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Abstract. Exploration of deep-sea reservoirs is an important industrial activity due to the amount of oil
and gas the modern society demands. Thus, one needs to find a safe way to moor ships and platforms and
ensure continued and uninterrupted distribution of oil and gas. Torpedo anchors are often used as foun-
dation for offshore facilities as they are cost effective and their usage is independent of water depth. As
it is not easy to predict the behavior of installing such structures, usage of a numerical tool is necessary
and this theme has been the focus of many studies, aided by numerical methods such as Computational
Fluid Dynamics (CFD), Discrete Element Method (DEM) and Material Point Method (MPM). The last
of these, the MPM uses an interesting strategy that benefits from both Lagrangian and Eulerian formula-
tions. For instance, the convective term in momentum conservation is eliminated as a consequence of the
Lagrangian formulation and mesh distortion is avoided by a fixed background grid. On the MPM, ma-
terial information is placed inside material points, which are used to interpolate data to the background
grid, where the equations of motion are solved. Since the grid is fixed, large strains and displacements are
not a problem. Many authors used an axisymmetric formulation to simulate the installation of torpedo
anchors with the MPM. In real-life situations, however, the soil might display asymmetries. Therefore,
this work adopts the usual non-symmetric formulation to simulate the installation of two different anchor
designs on a non-symmetric soil using the MPM.
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1 Introduction

Torpedo anchors have been used by Petrobras since 1996 to support floating offshore structures
(Medeiros Júnior [1]). They are no more than normal steel piles, which are released in free fall to find an
underwater soil on which to moor these facilities.

According to Bezerra [2], this sort of anchor has fit well to the needs of the Petrobras since, in deep
waters, it is easy to find very soft clays, which torpedo anchors handle very well. Besides, they are a
cheap alternative to traditional mooring systems.

In practice, however, these anchors are submitted to the force of the waters and can have their
course changed during installation. Knowing beforehand the embedment depth these anchors are going
to achieve and the soil irregularities that might deviate them during installation is of vital importance.

Given the relevance of these anchors in offshore engineering and the necessity to simulate their
behavior, many authors have simulated the installation of such structures with the aid of numerical tools
in the likes of the discrete element method (Carvalho Júnior et al. [3]), the finite element method (Sousa
et al. [4]), Lagrangian-Eulerian finite element analysis (Nazem et al. [5]) and the material point method
(Al-Kafaji [6]).

The last of these methods, the material point method (MPM) is the focus of the simulations in
this article. The Material Point Method (MPM) was proposed by Sulsky et al. [7] as an extension of a
particle-in-cell (PIC) method. In the MPM, a continuum domain is discretized into particles or material
points (as showed in Figure 1), which are the repositories of material data. The way MPM works is by
making interpolations between these particles and a fixed background mesh, as will be further developed
on this article.

(a) Continuum domain (b) Discrete domain

Figure 1. Space discretization on MPM

Figure 2 shows a brief description of what happens during a MPM time step, divided into four
simple steps. Firstly, material information that was stored in the particles is mapped to the nodes of
the mesh (Fig. 2a). Then, the equations of motion are solved on the nodes (Fig. 2b). Node data are
used to calculate particle stresses, by mapping information from the nodes to the particles (Fig. 2c).
Finally, particle velocities and positions are updated (Fig. 2d). The process is repeated until the end of
the simulation.

The fixed background mesh on which these mappings are done is actually a Lagrangian mesh, but,
since node position is never updated (position information is stored in the particles), the mesh remains
fixed throughout the simulation. One consequence of this is that the mesh must encompass all the pos-
sible locations that the material points may occupy during the simulation. But, as an advantage, mesh
distortion is prevented, which makes the MPM a very powerful tool to simulate large strain and large
displacement problems.

To simulate the installation of torpedo anchors, Al-Kafaji [6] and Jassim et al. [8] have applied an
axisymmetric formulation together with the MPM. In real-life situations, however, the soil might display
non-symmetries that could affect the behavior of the torpedo anchor. That way, this article aims to
successfully simulate the installation of torpedo anchors using the MPM, and do so with two different
torpedo anchor designs in the presence of a non-symmetric soil interface.

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
Natal/RN, Brazil, November 11-14, 2019



L. Ferreira, A. Ramos Jr., T. Lôbo, R. Borges

(a) Particle-node interpolation (b) Solution of motion equations

(c) Node-particle interpolation (d) Position update

Figure 2. The four basic steps in a simulation with MPM

2 Formulation

In this section, the mathematical formulation which is the basis of this article is briefly discussed,
following three essential aspects: the general formulation of MPM, the contact algorithm and the elasto-
plastic model.

