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Abstract. Shallow foundations are recommended for suitable soils, in terms of bearing capacity and 

small settlements. For sites underlain loose soils, conventional practice is either to implement 

expensive deep foundations, or remove and replace the soft soils. In this context, soil improvement 

with admixtures (such as cement, lime, fly ash, slag, and combinations) turns to be a viable solution. 

However, designs procedures conceived to estimate bearing capacity improvement of such soils are 

based on empirical methodologies. The present work aims to study the ultimate bearing capacity 

problem of shallow foundations resting on the surface of a granular soil reinforced by a soil-cement 

layer. Such task is accomplished by means of the kinematic approach of the yield design theory 

through the implementation of several admissible virtual velocity fields, under plane strain conditions, 

for purely vertical loads. A parametric study is presented as a function of dimensionless parameters, 

which are defined from geometrical and strength properties. A comparison is then made, with 

available results obtained in the context of reduced models tests, under plane strain conditions. The 

maximum gap between the ultimate bearing capacity of the yield design theory and the reduced model 

tests was of about 18%. 

Keywords: Bearing Capacity; Foundations; Limit Analysis, Yield Design. 
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INTRODUCTION 

Shallow foundations are recommended for suitable soils, in terms of bearing capacity and small 

settlements. For sites underlain loose soils, conventional practice is either to implement expensive 

deep foundations, or remove and replace the soft soils. Several researches seek to find a methodology 

that allows the increase in soil bearing capacity for shallow foundations. Studies conducted in recent 

years show that it is possible to achieve such task by adding a soil-cement layer. [1]–[3] 

The soil-cement is obtained from the mixture of soil, cement and water in adequate proportions, 

and has higher strength characteristics than natural soil. It has been used for decades in the area of 

pavement stabilization, as have other cementing products such as cement, lime, fly ash, slag, and 

combinations. [4] 

An estimate of the increase of the ultimate bearing capacity of shallow foundations resting on the 

surface of a granular soil reinforced by a soil-cement layer can be made using the application of the 

yield design theory, which consists of two fundamental approaches: static approach, which allows to 

obtain loads for which the system will be stable and will not produce failure, and the kinematic 

approach, which defines the loads for which the system is ensured that the system fails. By 

maximizing and minimizing the obtained equations, the theoretical exact solution of the maximum 

permissible system load may be found. 

STATEMENT OF THE PROBLEM 

The present work relates to the ultimate bearing capacity of shallow foundations resting on the 

surface of a granular soil reinforced by a soil-cement layer. The foundation (width B ) and the soil-

cement layer (width rB  and depth rH ) are assumed to have an infinite length following z axis (plane 

strain situation). Loads are considered uniformly distributed on the z axis. The foundation is assumed 

rigid. Two mechanisms of failure are studied: Prandtl’s mechanism and Hill’s mechanism, for the case 

resting on the surface of soil-cement layer and the case of resting on natural soil. 

The soil studied is granular, and therefore it is able to be modeled as Mohr-Coulomb material 

with friction angle   and cohesion intercept C  is null. The friction angle varies between values from 

0  to 40 . The gravity forces are taken into account in the analysis. The parameters on which the 

problem depends are: the vertical component of the load V , the internal friction angle   and the 

density of the soil  , as well as the geometry of the mechanism studied: the width B of the 

foundation; and the thickness rH , over width rT  and width rB  of the soil-cement layer. 

 

Figure 1. Shallow foundations resting on the surface of a granular soil reinforced by a soil-cement layer 
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The non-dimensional load capacity factor is defined as: 

2

2P
N

B



=           (1) 

where P is the vertical load uniformly distributed per meter. Parameters m  and n  are used to 

relate the thickness rH , over width rT  and width rB of soil-cement layer to the width B  of the 

footing: 

  

rH nB=
           (2) 

r rT mH=
           (3) 

(1 2 )rB mn B= +
          (4) 

SOIL-CEMENT LAYER 

The soil cement is a compacted mixture of soil, water and cement in a certain dosage, this 

material has an increased resistance to compression than natural soil and a very low permeability. All 

soils are suitable to be used as soil cement, however, the consumption of cement in the mixture and the 

workability of the material establish the limits of which type of soil to use. Those where the 

percentage of cement is between 5% and 12% of the weight of the material are considered suitable. 

