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Abstract. The estimation of soil shear strength parameters has been of much relevance in Geotechnical 

Engineering since the early stages, leading to the creation of many correlations based on in situ tests. 

However, Das and Basudhar (2008), Goktepe (2008) and Shooshpasha, Amiri and MolaAbasi (2014) 

stated that these existing correlations have limited use and low generalization capacity when compared 

to the neural models they proposed from index properties of soils. On behalf of that, this work was 

carried on prediction of cohesion and friction angle of soils in the natural state by the use of 

backpropagation multi-layer perceptrons built from easy-to-collected in situ input, NSPT, V0’ and soil 

type. The architecture chosen, A:3-5-3-2, used hyperbolic tangent activation function, being trained and 

tested by 38 soil samples, having reached correlations up to 0,94 for training, attesting its efficiency. 
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1  Introduction 

In predicting the effective friction angle, most models have focused on the use of NSPT in nonlinear 

correlations, although there is no consensus on equation modeling. However, some authors understood 

that this parameter alone was unable to represent the mechanical behavior of the soil and therefore 

applied corrections taking into account the influence of characteristics such as confining stress (v0') 

(Hatanaka & Uchida, 1996) [1] and standardization of the SPT assay application energy (Dunham,1954 

[2]; Decourt, 1989 [3]; Hatanaka & Uchida, 1996 [1]). On the other hand, the correlations for cu 

prediction proposed in literature are very similar to each other, with expressive results when the CPT 

results are used as input to the model. In these models, the parameter Nk has changed values according 

to the studies performed (Remai, 2013 [4]; Zein, 2017 [5]; Otoko et al., 2019 [6]). 

However, such models were generally proposed for purely cohesive or frictional materials, thus 

lacking the ability to predict both strength parameters simultaneously. In addition, these models simplify 

the mechanical behavior of mixed materials such as clayey sands, disregarding the portion of effective 

cohesion (c') or effective friction angle (') and are unable to predict the effective cohesion of the soil. 

In order to mitigate problems of similar complexity, the use of artificial neural networks (ANN) has 

been widespread in several areas due to its high generalization capacity, which can be verified in the 

literature review by Schmidhuber (2015) [7]. Reviews on the use of ANN in Geotechnical Engineering 

can be verified in the works of Shahin et al. (2001) [8], Das (2012) [9] and Juwaied (2018) [10], showing 

the modeling of complex problems such as prediction of mechanical behavior of rock discontinuities. 

The efficiency of this technique in predicting mechanical behavior of soils can also be verified in the 

studies by Goktepe et al. (2008) [11] and Das & Basudhar (2008) [12]. 

The aim of this paper is to present and compare the existing models of soil cohesion and friction 

angle prediction with artificial neural networks modeled from simple and easily collected input 

variables. The proposed RNA used as input NSPT, initial effective overburden stresss (v0') and soil type, 

which are characteristics whose correlation with shear strength is already proven. The proposed network 

was trained and tested with a vast database that gathered worldwide data, comparing the results of each 

model based on the correlation coefficient values. The calculated versus measured graphs were plotted 

to verify the generalization capacity of models, attesting their efficiency. Finally, the research limitations 

are presented. 

 

2  Literature Review 

2.1 Shear resistance of soils 

In Geotechnics, mechanical behavior of soils governs how the structures will respond to loads 

applied in the mass and so the shear strength parameters are vastly used in designing. The most common 

uses of these parameters in designing are in limit equilibrium analysis or theoretical constitutive models 

such as the Morh-Coulomb criterion, which results in precise and practical modelling. Morh-Coulomb 

criterion defines soil mechanical behavior as a result of a cohesive and a frictional part, as shown in Eq. 

(1). The shear resistance envelope given by s presents a cohesive part called effective cohesion (c’), 

which is defined by the sum of electrical forces among particles, being present in a more relevant way 

for fine-grained soils due to size of particles. The frictional part is dependent on effective normal stress 

(’) lays on effective friction angle (’), which tend to govern coarse-grained soil’s mechanical behavior 

by particle-to-particle contact. However, it is not unlikely to observe true cohesion in coarse-grained 

soils, since cementing of contacts might occur for particles subjected to weathering during long periods, 

which is observed in sandstone. Furthermore, there are several characteristics that affect shear strength 

behavior, such as soil composition, structure, particle size and presence of water, (Lambe & Whitman, 