2.1 Material point method

MPM is built upon the conservation of momentum (Eq. (1)), since conservation of mass is already
met as the mass of the particles is constant through the entire simulation (Andersen and Andersen [9])
and conservation of energy is met as a consequence of mass and momentum conservation being satisfied
in a system on which heat exchange is negligible (Zhang et al. [10]).

ρ
∂vi
∂t

=
∂σij
∂xj

+ ρgi, (1)

in which,
ρ: mass density,
vi: velocity field,
t: time,
σij : Cauchy stress tensor,
xj : current position vector,
gi: field force (gravity, in this particular case).

Similarly to what occurs in the finite element method (FEM), conservation of momentum can be
written into a weak form. This form takes advantage of dividing the boundary of the domain into two
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sections: a boundary on which tractions are prescribed and a boundary on which displacements are pre-
scribed. With usage of an arbitrary weight function and the application of Gauss’ theorem and Reynolds’
transport theorem, the weak form leads to an equation of lower order than the equation of conservation
of momentum. Furthermore, since the mass of the system will be concentrated on the material points (or
particles), the mass density can be rewritten as a sum of the mass (mp) of each particle p in terms of the
Dirac delta map (δ):

ρ(x, t) =
∑
p

mpδ(x−Xp), (2)

in which,
Xp = particle position,

With the application of the Dirac delta map in substitution of the mass density in the weak form and
after the discretization of the continuum in space (by making use of a fixed background mesh of finite
elements) and time (with a time integration scheme), the general equation of the MPM can be written –
with the application of a lumped mass matrix – as the following equation of motion (for each node n of
the background mesh in the time step i):

M i
na

i
n = f ext,in − f int,in , (3)

in which,
M i
n =

∑
pmpN

e
n(xip): nodal mass (obtained by interpolating the masses of particles in adjacent ele-

ments, using the shape function of node n in the respective element e (N e
n)),

ain: nodal acceleration (the unknown in the equation of motion),
f ext,in =

∑
pmp gN

e
n(xip): external nodal force (in this case, gravity, so it corresponds to the weight),

f int,in =
∑

p Vpσ
i
p ·∇N e

n(xip): internal nodal force (depends on the particle stress (σip) and the particle
volume (Vp)).

The time integration scheme adopted in this article is the Euler method, which is an explicit time
integration scheme and, therefore, demands the definition of a critical time step (∆tcritical), which must
not, by all means, be surpassed during the simulation:

∆tcritical =
∆x√
E
ρ

, (4)

in which,
∆x: element size on the fixed background mesh,
E: elastic modulus of the material.

Since the internal nodal forces depend on particle stresses, the moment on which stresses are up-
dated, i.e., before or after solving the equation of motion in a given time step, interferes in the results. On
his paper, Bardenhagen [11] talks about two different solutions: Update Stresses Last (USL) and Update
Stresses First (USF). As the name implies, in USF the stresses are updated after solving the equation of
motion, whilst in USL the stresses are updated before. USF is a conservative algorithm, but can increase
the energy level in some situations. This article adopts the Modified Update Stresses Last (MUSL) algo-
rithm, which is a variation of USL that ensures that stresses are updated with nodal velocities from the
current time step. The MUSL algorithm is summarized in Fig. 3.
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Figure 3. Flowchart of the MUSL algorithm

2.2 Contact algorithm

In the MPM, contact is detected not on the particles, but on the nodes of the background grid.
MPM handles no-slip contact automatically, as the velocity field of the particles is single-valued and,
in consequence, no interpenetration is allowed (York et al. [12]). However, handling only the normal
contact is not enough to simulate the installation of torpedo anchors, as the soil on the contact interface
gets locked to the anchor and is pulled with it.

That way, a dedicated algorithm to handle the tangential contact is necessary. The approach adopted
in this article is similar to the traditional FEM master-slave algorithm. In this approach, three different
grids are used: a master grid, containing both bodies 1 (the torpedo anchor) and 2 (the soils), the first
slave grid, containing only the anchor and the second slave grid, containing only the soil, as showed
in Fig. 4. When the algorithm detects that, in adjacent elements, particles from slave 1 and slave 2 are
present, then, the contact happens.

(a) Master (b) Slave 1 (c) Slave 2

Figure 4. Master and slave meshes for the contact algorithm
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2.3 Elastoplasticity

In this work, a 2-dimensional analysis is presented, with a plane strain state. The elastic behavior of
the materials is assumed to be linear elastic and the von Mises yield criterion is used for plasticity. This
formulation was implemented in this work based on the book written by Souza Neto et al. [13].