Better results are obtained with sandy soils, soils with gravel, sandy soils with deficiency of fine 

particles, loamy soils and clay soils with low plasticity.[5] 

Both soil-cement and cement paste are composed of sand (in the case of a granular soil), water 

and cement, their main difference being that the moisture content soil-cement are insufficient to cover 

the entire surface of the aggregates and fill the voids existing in the volume of the same. 

Vendruscolo (1996) mentions that there are two types of reactions that appear due to soil-cement 

interaction: primary and secondary reactions. Primary reactions are those governing granular soils, 

while cohesive soils are more affected by secondary reactions. [6] 

The same autor, quoting Moh (1956), represents this reactions as: 

Primary reactions: 

Cement + H2O →CSH + Ca(OH)2  (Hydration) 

Ca(OH)2 →  Ca++ + 2(OH)-    (Hydrolysis) 

Secondary reactions: 

Ca++ + 2(OH)- + SiO2 →  CSH 

Ca++ + 2(OH)- + Al2O3 →  CAH 

Where: C = CaO, S = SiO2, F = Fe2O3 and H = H2O. 

Foppa (2016) tested reduced models of surface foundations on a layer of soil-cement 

reinforcement. It was able to determine two characteristic types of failure.  In the first case the 

foundation and the reinforcement behave as a single element that settles uniformly, the layer of 

reinforcement sinks into the natural soil without presenting cracks until the displacement 

corresponding to the load capacity of the natural soil, the rupture occurs in the base soil. In the second 

case the rupture occurs in the reinforcement layer due to the appearance of a fissure that is originated 

by the existence of an initial settlement, when the settlements increase the fissures propagate from 

bottom to top being able to be near the edge or in the axis of the foundation. [7] 

The behavior of cemented soils is influenced by the density, the percentage of humidity and to a 

considerable measure by the degree of foundation that is also associated with the cohesion of the 

material. Recent tests conclude that the simple compression test for high densities the resistance is 

influenced by the density of the test bodies, increasing with it, while for low densities the resistance 

maintains constant values, independently of the density value [8]. On the other hand, in the cementing 

process, the granulometric distribution also has an incidence in the resistance, obtaining better results 

in fine soils and with a good granulometric distribution. [9]  

In the case of reduced models tests of shallow foundations resting on soil-cement reinforced 

soils, the results indicate that the resistance of the soil-cement has no influence on the load capacity if 



Yield design solutions to bearing capacity of shallow foundations reinforced by a soil-cement layer. 

CILAMCE 2019 

Proceedings of the XLIbero-LatinAmerican Congress on Computational Methods in Engineering, ABMEC, 

Natal/RN, Brazil, November 11-14, 2019 

the failure is caused by punching, but it is an important value to know under which deformation values 

the reinforcement rupture occurs. [7]  

Inglés and Metcalf (1972) provide an indicative table (Table 1) of the percentage of cement 

needed depending on soils with different characteristics. 

 

Table 1. Cement quantity forecast depending on the type of soil. [10] 

Soil Type Cement Requirement (per cent) 

Fine crushed rock 0,5 - 2 

Well graded Sandy clay gravels 2 - 4 

Well graded sand 2 - 4 

Poorly graded sand 4 - 6 

Sandy clay 

Silty clay 

Heavy clay 

4 - 6 

6 - 8 

8 - 12 

Very heavy clay 12 - 15 

Organic soils 10 - 15 

 

YIELD DESIGN THEORY 

 The problem presented was studied through the use of the cinematic approach of limit analysis 

theory. Due to the practical difficulties presented in the rigorous study of the static approach of the 

yield design theory, some analysis was also made through the use of the limit equilibrium method. 

 The limit equilibrium method is based on the construction of fault surfaces from various 

simple shapes such as planes, circular surfaces and logarithmic surfaces. This method was used by 

Terzaghi to determine the capacity of foundations, it is not accurate, but approximate results can still 

be obtained. 