1969 [13]). 

s = c' + 'tan (')                                                               (1) 
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However, obtaining c’ and ’ in laboratory tests may be unfeasible in many situations due to 

difficulties of extracting undisturbed soil samples. That said, authors have proposed and attested the 

efficiency of correlations base on field easy-to-collect input such a number of blow counts from SPT 

(NSPT) and CPT penetration resistance. A correlation for friction angle prediction based on NSPT is shown 

in Eq. (2) proposed by Hatanaka & Uchida (1996) [1]. Furthermore, a correction on NSPT value by 

overburden stress (v0’), given in kPa, is shown in Eq. (3), since it is known that number of blow counts 

alone is incapable of representing shear strength behavior of soils. 

' = (20 Nl)0.5 + 20°.                                                            (2) 

l = NSPT / (’v0 / 98)0.5.                                                         (3) 

In cohesion prediction, correlations were proposed only on estimating undrained cohesion (cu). This 

simplification of the models is made in order to consider the most adverse situation to which it may be 

subjected, although it is unfavorable to cost optimization and does not take in consideration the frictional 

part of shear resistance for soil mixtures. However, correlations such as the ones shown in Eq. (4) 

proposed by and Decourt (1989) [3] and show good agreement when fine-grained soils are subjected to 

undrained load conditions. 

cu = 12.5 NSPT.                                                                  (4) 

2.2 Artificial Neural Networks 

Artificial neural networks (ANN) are processors based on the functioning of the human brain which 

operates as a parallel association of several simpler units, called artificial neurons, that are separated 

into layers and are interconnected. The background history of ANN development, from the conception 

of the first artificial neuron proposed by McCulloch and Pitts (1948) [14] to the most modern 

unsupervised learning techniques, can be found in Haykin (2001) [15]. 

Similar to the nervous system cell, these units are interconnected, collecting and summing 

information proportionally to synaptic weights until an activation potential, also called bias, is reached 

and the stimulus propagated. The mathematical process that occurs in each processing unit generating 

the response to stimuli is governed by Eq. (5) and (6). 

vk = wkj xj + bk = {w}T{x}.                                                      (5) 

yk = φ (vk) = φ ({w}T{x}).                                                        (6) 

Where, vk is the induced local field; {w}T = [bk, wk1, wk2,...wkm] is the vector of biases and weights 

of neuron k;{x}T = [1, x1, x 2, x 3,... xm] is the input signal vector; bk is the bias of neuron k; φ is the 

activation function; and yk is the output of neuron k.  

The activation function is responsible for ensuring that mathematical process is differentiable, so a 

cost reduction algorithm can be used for an efficient training. Haykin (2001) [15] stated that the most 

commonly used activation functions are Sigmoid, Hyperbolic Tangent, Hyperbolic Secant and 

Gaussian.  

In Geotechnical Engineering, Dantas Neto et al. (2017) [16] stated that multilayer perceptron is the 

most used type of ANN due to its versatility and simplicity. These neural networks are of feedforward 

type and may be characterized by the presence of three or more layers, the first of which is responsible 

for receiving external stimuli. One or more hidden layers follow the input layer, being responsible for 

the interpretation and generalization of the behavior of the studied phenomenon. At last, an output layer 

gives the output for the model. 

The training of the network is then carried by an error correction algorithm acting during iterations. 

Mostly, multi-layer perceptrons are trained by a teacher using a backpropagation algorithm, proposed 

by Rumelhart et al. (1986) [17], meaning that weight vector adjustment occurs when the error signal 

obtained from the difference between desired and calculated output is backpropagated throughout layers 

(Haykin, 2001) [15]. Therefore, this step aims to minimize a cost function, seeking to maximize the 

generalization capacity without resulting in overtraining.  
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2.3 Applications of ANN in Geotechnics 

Applications of artificial intelligence in order to develop more efficient machines have been the 

object of study for some time. Schmidhuber (2015) [7] shows that the first uses of neural networks, in 

the way they are used today, date from at least the 1960s with the use of nonlinear layers of neurons. 

However, deep learning was only reached in 1991 when pre-processing data with help of unsupervised 

learning networks, and the term “deep learning” was first used in 2006. 

