paragraph, the pressure at the center of the sphere
increases until certain level and does not give any indication that it is going to decrease. This confirms
our hypothesis that the pressure increase does not have anything to do with the external load and the core
of the sphere is permanently under compression.
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Figure 16. Pore pressure at the center of a sphere with impermeable core.

6.3 Numerical experiments: Poroelastic column

The poroelastic column discussed in Section 4 is solved with a 6 meters high column and a 1 × 1
meters base. The vertical boundaries are prevented from normal displacement, the bottom boundary
is fixed and the top boundary is traction-free. All boundaries are impermeable and the gravitational
acceleration is 9, 81 m/s2. The poromechanical properties of the solid matrix are those presented in Table
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1, with two exceptions: cs = 0, 0 and α = 1, 0. Additionally, the solid and fluid densities are ρs = 2.700
kg/m3 and ρf = 1.000 kg/m3, respectively. Different from the previous subsection, where the pressure
field has been analyzed, in this subsection only the vertical displacement profiles are presented. The
resulting pressure for this problem is always the expected hydrostatic profile, so they are not of interest
in this paper.

In the examples presented below we intend to reproduce the behaviors illustrated in Figures 10
and 11. This will be achieved by simply changing the fluid compressibility, cf , which is equivalent to
modify the stiffness of the springs representing the fluid phase in the spring-mass systems discussed in
Section 4. By setting the fluid compressibility to 3, 0303×10−10 Pa−1, for instance, the resulting vertical
displacement profile is the one shown in Fig. 17a. As it can be verified, this value of cf reproduce the
behavior of a very stiff spring that holds the top boundary. In this manner, the maximum displacement is
not on the top boundary, but somewhere near the middle of the column (around z = 3, 5 meters) instead.
Furthermore, it should be pointed out that most of the upper half section of the column is actually under
traction, since it is indeed hanging by the top boundary. It is also important to remark that this effect
would never happen if the lateral boundaries were free to move.
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Figure 17. Displacement profiles for fluid compressibilities equal to (a) 3, 0303 × 10−10 Pa−1 and (b)
3, 0303× 10−8 Pa−1.

Now, by reducing the fluid compressibility to cf = 3.0303 × 10−8 Pa−1 the situation depicted in
Fig. 11a is reproduced, as it shown by the vertical displacement profile shown in Fig. 17b. In this case,
the maximum displacement is indeed at the top boundary, but a careful look at this position reveals that
the top boundary undergoes a compression, even though there is no solid layer above it and in the absence
of any external load. This means that there must be something else exerting a force on the top boundary.
Since the porous column is fully saturated, there are fluid particles in contact with the top boundary. In
the presence of the gravitational field, fluid phase is also compressed so those fluid particles in contact
with the top boundary move downwards. Since there is no vacuum inside the poroelastic column (fully
saturated), when the fluid particles move downwards, they must pull the top boundary down as well.
Therefore, it is the fluid weight that exert a force on the top boundary. If this is true, then there should
be no force acting on the top boundary if the fluid is weightless, which is roughly represented by the
spring-mass system shown in Fig. 11c. In other words, the derivative of the vertical displacement along
the vertical direction at the top boundary should be zero. Indeed, when we set ρf = 0, the vertical
displacement profile obtained is the one presented in Fig. 18a, which is precisely what was predicted.

The last problem intends to reproduce the situation described in Fig. 11b. The hypothesis behind
this problem is that, by setting a particular compressibility for the fluid phase, it is possible to obtain a
displacement profile just like in Fig. 18a, that is, with no deformation at the top boundary. This means
that the top boundary is neither sustained by the fluid phase, as in Fig. 17a, nor pulled down, as in Fig.
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Figure 18. Displacement profiles for (a) a weightless fluid (ρs = 0) and (b) a fluid with compressibility
of 4, 7× 10−9 Pa−1.

17b. For the right compressibility cf , the solid phase and the fluid phase are both equally displaced down-
wards at the top boundary by the influence of the gravitational field. For the poromechanical properties
used, a cf = 4, 7× 10−9 Pa−1 produces the vertical displacement profile shown in Fig. 18b.

7 Conclusion

In this paper, a few non-intuitive behaviors that appear in coupled poroelasticity have been ad-
dressed. The equations composing Biot’s consolidation model have been analyzed in order to improve
our sense of the physics behind poroelasticity and to gain some insights to provide rational explana-
tions for these counterintuitive phenomena. Numerical simulations are used in this paper as a tool for
reproducing specific scenarios and to test the proposed hypotheses.

The Mandel-Cryer effect has been deeply discussed and a detailed explanation on the conditions
that cause this phenomenon have been established. In fact, we suggest that the Mandel-Cryer effect can
only occur when there is a mechanism that is able to instantly transfer the volumetric strain (expansion
or contraction) from one region of the domain to another region. When this mechanism operates, the
pore pressure is affected as well, accordingly to the mass balance equation. It has been shown that
this mechanism takes different forms but it is always responsible for volumetric strain transferring. For
instance, in Mandel’s problem the restriction of horizontal movement of the top boundary is responsible
for transferring the shrinkage close to the open boundary to the interior of the domain. For the Cryer’s
sphere, on the other hand, the transfer mechanism is the shrinkage of the crust of the sphere, which
instantly compresses its core. According to this hypothesis, if the boundary conditions provide this
transfer mechanism, then the Mandel-Cryer effect should be observed even when no external load is
applied. This prediction has been precisely reproduced through the numerical experiments presented
here. Additionally, although we have not addressed this problem here, we can also state that the Mandel-
Cryer effect does not appear in Terzaghi’s poroelastic column because the boundary conditions imposed
do not create a mechanism able to instantly transfer the volumetric strain from the top boundary to the
base of the column.

We have also addressed a fully saturated poroelastic column with all boundaries sealed immersed
in gravitational field. Different scenarios have been described and investigated. For each one of them, a
simple spring-mass system that roughly reproduce the same behavior has been presented. These spring-
mass systems have proved to be very helpful in order to understand the displacement patterns that can
appear when different properties are assigned to both solid and fluid phases. Once the roles played by the
solid and fluid phases were well understood, a few numerical experiments have been set up to reproduce
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four different situations. All numerical solutions obtained were in accordance with the behavior predicted
by the spring-mass systems and reasonable physical explanations have been provided.

Although coupled consolidation is a well understood phenomenon and the model equations are
well established, the sense humans have about the physics of this problem is often flawed. In order
to improve the understanding of this physics, besides a careful analysis of the model equations, the
numerical simulation have proved to be of great help, as it allows for a fast and reliable tests of the
proposed hypotheses.
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