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Abstract. One-dimensional laboratory consolidation test is used to discover one of the most important 

parameters of consolidation of cohesive soils, the compression index (Cc). However, it is a long test 

and requires the utmost care to obtain reliable samples. Geotechnical correlations are largely used 

because it can give fast means of parameter prediction using simple tests. These correlations are 

constructed from local data and need to be evaluated before used in other regions. This paper reports 

on laboratory tests conducted in soft soils of Brazil and shows a more complete form of statistical 

evaluation for the correlation of the Cc. The database is formed by 430 results of Cc and moisture 

content (wn) collected in the national literature. The correlations analyzed are exclusively in function 

of wn. The equations were evaluated using 17 statistical tools for each of the 11 compression index 

correlations. Comparison between the results showed the best correlations and the less suitable 

correlations for the database in this study. In this paper an attempt has been made to present the 

empirical correlations proposed by various researchers for compression index in function of  moisture 

content. The results will be useful in identifying empirical equations to estimate the compression index 

of Brazilian soft soils. 
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1  Introduction 

In the world, cities such as: Shanghai, Bangkok, Kuala Lumpur, Singapore, Bogota and Mexico 

City are developing in soil composed of thick layers of soft soils (Pacheco [1]). In Brazil it is common 

to find this soil in cities such as Recife, Maceió, Salvador, Rio de Janeiro, Campinas, Santos, Porto 

Alegre, Belém and others. 

For the occupation of these lands, where there is presence of soft soils, aiming at construction of 

houses, roads and implementation of enterprises, landfill is commonly built, generating overload to the 

land. These constructions are subject to problems, from the geotechnical point of view, of the rupture 

of the soil mass and of high settlements. 

With regard to Geotechnical Engineering, the study of soil behavior is fundamental to understand 

the deformations starting from addition or relief of tensions. The occurrence of excessive 

displacements, above the limits allowed by norm, compromise the aesthetics of the construction and 

the performance of the structure. 

The present work cites a particular case of deformation, in which the soil is subjected to a state of 

geostatic stresses and the load causes only vertical displacements. For this case, it is said that there 

was as one-dimensional displacement, also known as Oedometric compression. 

For the study of Oedometric compression, the Oedometric test is performed. In this test, the 

variation of height (vertical displacement) of a soil sample is determined while it undergoes vertical 

loading by modeling a graph of voids index (e) x vertical effective tension log (σ'v), called 

compression curve. By means of this graph soil compressibility parameters are obtained which are 

called: Compression Index (Cc), Recompression (Cr) and Decompression (Cs). 

These indices provide us information about the deformation presented by the soil when it is being 

subjected to a tension or relief. By means of them they estimate the settlements that the soils take to 

happen, being able to predict the displacements and to develop suitable measures to fight them. 

The assay requires some prudence, the same must be done in undisturbed samples, where the 

structure of the sample brought to the laboratory presents "fidelity" to the structure of the soil in field 

conditions, and the modifications suffered by the handling is minimal, in such a way that the 

modifications of their properties are despicable. 

Samples for the Oedometric test are carried out in the field by mechanical machinery, and a good 

process control is required in the extraction and in the laboratory to obtain satisfactory results. 

Therefore, for the pre-project phase or initial studies, this test becomes expensive and time-consuming. 

To facilitate this process it is possible to use correlations. The use of correlations in Geotechnics 

is a quick way to predict parameter values whose derivation comes from long-term and/or high-cost 

methods. Researchers (Azzouz [2], Herrero [3], Almeida et alli [4] and others) have sought 

mathematical-statistical methods to determine the parameters obtained in the Oedometric test, aiming 

at more agility for the calculation of settlements, creating correlations between these coefficients with 

more practical physical index (natural moisture content, liquidity limit, plasticity index, among 

others). 

The choice for moisture is given by this parameter, together with the grain density and total 

specific gravity, are the first indices to be determined when analyzing undeformed samples. 

However, many equations cannot be considered valid for any soil conditions, they have their 

limitations. This affects its use in certain situations, such as moisture content limit and soil type, 

generating non-reliability in the result for a wide range of parameters. 