In the meantime, the studies focused on building programs and machines capable of replicating 

human behavior, such as visual, writing and audio recognition. Although, in order to do so, various 

techniques were used in the training of ANN such as: GMDH (Group Method Data Handling), 

backpropagation and Max-pooling. All those techniques were then combined in different ways so that a 

neural network could be made that would overcome the main barrier of deep learning: backpropagation 

training. Schmidhuber (2015) [7] quotes several works of little and great relevance on the development 

of these neural networks.  

 In Geotechnical Engineering, the use of artificial intelligence (AI) has been used for many 

purposes. Shahin, Jaksa & Maier (2001) [8], Das (2012) [9] and, more recently, Juwaied (2018) [10] 

have explained the state of art and the uses of ANN that have been applied in Geotechnical Engineering. 

According to those authors, the use of ANN in this field has had a successful performance in the 

prediction of soil parameters and understanding of phenomena.  

Some works in pile bearing capacity were developed by Goh (1995) [18], Abu-Kiefa (1998) [19], 

Das & Basudhar (2006) [20], Momeni et al. (2015) [21] and Maizir et al. (2015) [22] on driven piles for 

sandy and clayey soils, considering lateral load capacity and axial capacity. Studies developed by Lee 

& Lee (1996) [23] were focused on behavior of piles considering, stress-wave measurements using 

CAPWAP for ANN training, meanwhile Teh et al. (1997) [24], Shahin (2010) [25], Park & Cho (2010) 

[26] and Wardani, Surjandari & Jajaputra et al. (2013) [27] focused on prediction of bearing capacity 

based on geometry of piles and field responses to SPT (Standard Penetration Test) and CPT (Cone 

Penetration Test). 

Prediction of pile settlement was object of study by some other authors. Sivakugan, Eckersley & 

Li (1998) [28] proposed an ANN based on NSPT net applied pressure, width of foundation, shape of 

foundation and depth, obtaining outstanding correlations with measured results. Shahin, Jaksa & Maier 

(2000) [29] carried studies on prediction of settlement of shallow foundations in cohesionless soils, 

taking in consideration soil and structure characteristics, using multi-layer perceptrons with standard 

back propagation algorithm. 

Other works on ANN implementation in Geotechnics were carried by Gangopadhya et al. (1999) 

[30] on aquifer characterization; Rizzo & Dougherty (1996) [31] on subsurface contamination; Monjezi 

& Dehghani (2008) [32], Sayadi et al. (2013) [33] and Dantas Neto et al. (2017) [16], on rock 

fragmentation and shear strength of discontinuities. Tunnelling was also object of ANN modelling by 

Lee & Sterling (1992) [34], Shi, Ortigao & Bai (1998) [35], Yoo & Kim (2007) [36] and Hajihassani et 

al. (2011) [37] on prediction of tunnel settlement, designing and failure prediction. 

Nevertheless, even though ANN application covers several areas in Geotechnical Engineering, 

many of the relevant studies have focused on predictions and behavior of piles probably because data 

collection and field evaluation of structures is more easily made. 

3  Materials and Methods 

3.1 Database and treatment 

A database was built from the works of Dias (1987) [38], Coutinho et al. (2000) [39], Lima (2002) 

[40], Gomes (2003) [41], Lafayette (2006) [42], Marques (2006) [43], Santos (2007) [44], Silva (2007) 

[45], Ribeiro et al. (2012) [46], Souza (2012) [47], Magalhães (2013) [48] and Souza (2014) [49]. The 

information collected consisted of NSPT, vo’, soil type, c’ e ’. Soil distribution is shown in Fig. 1, in 

which a simplified classification of soils was chosen in order to understand the influence of this variable 
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on the output. 

 

Figure 1. Soil type distribution 

Collected data was then normalized between the limits 0.85 and 0.15, as shown in Eq. (7), following 

the recommendations of some authors (Dantas Neto et al., 2017 [16], Araujo et al., 2016 [50]). The 

maximum and minimum values used on normalization of each variable is shown in Table 1.  

(xnorm - xnorm,min)/ (xnorm,max - xnorm,min) = (x - xmin)/ (xmax - xmin)                            (7) 

Where, xnorm representes the variable after normalization; xnorm,min, the minimum limiting value of 

normalization; xnorm,max, the maximum limiting value of normalization; x, the input variable; xmin e xmax, 

the minimum and maximum values for each variable in the training database, respectively. 