3 Simulation template

Two templates were developed for the simulations in this article. Both templates share the same
materials, sizes and mesh properties. The only difference that takes them apart is the anchor design. In
template 1, the torpedo anchor doesn’t have a fin, while in template 2 the torpedo anchor has a fin. An
illustration of the mesh (which doesn’t correspond to the real mesh that was simulated in this article) is
presented for both templates, as well as the supports in Fig. 5.

(a) Torpedo anchor 1 (finless) (b) Torpedo anchor 2 (with fins)

Figure 5. Torpedo anchor templates

Tables 1 and 2 show, respectively, the geometric properties and the materials of the simulations.
Figure 6 and Table 3 show the geometric properties of the torpedo anchors. They were the same for both
templates, except by the fins, which are in the second template, but not in the first one. The materials
adopted here were A36 steel (for both anchors) and two different clay soils (soil data was adapted from
Awwad and Al Kodsi [14]). The numerical domain was the same for both simulations, with the exception
of the number of particles in template 2, which was bigger as a consequence of the presence of fins.
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Table 1. Material properties

A36 Steel Clay 1 Clay 2

Density (ρ) 7,800 kg/m3 1,500 kg/m3 1,700 kg/m3

Elastic modulus (E) 2× 1011 Pa 5× 107Pa 4.9× 107Pa

Poisson’s ratio (ν) 0.26 0.2 0.2

Yield stress (σy) 2.5× 108 Pa 6× 103 Pa 3× 103 Pa

Table 2. Numerical domain properties

Template Torpedo anchor 1 Torpedo anchor 2

Element size 0.05 m 0.05 m

Number of nodes 243,412 243,412

Number of elements 242,305 242,305

Number of particles 182,742 190,631

% of critical ∆t 10 % 10 %

Simulation time 1s 1s

Figure 6. Torpedo anchor geometric elements
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Table 3. Geometry specifications

Template element Torpedo anchor 1 (finless) Torpedo anchor 2 (with fins)

Full length (L) 12 m 12 m

Tip length (LTIP) 1.5 m 1.5 m

Diameter (D) 0.75 m 0.75 m

Distance from the fin to the top (LTOP) – 1 m

Fin’s smaller side (lFIN) – 3 m

Fin’s larger side (LFIN) – 5 m

Fin width (wFIN) – 0.625 m

Terminal velocity (vTERM) 30 m/s 30 m/s

Soil height \width 27 m \15 m 27 m \15 m

4 Results

Figure 7 shows the results of the simulation for both torpedo anchor templates (with and without
fins) for different time steps (0, 0.15, 0.30 and 0.45 s). At each time step, torpedo anchor 1 is the one in
the left (Figs. 7a, 7c, 7e and 7g) and torpedo anchor 2 is the one in the right (Figs. 7b, 7d, 7f and 7h).
Both anchors are launched with a separation of 5 elements to the soil and with terminal velocity (vTERM).
Figure 8 shows a comparison of the velocities of both torpedo anchors for the time interval between 0
and 0.5 s.

5 Conclusion

The MPM was able to successfully simulate the installation of torpedo anchors with a non-symmetric
formulation and with two layers of non-symmetric soil, even though a poorly refined mesh of Q4 ele-
ments was used due to the computational cost of using more refined meshes and smaller time steps. As
explained in the section 2.2, the MPM contact is handled in the nodes and, therefore, the smaller the
elements, the closer the bodies in contact get to each other and more precise is the result.

As the results in Fig. 8 show, torpedo anchor 2 (the one with fins) gets down faster than torpedo
anchor 1, which was to be expected, since it is a very common design in the industry and it is heavier
than torpedo anchor 1. That comes to show that the weight and the aerodynamics of this model would
theoretically provide a faster installation according to the simulations hereby presented, but, since the
difference was not too significant, more precise simulations would need to be done.

Besides, the results could have been even better if a more refined background mesh was used –
informed by smaller time steps – and if the Drucker-Prager yield criterion was adopted instead of the
von Mises criterion, which is pressure insensitive and, therefore, optimal for metal simulations, but not
for soils [13]. Also, absorbing boundary conditions could have been applied, besides usage of a 3-
dimensional simulation template, which is more accurate to the physical problem. However, considering
the MPM was able to make a good simulation even without these refinements just comes to the advantage
of the method.
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(a) t = 0 s (b) t = 0 s (c) t = 0.15 s (d) t = 0.15 s

(e) t = 0.30 s (f) t = 0.30 s (g) t = 0.45 s (h) t = 0.45 s

Figure 7. Comparison of torpedo anchors 1 and 2 at different time steps

Figure 8. Velocity drop during torpedo anchor installation
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