FUNDAMENTAL PRINCIPLES OF LIMIT ANALYSIS 

Given a system of loads represented by 
1Q , 

2Q ,…, 
nQ  acting on a three-dimensional continuous 

solid, volume   and contour d , for each point x  of solid there is a  strees state  . It can be define 

strength domain ( )G x  as the one where for all the points x , strees state  , strees are admissible. 

This domain ( )G x  has the property of being convex, zero is included and has a flow rule 

associated. 

of loads 
1Q , 

2Q ,…, 
nQ  by Q , for a load to be statically admissible it must be fulfilled that:  

Q
 is admissible   


 


 S. A. on 
( ) ( ) ( )Q x x G x x   

   (5)

  

The set of permissible loads is denoted by K  : 

/Q 
 S. A. e 

( ) 0f x   
         (6) 

If Q  is located outside of K  the system is unstable. A load 
*Q is said to be a limit load if it is 

within the K contour called K .[11] 

1.1 STATIC APPROACH 

Chen (1975) established the lower boundary theorem as follows: "The loads, determined for a 

distribution of tensions, which satisfy: a) the equations of equilibrium, b) the boundary stress 

conditions; and c) which nowhere violate the yield criterion, are not greater than the actual collapse 
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load”. A statically admissible stress field is one that meets these conditions, here it is stated that if such 

a stress field can be found the fault will not occur for a lower load.[12] 

From this premise all the load sets that comply with the hypotheses will be inside the K domain, 

so it is possible to find K  approaching inside the contour maximizing the Q values. 

1.2 KINEMATIC APPROACH 

This theorem is established as follows: "The loads, determined by equating the external working 

rate and the internal dissipation rate in a supposed deformation mode (velocity field) that satisfies: a) 

the limit conditions of velocity and, b) the conditions of compatibility of tension and velocity, are not 

lower than the actual collapse load". The kinematically permissible velocity field is the velocity field 

that complies with the above conditions. From this theorem it is possible to say that finding the 

velocity field that complies with the theorem, the acting load will indefectibly produce the failure of 

the system.[12] 

 In order to apply the theorem, it is necessary to assume the failure mechanism of the system, in a 

way that it fulfills the conditions. If the exact failure mechanism is found, the solution found will also 

be exact. 

Similar to the case of the lower limit theorem, the upper limit theorem can also be used to find 

the K  contour but approaching from the outside since all the load values obtained through this 

theorem will be outside K , so K can approximate minimizing the Q  values. 

An imposed load will not be permissible for a considered breaking mechanism if the load 

produces a rate of change in external energy or power greater than the internal rate of dissipation or 

deformation power. From this it can be said that the maximum power that can resist a mechanism 

considered is equal to the maximum value of the deformation power, this power receives the name of 

maximum resistant power, then: 

  

ex rmP P            (7) 

 

The external power is defined as ( ) ( )exP Q q U=   where U  is defined as a field of virtual 

velocities and q  the virtual velocities associated with the point of application of external loads.[11] 

The maximum resistive power is set as: 

ˆ

ˆ ˆ( ) : ( .[[ ]]).
U

rmP U dd U nd 
 

= +  
      (8) 

Where d̂  denotes the rate of virtual deformations to the virtual velocity field U ,   denotes the 

surface of the mechanism where the velocity discontinuity occurs and n  denotes a vector normal to 

the surface  . 

Then it's possible to write that: 

( ) ( ) ( ) 0rmQ q U P U  − 
                         

 (9) 

For this equation to provide valid results it must be fulfilled that: 

( ) 0 P ( )rmq U U   +
         (10) 

1.3 THE PI FUNCTIONS 

The   support functions are functions of the resistance domain that represent the maximum 

value that can be mobilized by the deformation power, they are auxiliary functions that allow to obtain 

the maximum resistant power for a certain mechanism. 
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The support functions depend on the x  point of the solid and the local value of the deformation 

rate d . These functions are defined for different failure criterion, which in turn are selected according 

to the type of constituent material of the system to be analyzed.[11] 

 

Generally speaking: 