Table 1. Maximum and minimum values used during ANN normalization 

 c' (kPa) ’ (º) σv0' (kPa) NSPT 

Min 0.00 5.31 8.15 2.00 

Max 112.30 54.46 420.00 90.00 

3.2 Definition of input variables 

In order to propose variables that could simply represent the mechanical behavior of soils in 

situations in which undisturbed samples extraction and field resistance tests were not feasible, the 

following input variables for ANN were chosen: 

- x1: NSPT; 

- x2: v0'; 

- x3: soil type. 

The choice of the NSPT value as the input variable was based on the possibility of its measurement 

at great depths. Also, its use on prediction of shear strength parameters had already been validated by 

existing correlations, such as the one proposed by Decourt (1989) [3]. Shooshpasha, Amir & MolaAbasi 

(2015) [51] also showed the efficiency of such a variable in an ANN model for prediction of '. 

In turn, v0' was chosen because it has a direct influence on soil shear strength (Lambe & Whitman, 

1969) [13]. This fact may be noticed in direct shear and triaxial compression tests, in which there is a 

direct interdependence between the confining stress and soil shear strength. Moreover, the efficiency of 

using this variable in predicting c' and ' can be verified in the work of Shooshpasha, Amiri & MolaAbasi 

(2015) [51]. 

Unlike other studies, soil type was introduced in the proposed model as an input variable 

considering the differences in soil shear strength mechanism due to this characteristic. According to 

Morh-Coulomb criterion, the mechanical behavior of soils is governed by a cohesive portion, 

characteristic of fine soils, and another frictional one, which is quite noticeable in granular soils, thus 

evidencing the influence of soil type on soil shear strength prediction. 

It is noteworthy that, although the variables have a good correlation with the predicted parameters, 

none of them alone can follow the trend of soil resistance behavior. Thus, the neural network proposed 

in this paper follows the simplified formulation shown in Eq. (8), in which the function h generally 

Soil type 3: 
sandy, 67%

Soil type 2: 
silty, 13%

Soil type 1: 
clayey, 20%
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represents the architecture, synaptic weights and bias of all neurons. 

c', '= h (NSPT, v0', soil type)                                                     (8) 

3.3 Training and testing 

In order to develop an ANN with good generalization capacity in the prediction of soil shear 

strength parameters, some network architectures were proposed. The networks were then trained and 

tested from the collected database, considering soil types with a quantitative input ranging from 1 to 3, 

according to the classification shown in Fig. 1. 

The collected data were randomly divided into training and testing groups so that 80 samples were 

used for training and testing, of which 68 for the first stage and 12 for the second stage. This division 

was based on the works of Tizpa et al. (2015) [52], in which 85% of the database was used for training 

and 15 % for ANN test.  

The proposed networks were then modeled with the aid of QNET 2000 software as multi-layer 

perceptrons using the standard feedforward backpropagation algorithm. Network training occurred up 

to one million iterations, during which the software default settings were used: learning rate () equal 

to 0.001 ≤  ≤ 0.300 and momentum  = 0.8, as proposed by Dantas Neto et al. (2017) [16]. 

For the conception of the ANN hyperbolic tangent activation function was used, shown in Eq. (9), 

which provides more stability during network learning. By doing this, the learning process becomes 

differentiable and the local gradient can be calculated to allow the calculation and backpropagation of 

the error signal during training. 

(tanh + 1 )/2                                                                  (9) 

Concomitantly, the test step was carried, performing the first neural network check by calculating 

the values of c' and ', as well as the errors for a group of samples also randomly selected and not used 

to define synaptic and bias weights. Thus, it was possible to verify the occurrence of “overtraining”, 

which consists in the loss of generalization capacity of the model due to over-adaptation to the training 

data. This phenomenon may be verified when the root mean square (RMS) value continues to decrease 

during training and increases for the test. Thus, the ideal network will be the one with the lowest number 

of iterations for which the lowest RMS value is obtained for both steps (Haykin, 2001) [15]. 

4  Results and discussion 

The proposed artificial neural networks had the training and testing steps performed up to 1,000,000 

iterations, as shown in Fig. 2, in which the correlation and RMS curves versus number of iterations were 

plotted. To present the proposed neural networks the nomenclature used was A: X-Y-Z, where X 

represents the input signals of the model; Y, the neurons in the hidden layer; Z, neurons in the output 

layer. 