Therefore, is a need to verify the optimal use of these relationships to determination the Cc to a 

local in order to verify their consistency with real data. 

In this study, are investigated the reliability of some of the empirical relationships in the literature 

related to the compression index using a statistical evaluation criterion for Brazilian soil data, where 

the presence of soft soil is significant. 
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2  Oedometric Compression Test 

At the moment the sedimentation process occurs for the formation of soft soil massif, the lower 

layers are overloaded by the sediments deposited on the subsequent layers. In this case, the soil's own 

weight provides stress states called geostatic stresses. 

The displacement imposed by its own weight is one-dimensional, occurring only in the vertical 

direction. In this situation it is said that the soil is undergoing confined or Oedometric compression. 

The Oedometric compression test seeks to reproduce, in the laboratory, the one-dimensional 

displacement that occurs in the soil massif after loading. 

It consists of molding a specimen in a steel ring, with a diameter/height ratio equal to or greater 

than three (due to Terzaghi's assumption), from an undeformed sample extracted in the field. The 

specimen is placed in the test apparatus and compressed vertically (Figure 1). 

 

 

Figure 1. Oedometric Compression Test 

 

The steel ring nullifies the lateral displacements, confining the sample, causing the water flow to 

occur exclusively vertically. The porous stones act as upper and lower draining boundaries. The lower 

boundary may or may not exist in the field, a fact that can be seen after site exploration. 

The load is applied to the entire surface of the specimen, the relationship between the load and the 

surface area is the effective vertical stress - σ'v, at a given loading stage representing the overload 

imposed on the ground layer. 

The application of axial loads is performed in stages. In each step the vertical deformations are 

read over time with the aid of an extensometer for each load increment. This device is in contact with 

the upper surface of the soil sample throughout the loading stage. After the deformations of each load 

cease, loads are applied at twice the intensity of the previous stage. 

At each loading stage there is an increase of pore pressure generated by the increased vertical 

tension. Excess pore pressure, equal to the increase in total vertical tension applied, causes water to 

flow into the draining boundaries (porous stones). The consolidation of the sample is caused by the 

reduction of the voids index (e) after water outflow. 

One of the objectives of the test is the construction of the Oedometric compression curve e x log 

(σ'v) presented in Figure 2. 
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Figure 2. Compression curve e x log (σ'v) Test - Sarapuí II Clay. Source: Silva [5] 

The σ'v axis is logarithmic so that the virgin compression stretch has a rectilinear shape (Martins 

[6]). The sequence of applied loads (σ'v) is double the previous one so that a better distributed spacing 

is obtained in the graph. 

After all load increments have ceased and the data are computed, the e x log σ'v shown in Figure 2 

is plotted. From it, it is possible to obtain the compressibility parameters known as compression index 

(Cc), recompression index. (Cr) and decompression index (Cs), as shown in Figure 3.  

All curve indices are angular coefficients of the lines representing recompression (Cr), virgin 

compression (Cc) and soil decompression (Cs). 

 

 

Figure 3. Graph 𝑒 𝑥 𝜎’𝑣 (𝑙𝑜𝑔) 
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3  Sample reliability 

In order to obtain significant results in the assay, the field samples must be of good quality 

undeformed, in which the structure that arrives in the laboratory is the most faithful to the structure in 

the field. For this, the soil collection should be done following the procedures described in NBR 

9820/1997, which gives the procedures for the collection of undisturbed samples of low consistency 

soils in drillholes. 

Nevertheless, Louvise [7] and Brazil [8] state that most of the undisturbed samples are still of 

questionable quality due to the low seriousness with which the procedures are performed in the 

collection, transport, handling and laboratory tests. This directly implies a change in soil properties, 

causing the sample to soften, masking the correct value of pre-compaction stress and influencing the 

final value of Cc. 

In saturated soft clays, denting is an undrained process that occurs only due to distortions in the 

sample as no volumetric variation occurs. 