ˆ ˆ: ( )dd d d 
 

 =            (11) 

ˆ ˆ

ˆ ˆ( .[[ ]]). ( ,[[ ]])
U U

U nd n U d 
 

 =  
       (12) 

This is finally equivalent to: 

ˆ

ˆ ˆ( ) ( ) ( ,[[ ]])
U

rmP U d d n U d 
 

= +  
      

 (13) 

1.4 CONSTITUENT MATERIALS  

3.4.1 Mohr-Coulomb material 

Resistance criterion: 

 ( ) sup (1 sin ) (1 sin ) 2 cos | , 1,2,3i jf C i j     = + − − − =
    (14) 

Support function: 

ˆ ˆ( )
tan

C
d trd


= if 

1 2 3
ˆ ˆ ˆ ˆ( )sintrd d d d  + +       (15) 

ˆ ˆ( , ) .
tan

C
n U U n


= if ˆ ˆ. sinU n U        (16) 

C  is the cohesion of the material and    is the angle of internal friction which are the resistance 

parameters of the material. 

The values of , 1,2,3i j =  represent the main stresses. 

The Mohr-Coulomb Criteria is originally developed for the study of soils although it is also used 

to model the resistance of rocks and concrete. Principally, this method gives better results in the case 

of sandy soils. 

 

3.4.2 Tresca material 

Resistance criterion: 

 0( ) sup | , 1,2,3i jf i j   = − − =
       (17) 
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Support function: 

0

1 2 3
ˆ ˆ ˆ ˆ( ) ( )

2
d d d d


 = + +

 
if ˆ 0trd =        (18) 

0ˆ ˆ( , )
2

n U U


 = if  ˆ . 0U n =         (19) 

Where 0   represents the resistance value of the material in traction-compression state. 

This criterion is applied to metals and cohesive soils without friction, such as clay soils. 

NUMERICAL ANALYSIS 

1.5 FAIULURE MECHANISM I 

The Prandtl mechanism [13], Fig. 2, has three differentiated zones; zone 1 with a triangular wedge 

shape with vertical velocity, zone 2 with a logarithmic spiral-shaped rupture surface, and zone three 

with a displacement with a plane failure surface. 

 

Figure 2. Prandtl’s mechanism. 

The rate of work exP  performed by external forces is obtained by: 

1 2 3ext vertical ext ext extP P P P P= + + +
        (20) 

Where: 

vertcialP PV=
          (21) 

2

1 tan( )
4

ext

B V
P


=

         (22) 
2

2

3 tan( )

2

1

2

(3tan( )cos( ) sin( ) (3tan( )cos( )

cos( )

2cos( ) cos(

t

)

sin( ))

1 9 an ( )

extP
B V

e  



 







 



 

 
=  

 

 + + −


 −
 
 


+      (23) 
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( )
2

3 tan( )

3 s )
cos( )

tan( ) cos( ) sin) ( ) cos(
2cos( ) co

(
s )

in
(

ext

B V
P e    

     
 

 
+ 

 

−
= − +

(24) 

Maximum resistive work rmP
 is obtained through Eq. (4). Using pi functions, Eq. (9), for a 

Mohr-Columb material, Eq. (11) and Eq. (12): 

ˆ

ˆˆ ˆ. ( ) [[ ]].
tan tanU

rm

C C
P Q q U trdd U nd

  
= = +  

     (25) 

But 0C = , because the soil is granular 

0rmP =
           (26) 

Applying the fundamental kinematic equality: 

1 2 3

0

0

ext rm

ext

vertical ext ext ext

P P

P

P P P P





+ + + 
        (27) 

( )

2

3 tan( )

2

2

2

3 tan( )

2 tan( ) 1 cos( )
2(

4 2cos( ) cos( )

1 cos( )
tan( ) cos( ) sin( ) cos( ))

(3tan( )cos( ) si

s

n( ) (3tan( )cos( ) sin( ))

1 9 tan ( )

sin( )
2co ( ) cos( )

e

P

B

e

 

 

  

 

 
 



     



  


 
 
 

 + + −
 

+ 

 
+ +


 −
 − −  

 



−
 


+

  (28) 

 

With: 

2

2


 


    

   

 

− +   −

= − −          (29) 

1.6 FAILURE MECHANISM II 

Hill's mechanism [14] consists of three zones. The first is an irregularly shaped triangular wedge with 

S velocity, whose vertical component is equal to the velocity of displacement of the footing, the 

second with a failure mechanism in form of a logarithmic spiral and U velocity, and the third with a 

plane failure mechanism. See Fig. 3. 