For the choice of optimal ANN, it was observed the convergence of maximum correlation for 

training and testing at a minimum amount of iterations without overtraining (Dantas Neto et al., 2017) 

[16] . With this in mind, analyzing Fig. 2 shows that there is a growing trend of correlations during 

training, although in the test stage this statement is not true for all proposed ANN.  
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Figure 2. Correlation history: (a) training; (b) test 

Table 2 presents the architectures and number of iterations considered optimized for each ANN. 

The ANN defined by A: 3-5-3-2, shown in Fig. 3, presented the best results, with the highest correlation 

values during both phases with a simple architecture, thus being selected as the ideal network to predict 

the parameters of soil resistance. However, correlations during testing phase reached low values, 

meaning that models might have failed during generalization. This is due to the various mechanisms 

that interfere in soil natural shear strength behavior such as suction and moisture content, which were 

not taken in account in this study.  

Table 2. Correlations and iterations for optimized ANN 

Architecture 
Coefficient of correlation Iterations at 

convergence Traning Testing

A: 3-2-2 0.69 0.18 100,000 

A: 3-5-2 0.89 0.08 500,000 

A: 3-5-3-2 0.94 0.40 1,000,000 

 

(a) 

(b) 
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Figure 3. Network architecture of model A:3-5-3-2 

The outputs of the model were then plotted on a scatterplot of measured versus calculated, presented 

in Fig. 4, showing that although correlations during test phase were not so high, the results had a good 

adjustment to the x = y line. It may be observed that both cohesion and friction angle prediction 

presented a good agreement throughout the whole range of training, meaning that the model actually 

had fair generalization capacity. 

 

Figure 4. Adjustment of outputs to targets: (a) cohesion prediction; (b) friction angle prediction 

QNET 2000 also gives as output the input node interrogator (NI), which gives information about 

the percentage of contribution of each input variable to the calculation of outputs. Figure 5 presents the 

values of NI for cohesion and friction angle prediction, illustrating that all three variables chosen as 

input (v0’, NSPT and soil type) presented similar results and thus their use on soil shear strength 

prediction may be validated. 
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Figure 5. Input node interrogator results for the best model during training for: (a) cohesion prediction; 

(b) friction angle prediction 

The advantage of using ANN lies on the possibility setting a simple spreadsheet base on the weights 

and biases adjusted during training. In order to do so, it is necessary to use Eq. (5), (6), (7) and (9), 

which represent the functioning of the networks. The weights and biases obtained for the chosen 

architecture, A: 3-5-3-2, are shown in Tables 3, 4 and 5. 

Table 3. Weights and biases for first layer of neurons 

Inputs 1 2 3 4 5 

x1 4.46486 9.83136 -1.06893 -8.37437 -6.80742 

x2 -7.62829 5.70232 -3.01215 8.00378 14.06121 

x3 5.04268 5.94829 4.26727 -7.31992 -1.03876 

bias -1.01599 -4.4028 0.98038 2.67593 -3.70099 

Table 4. Weights and biases for second layer of neurons 

Hidden layer 1 outputs 1 2 3 

x1 2.28075 7.46633 3.5719 

x2 5.03525 -0.82626 -7.45851 

x3 6.27463 -5.6352 -1.42538 

x4 -4.63629 3.89302 -3.79581 

x5 -11.8769 -3.87687 -6.79259 

bias -2.41088 0.06966 5.60651 

Table 3. Weights and biases for output layer of neurons 

Hidden layer 2 outputs 1 2 

x1 -7.08198 -4.34984 

x2 11.53031 7.37514 

x3 -5.29956 -3.85045 

bias -0.33727 -0.15532 

5  Conclusions 

This paper has produced a multilayer perceptron artificial neural network for the prediction of soil 

shear strength parameters, having as input variables easily collected field data, whose correlations with 

c' and ' are proved: v0', NSPT and soil type. After analyzing several architectures, the A: 3-5-3-2 

0.00%
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network trained up to 1,000,000 iterations using the hyperbolic tangent activation function was chosen 

as the optimized model. This model obtained high correlations, equal to 0.94 and 0.40 for training and 

testing respectively, proving to have reasonable predictive ability. Scatterplots of measured versus 

calculated have proven the good generalization capacity. 

However, further studies on the modeling of soil mechanical behavior by ANN are recommended 

to implement the proposed model. Suggestions for future researches include use of other easily collected 

variables as input and implementation of a greater database for training that has more heterogeneity. 

Nevertheless, the efficiency of models made from ANN is evident. 
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