Studies by Coutinho [9] showed the denting of tested samples by observing the graph obtained in 

the Oedometric test (Figure 7). Their study showed that the behavior of the compression curve differs 

for the cases of good quality undisturbed, poor quality undisturbed and dented specimens. 

 

 

Figure 4. One-dimensional compression curves for Sarapuí clays obtained from good quality, poor 

quality undisturbed samples and remolded samples. Source: Coutinho [9] 

 

Figure 4 shows that: 

• For any value of σ'v the void index of undeformed samples is always greater than that of 

deformed ones; 

• The curvature of the virgin stretch is less pronounced for so-called dented samples; 
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• Lower will be the value of the pre-tensioning voltage; 

• Increased compressibility in the recompression stretch. 

4  Compression index equations as a function of natural moisture content 

According to Herrero [3], Helenelund in 1951 proposed an expression relating the compression 

index to the natural moisture (wn), being the first author to use this parameter for correlation. From 

there, many researchers looked for equations that best represented their local soils in function of the 

natural moisture content. 

Azzouz et alli [2] cites Moran et alli as the precursors, in 1958, to launch an equation for organic 

soils and Osterberg, in 1972, for Chicago Clay. In their work, Azzouz et alli [2] proposed equations 

for clays from Greece and the United States (USA) 

Herrero [3] established a formulation for clays in general. The study of Koppula [10] obtained a 

similar result to that of Osterberg for cohesive soils. Yoon et alli [11] studied clays and silts from 

Bangladesh, Touiti et alli [12] soft clays of Tunisia, Solanki [13] Aluviares deposits of India, Park & 

Lee [14] soils of Korea, Kalantary & Kordnaiej [15] of Iran. 

Almeida et alli [4] and Silva [5] obtained their equations from results based on the national 

literature on soft clays, with clays from Rio de Janeiro. 

Table 1 presents the empirical expressions developed by these authors used in the analysis of this 

work, as well as their applicability criteria. When applying the equations, there are important 

information that must be seen for the correct use of them, for example: for which horizon of values 

each expression was idealized. 

Table 1. Compression index equations as a function of natural moisture; Cc = f (wn) 

Reference Correlation Applicability 

*Moran et alli (1958) Cc = 0,0115wn Solos Orgânicos 

*Osterberg (1972) Cc = 0,01wn Argila de Chicago 

**Koppula (1981) Cc = 0,01wn Solos coesivos 

Azzouz et alli (1976) Cc = 0,01(wn - 5) Argila da Grécia e EUA 

Herrero (1980) Cc = 0,01(wn - 7,549) Argilas 

Yoon et alli (2004) Cc = 0,013(wn - 3,85) Argila e Silte de Bangladesh 

Touiti et alli (2007) Cc = 0,00667wn + 0,19034 Argila mole da Tunísia 

Solanki (2008) Cc = 0,0091wn + 0,0522 Depósitos Aluviares da Índia 

Almeida et alli (2008) Cc = 0,013wn Argila mole do Brasil 

Park & Lee (2011) Cc = 0,013wn + 0,115 Solos da Coreia 

Kalantary & Afshin (2012) Cc = 0,0074wn - 0,007 Argilas de Mazandaran 

Silva (2013) Cc = 0,0115wn + 0,8 Argila mole do Brasil 

 

Not all authors present a significant amount of information about their equations. This lack of 

data can mislead applications, not representing the behavior of the ranges of values of the variables 

calculated in the process. The formulations used in this work do not represent all the equations that 

estimate the compression index, they are only those that correlate it exclusively with the natural 

moisture and that have a determination index above 0.7 and/or that are very widespread in the 

scientific environment together with the two Brazilian (Almeida et alli [4] and Silva [5]). 

5  Statistical Tools for Model Evaluation 

To ascertain how well a model describes the behavior of the study variable, it is essential to use 

statistical tools that can quantify the accuracy and precision of the model. After data collection a 



SANTOS, J.S. & ANJOS, G.J.M 

CILAMCE 2019 

Proceedings of the XLIbero-LatinAmerican Congress on Computational Methods in Engineering, ABMEC, 

Natal/RN, Brazil, November 11-14, 2019 

central measurement is observed, the average value estimated by the model should approach the 

measured value (true) for the model to have good accuracy. It has its accuracy assumed if the model is 

able to estimate values without presenting large dispersions. Standard deviation is the model 

variability estimator. 