 

Figure 3. Hill’s mechanism. 

 



A. Yaharí, A. Albariño, R. López, A. Quiñonez, A. Arévalos 

CILAMCE 2019 

Proceedings of the XLIbero-LatinAmerican Congress on Computational Methods in Engineering, ABMEC, 

Natal/RN, Brazil, November 11-14, 2019 

As the failure mechanism I, exP
 is written: 

1 2 3ext vertical ext ext extP P P P P= + + +
        (30) 

verticalP PV=
          (31) 

1

sin( )
sin( )

4 2sin( ( ) )
ext

B B
P

  


   

 +
=  

− + −        (32) 

 
2

2

3 tan( )

2

sin( ) sin(

)(

)

2sin

3tan( )cos( sin( ) (3ta

i

n( )cos( ) sin( ))

1 9 tan ( )

( ) s n( )cos( )
extP

V

e

B

 



     

     

     



 + + − −




−

 


− −  



=  
 

 + + −


+     (33) 

( )
2

3 ta )

3

n(sin( )
tan( ) cos( ) sin( )

2sin( )

sin( )
cos( )

sin

i

( )cos(

s n( )

)

ext

B
P e

V

  
    

   

   








+
= − +

− − −

+ − −

 
 
 



+
   (34) 

Here rmP
 is null, therefore: 

1 2 3

0

0

ext rm

ext

vertical ext ext ext

P P

P

P P P P





+ + + 
        (35) 

2

3 tan( )

2

2

3 ta

2

n

(3tan

2

( )cos( )

n

sin

sin( )si

a

( ) sin( ) sin( )
2(

4sin( ) 2sin( ) sin( )cos(

( ) (3t n( )cos( )

s

s

)

sin( )

2 )

in( ))

1 9 ta

(

)

in

n (

e

e

P

B

 



  

        

         





 

  









 
 
 

 + +

−



 + + + − −
 − −  

− − − − − 





−


+

 
 
 



+
+

− − −
( )( ) sin( )
tan( ) cos( ) sin( ) cos( ))

sin( )cos
)

(
in

)
s (    

    
 

+ −
+

−
+

 (36) 

With: 

2 2

2

  

 
   


    

   

 

− +   −

− +   −

= − −
         (37) 

1.7 FAILURE MECHANISM III 

This is based on the Prandtl mechanism, but with zones 4 and 5 added because of the soil-cement 

layer. As shown in the Fig. 4, zone 1 has a triangular wedge shape that displaces vertically at the same 

velocity as the foundation and reinforcement. Region 2 presents a failure mechanism in the form of a 

logarithmic spiral, where the velocity at the point of contact with region 1 is perpendicular to the 

discontinuity surface. In region 3 the failure mechanism is a straight plane, where the discontinuity 

velocity is the same as the final velocity at the point where the failure surface of region 2 and 3 are 

tangent.  
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Figure 4. Prandtl’s mechanism for a soil reinforced with a soil-cement layer 

In this case, the works appear due to the weight 4 and 5. 

1 2 3 4 5extext vertical ext ext ext extP P P P P P P= + + + + +
      (38) 

verticalP PV=
          (39) 

2

1 tan( )
4

r

ext

B V
P


=

 
2

2

3 tan( )

2

cos( )

2c

n

os( ) cos(

1

2
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Using the kinematics approach: 
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Resulting: 
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With: 
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1.8 FAILURE MECHANISM IV 

Starting from the Hill’s mechanism, zones 4 and 5 are added, as illustrated in Fig. 5. Zone 4 moves 

vertically with the foundation speed, while zone 5 has the same speed as zone 3. 