To evaluate the model to be built in the present work and the other models found in the literature, 

seventeen statistical tools were used. The choice for this total of tools was due to the fact that there is 

no single definitive one in the evaluation of the fit between calculated (predicted) and measured values 

of any magnitude. Thus, it was decided to evaluate the models in the form of ranking after the analysis 

with the tools. To understand the formulas, the following statistical metrics are described below: 

 
k: Ratio between calculated and measured value; 

Qc: Calculated (predicted) value; 

Qm: Measured value; 

μk: Arithmetic mean of k values; 

σk: Standard deviation of the values of k; 

μln (k): Arithmetic mean of the values of ln (k); 

σln (k):  Standard deviation of the values of ln (k); 

n: Number of data; 

MA: Mean 

MED: Median; 

x: Variable (k values); 

f(x): probability density function; 

μ(Qm): Arithmetic mean of Qm values: 

 

The analysis of the tools starts from the concepts of Mean and/or Standard Deviation. 

In this work the calculated and measured values can be compared using the synthetic probabilistic 

method described by Cherubini & Greco [16]. We then use the “bias factor” k, where in a database of 

n calculated values (Qc) and their corresponding measured values (Qm), k can be calculated by: 

k   
 c

 m

. (1) 

A value of k greater than 1 means that the calculated value is greater than the measured value 

(determined in the test). Values less than 1 means that the measured values are greater than those 

determined by the formulations. 

If different methods are being analyzed, such as in this work, different sets of k values can be 

calculated for a single set of Qm. In this case, to determine which model better fits the behavior of the 

measured values, it is necessary to statistically evaluate the predicted values. 

5.1 Arithmetic mean 

The arithmetic mean indicates the accuracy of a model, ie how well this model describes the data. 

It is a central trend measure of the data set and is considered the simplest way to describe it. Its 

expression is given by: 

  

μ
k
   

 

n
∑ ki
n
i  . (2) 

5.2 Standard deviation 

Standard deviation is a measure indicative of accuracy (data set dispersion) relative to the mean. 

 k √
 

n  
∑ (ki –  μk)

 
n
i  . (3) 



Statistical Evaluation of Empirical Correlations for the Compression Index (Cc) in Brazilian Soft Soils 

CILAMCE 2019 

Proceedings of the XLIbero-LatinAmerican Congress on Computational Methods in Engineering, ABMEC, 

Natal/RN, Brazil, November 11-14, 2019 

5.3 Other Tools 

Table 2. Statistical Tools 

Tool Equation Eq. 
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2
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6  Database 

The database of this paper is quantitative and composed by 430 pairs of results of natural 

moisture and compression index (wn - Cc) from tests performed on undisturbed soft soil samples 

found in Brazil. The data was collected from papers, journals, dissertations and theses by national 

authors. 

Of this total, 135 correspond to tests performed on clay samples from Rio de Janeiro, 94 from 

Santa Catarina, 66 from Pernambuco, 58 Rio Grande do Sul, 54 from Santos, 15 from Maranhão, 5 

from Espiríto Santo and 3 from Minas Gerais. Table 3 presents statistical descriptive measures of the 

database. 

 

 

 

Figure 5. Brazilian sampling 

Figure 5 shows the locations from which the data comes and the percentage that each location 

contributed to the database of this work. Plainly, the absence of data in most of the Brazilian territory 

is clear, several reasons may explain this fact, as few publications in the area, lack of research / works 

in the region, lack of infrastructure to perform the tests, difficulty of access to data. by the authors, 

among others. The states Rio de Janeiro and Santa Catarina are the ones that most contribute for the 

database to this paper. 

Table 3. Descriptive measures of the database 

Reference wn (%) Cc 

Nº of Data 430 430 

Minimum 23.30 0.090 

Maximum 784.48 7.270 

Mean 120.97 1.550 

Median 98.24 1.459 

Standard deviation 93.564 1.064 

Kurtosis 17.556 6.855 

Asymmetry 3.694 2.074 
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The mean values different from the median values indicate asymmetry, this fact proved by the 

calculated asymmetry values. Asymmetry greater than 0 reveals that the distribution is asymmetric on 

the right, also called positive, and can be seen more clearly in Figure 6 obtained from the SPSS 

(Statistical Product and Service Solution) program. Kurtosis shows high values above zero, which 

indicates a Leptocurtic frequency distribution with tapered curve. 

 

 

 

Figure 6. Database Histogram 
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7  Model Analysis 

The statistical analysis tools presented in this paper are used as performance meters of the 

prediction models seen in this study. All 11 expressions found in the literature, in the universe of 430 

wn x Cc pair data, were analyzed with each of the 17 tools (Figure 7). 

The methods were then sorted in ascending order for each tool. The cumulative sum of the ratings 

(Sum) is used in the overall rating to determine the best expressions. The prediction models that 

presented the best scores among all the statistical tests accumulated smaller sum, therefore, they have 

better adjustments to the data. The classification of the original methods can be seen in Table 3. It is 

important to note that rank prompts the analysis of numerous statistical tools, such as model 

evaluation, rather than one or three as usual. 

 

 

Figure 7. Calculation Scheme 

Table 3. Overall Rating - Forecasting Models 

Order Model Sum 

1 Park & Lee (2011) 698 

2 Moran et alli (1958) 783 

3 Yoon et alli (2004) 845 

4 Almeida et alli (2008) 987 

5 Osterberg (1972) and Koppula (1981) 1252 

6 Azzouz et alli (1976) 1515 

7 Herrero (1980) 1785 

8 Solanki et alli (2008)  2324 

9 Touiti et alli (2007) 2857 

10 Kalantary & Kordnaeij (2012) 3101 

11 Silva (2013) 3352 

Among the models found in the literature, the Park & Lee [14] model best represents the 

compression index behavior. It is noteworthy that each formulation is made from local data that may 

differ from the parameters found in Brazilian soils, so the importance of finding out which model can 

best estimate the compression index for national soils and which models should not be used. 

A better view of the behavior of the calculated and measured set of values for the 11 equations 

can be seen in Figure 8. 

 

and 
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Figure 8. Cc forecasted x measured of formulations 
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Figure 8 shows a better distribution around the line k = 1 (calculated values equal to measured 

values) for the expression proposed by Park & Lee [11], Moran et all cited by Azzouz et alli [2] and 

Yoon et alli [11] compared to the others. The Herrero, Osterberg and Koppula models calculate many 

values below those measured in the laboratory. This implies a lowering of settlements values as lower 

Cc values imply lower settlements values. 

Almeida et alli [4] present initial calculated values above those found in the database. Among the 

11 models analyzed, Touiti et alli [12] and Silva [5] presented the largest dispersions in comparison to 

the other models (clearly noticeable when the calculated and measured data were presented). 

8  Conclusions 

The study of correlations is not intended to replace the Oedometric test, it aims only to fasten 

implementation feasibility of projects since they allow to predict the parameters more quickly and 

simply than conventional ones. Such formulations should always be implemented within the scope of 

their applicability, taking into consideration their limitations as presented in this paper, for projects 

with greater safety criteria or lower cost. 

The use of different statistical tools helps in the decision of choosing prediction models, since 

they show more succinctly errors and concordances between measured (observed) and calculated 

(predicted) values, so that more accurate equations are employed. 

The analysis of the 430 Cc x wn data pairs of soft soil samples performed in this work indicated 

that the estimation models of Park & Lee [11], Moran et all cited by Azzouz et alli [2] and Yoon et 

alli [11] stand out positively for the Cc prediction for Brazilian soft soils. 

Correlations can also be employed to predict the results of laboratory tests. This way, it is 

possible to have a better quality control and confidence in the final result. 
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