 

Figure 5. Hill’s mechanism for a soil reinforced with a soil-cement layer 

For this mechanism: 
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In a similar way to the previous cases, applying the yield design: 
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With: 
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RESULTS 

The numerical analysis software Scilab [15] is used to determinate the results. The values obtained are 

compared in Table 2 with those determined by: Kumbhojkar [16], Terzaghi load capacity theory [17]; 

Chen using limit analysis for the solution of the Prandtl and Hill mechanism; Meyerhof considering 

the limit equilibrium theory [18]; and Foppa's tests using reduced models. 

The results are expressed as a function of the factor N . 
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Table 2. Factor 𝑁𝛾 for various studies for unreinforced soils. 

Method 10 =   15 =   20 =   25 =   35 =   40 =   

Faiulure mechanism I 2.72 5.88 12.42 26.8 60.32 146.8 

Faiulure mechanism II 1.16 2.62 5.7 12.5 28.62 70.28 

Kumbhojkar (from Terzaghi) 1.52 3.64 8.34 19.14 45.52 115.3 

Chen (from Prandtl) 2.74 5.88 12.4 26.7 60.2 147 

Chen (from Hill) 1.16 2.68 5.9 12.7 28.6 71.6 

Meyerhof 2.5 5.5 12 26 60 130 

Foppa -  -   -  - 60.75 -  

 

The results obtained for the soil reinforced with the soil-cement layer are compared in Table 3 with the 

results of Foppa, for an internal friction angle of 35°, by varying the parameters rH

B
 and r

r

T

H
. 

Table 3. Factor N  for foundations reinforced with soil-cement ( 35 =  ). 

rH

B
 r

r

T

H
 

N  

Foppa 

N  

Yield design 

Error 

(%) 

0.25 0.25 71.3 60.2 18.3 

0.25 0.50 70.7 70.7 0.0 

0.25 1.00 111.0 96.5 14.9 

0.50 0.25 93.6 72.5 5.3 

0.50 0.25 82,8 98.9 16.2 

0.50 0.25 82.6 99.4 16.4 

 

The mechanism with lower N  values is failure mechanism III for small  , and failure 

mechanism IV for large  . Therefore, according to the kinematic approach, the failure mechanism 

depends on the   angle of the soil.  Comparing these results with the results of the reduced model, it is 

obtained that the greatest error present is of 18,3% that is presented in the case of 0,25n =  and 

0,25m = .  

The values of the load capacity N  are expressed as a function of the parameters r
H

m
B

= ,

r

r

T
n

H
= , through the curves shown in Fig. 6, Fig. 7 and Fig. 8. Defining m and n , with an input 

value  , it is obtained the value of N . These graphs were made based on the failure mechanism that 

gives the lowest load capacity for each particular  , m  and n ., because this was the one that gave a 

lower load capacity. It is important to clarify that this analysis does not include the possibility of the 

failure of the soil-cement layer. It is necessary to verify that the failure of the soil-cement layer will 

not occur before. If this effect is to be considered, it is advisable to perform indirect tensile tests to 

determine the maximum flection moment that the soil-cement layer can support. The instant when is 

produced the reinforcement failure is under analysis yet. 
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Figure 6. Curve N -  for 0.25rH
m
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Figure 7. Curve N -  for 0.50rH
m
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Figure 8. Curve N -  for 1.00rH
m
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CONCLUSIONS 

First of all, it is clearly appreciable that there is an increase in the load capacity vertically 

distributed on the z-axis in shallow foundations reinforced with a layer of soil-cement. For the analysis 

the Prandtl and Hill failure mechanisms were used with the dynamic approach of yield design. The 

results of this investigation are compared with those obtained by other authors.  

The novelty of this work is that analytical results of the load capacity forecast are presented from 

abacus, which are obtained from dimensional formulas that due to their complexity were tabulated by 

using the numerical analysis software Scilab. 

It must be taken into account that the failure of the reinforcement is not considered, so for 

considerable dimensions of the reinforcement in relation to the width of the footing, the results 

obtained may be oversized. The determination of the load under which the reinforcement fails is still 

being studied. 
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